File: splitsetheap.go

package info (click to toggle)
sia 1.3.0-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 6,340 kB
  • sloc: makefile: 80; sh: 52
file content (208 lines) | stat: -rw-r--r-- 5,987 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
package miner

// mapElements are stored in a mapHeap. The index refers to the location of the
// splitSet in the underlying slice used to represent the heap.
type mapElement struct {
	set   *splitSet
	id    splitSetID
	index int
}

// mapHeap is a heap of splitSets (compared by averageFee). The minHeap bool
// specifies whether it is a min-heap or max-heap.
type mapHeap struct {
	selectID map[splitSetID]*mapElement
	data     []*mapElement
	size     uint64
	minHeap  bool
}

// up maintains the heap condition by checking if the element at index j is less
// than its parent (as defined by less()). If so it swaps them, so that the
// element at index j goes 'up' the heap. It continues until the heap condition
// is satisfied again.
func (mh *mapHeap) up(j int) {
	for {
		// i is the parent of element at index j.
		i := (j - 1) / 2

		if i == j || !mh.less(j, i) {
			// Heap condition maintained.
			break
		}

		// Swap i and j, then continue.
		mh.swap(i, j)
		j = i
	}
}

// down maintains the heap condition by checking that the children of the
// element at index i are less than the element at i (as defined by less()). If
// so, it swaps them, and continues down the heap until the heap condition is
// satisfied.
func (mh *mapHeap) down(i0, n int) bool {
	i := i0
	for {
		// j1 is the left child of the element at index i
		j1 := 2*i + 1

		// Check that j1 is in the bounds of the heap (j1 < 0 after int overflow).
		if j1 >= n || j1 < 0 {
			break
		}

		//j is the left child of i.
		j := j1

		// If the right child (j2) of the element at index i (the sibling of j),
		// is within the bounds of the heap and satisfies
		if j2 := j1 + 1; j2 < n && !mh.less(j1, j2) {
			j = j2 // = 2*i + 2  // right child
		}

		// If the heap condition is true here, the method can exit.
		if !mh.less(j, i) {
			break
		}

		// Swap with the child and continue down the heap.
		mh.swap(i, j)
		i = j
	}
	return i > i0
}

// Len returns the number of items stored in the heap.
func (mh mapHeap) len() int {
	return len(mh.data)
}

// less returns true if the mapElement at index i is less than the element at
// index j if the mapHeap is a min-heap. If the mapHeap is a max-heap, it
// returns true if the element at index i is greater.
func (mh mapHeap) less(i, j int) bool {
	if mh.minHeap {
		return mh.data[i].set.averageFee.Cmp(mh.data[j].set.averageFee) == -1
	}
	return mh.data[i].set.averageFee.Cmp(mh.data[j].set.averageFee) == 1
}

// swap swaps the elements at indices i and j. It also mutates the mapElements
// in the map of a mapHeap to reflect the change of indices.
func (mh mapHeap) swap(i, j int) {
	// Swap in slice.
	mh.data[i], mh.data[j] = mh.data[j], mh.data[i]

	// Change values in slice to correct indices. Note that the same mapeElement
	// pointer is in the map also, so we only have to mutate it in one place.
	mh.data[i].index = i
	mh.data[j].index = j
}

// push puts an element onto the heap and maintains the heap condition.
func (mh *mapHeap) push(elem *mapElement) {
	// Get the number of items stored in the heap.
	n := len(mh.data)

	// Add elem to the bottom of the heap, and set the index to reflect that.
	elem.index = n
	mh.data = append(mh.data, elem)

	// Place the mapElement into the map with the correct splitSetID.
	mh.selectID[elem.id] = elem

	// Increment the mapHeap size by the size of the mapElement.
	mh.size += elem.set.size

	// Fix the heap condition by sifting up.
	mh.up(n)
}

// pop removes the top element from the heap (as defined by Less()) Pop will
// panic if called on an empty heap. Use Peek before Pop to be safe.
func (mh *mapHeap) pop() *mapElement {
	n := mh.len() - 1

	// Move the element to be popped to the end, then fix the heap condition.
	mh.swap(0, n)
	mh.down(0, n)

	// Get the last element.
	elem := mh.data[n]

	// Shrink the data slice, and delete the mapElement from the map.
	mh.data = mh.data[0:n]
	delete(mh.selectID, elem.id)

	// Decrement the size of the mapHeap.
	mh.size -= elem.set.size

	return elem
}

// removeSetByID removes an element from the MapHeap using only the splitSetID.
func (mh *mapHeap) removeSetByID(s splitSetID) *mapElement {
	// Get index into data at which the element is stored.
	i := mh.selectID[s].index

	//Remove it from the heap using the Go library.
	return mh.remove(i)
}

// Peek returns the element at the top of the heap without removing it.
func (mh *mapHeap) peek() (*mapElement, bool) {
	if len(mh.data) == 0 {
		return nil, false
	}
	return mh.data[0], true
}

// A heap must be initialized before any of the heap operations can be used.
// Init is idempotent with respect to the heap conditions and may be called
// whenever the heap conditions may have been invalidated. Its complexity is
// O(n) where n = h.Len().
func (mh *mapHeap) init() {
	// Sifts down through the heap to achieve the heap condition.
	n := mh.len()
	for i := n/2 - 1; i >= 0; i-- {
		mh.down(i, n)
	}
}

// remove removes the element at index i from the heap. The complexity is
// O(log(n)) where n = h.Len().
func (mh *mapHeap) remove(i int) *mapElement {
	n := mh.len() - 1

	// If the element to be removed is not at the top of the heap, move it. Then
	// fix the heap condition.
	if n != i {
		mh.swap(i, n)
		mh.down(i, n)
		mh.up(i)
	}

	// Get the last element.
	elem := mh.data[n]

	// Shrink the data slice, and delete the mapElement from the map.
	mh.data = mh.data[0:n]
	delete(mh.selectID, elem.id)

	// Decrement the size of the mapHeap.
	mh.size -= elem.set.size
	return elem
}

// fix re-establishes the heap ordering after the element at index i has changed
// its value. Changing the value of the element at index i and then calling Fix
// is equivalent to, but less expensive than, calling Remove(h, i) followed by a
// Push of the new value. The complexity is O(log(n)) where n = h.len().
func (mh *mapHeap) fix(i int) {
	// Check if the heap condition can be satisfied by sifting down.
	// If not, sift up too.
	if !mh.down(i, mh.len()) {
		mh.up(i)
	}
}