File: distribution_histogram.py

package info (click to toggle)
shogun 3.2.0-7.3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 28,452 kB
  • ctags: 24,670
  • sloc: cpp: 210,224; python: 19,668; java: 3,119; ansic: 3,000; cs: 2,335; xml: 1,178; perl: 1,172; sh: 848; ruby: 680; makefile: 269; objc: 37
file content (31 lines) | stat: -rw-r--r-- 975 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from tools.load import LoadMatrix
from sg import sg
lm=LoadMatrix()
traindna=lm.load_dna('../data/fm_train_dna.dat')
cubedna=lm.load_cubes('../data/fm_train_cube.dat')
parameter_list=[[traindna,cubedna,3,0,'n'],[traindna,cubedna,4,0,'n']]

def distribution_histogram(fm_train=traindna,fm_cube=cubedna,order=3,
			    gap=0,reverse='n'):

#	sg('new_distribution', 'HISTOGRAM')
	sg('add_preproc', 'SORTWORDSTRING')

	sg('set_features', 'TRAIN', fm_train, 'DNA')
	sg('convert', 'TRAIN', 'STRING', 'CHAR', 'STRING', 'WORD', order, order-1, gap, reverse)
	sg('attach_preproc', 'TRAIN')
#	sg('train_distribution')
#	histo=sg('get_histogram')

#	num_examples=11
#	num_param=sg('get_histogram_num_model_parameters')
#	for i in xrange(num_examples):
#		for j in xrange(num_param):
#			sg('get_log_derivative %d %d' % (j, i))

#	sg('get_log_likelihood')
#	return sg('get_log_likelihood_sample')

if __name__=='__main__':
	print('Histogram')
	distribution_histogram(*parameter_list[0])