1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
|
from tools.load import LoadMatrix
from sg import sg
lm=LoadMatrix()
traindat=lm.load_numbers('../data/fm_train_real.dat')
testdat=lm.load_numbers('../data/fm_test_real.dat')
train_label=lm.load_labels('../data/label_train_twoclass.dat')
parameter_list=[[traindat,testdat, train_label,10,2.1,1.2,1e-5,False],
[traindat,testdat,train_label,10,2.1,1.3,1e-4,False]]
def classifier_gpbtsvm (fm_train_real=traindat,fm_test_real=testdat,
label_train_twoclass=train_label,
size_cache=10, width=2.1,C=1.2,
epsilon=1e-5,use_bias=False):
sg('set_features', 'TRAIN', fm_train_real)
sg('set_kernel', 'GAUSSIAN', 'REAL', size_cache, width)
sg('set_labels', 'TRAIN', label_train_twoclass)
sg('new_classifier', 'GPBTSVM')
sg('svm_epsilon', epsilon)
sg('c', C)
sg('svm_use_bias', use_bias)
sg('train_classifier')
sg('set_features', 'TEST', fm_test_real)
result=sg('classify')
return result
if __name__=='__main__':
print('GPBTSVM')
classifier_gpbtsvm(*parameter_list[0])
|