1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
.. _modal_moreau_jean:
Time integration of the dynamics - Exact scheme
===============================================
This page describes the discretisation of the dynamics for second-order (Lagrangian) systems of the form
.. math::
:label: LTIDS
Mdv + Kqdt + cv^+dt = dr \\
v(t) = \dot q^+(t) \\
q(t_0) = q_0, \ \dot q(t_0) = v_0
with usual notations in Siconos, where the matrices :math:`M, K` and :math:`C` are diagonals, and with
.. math::
:label: displ
q(t) = q_0 + \int_{t_0}^t v^+(t)
:math:`v^+(t)` stands for right limit of v in t
and with the vectors :math:`q = [q_k], v = [v_k], k\in[0,ndof-1]`.
The feature of the proposed scheme is to combine an exact method for the linear (non-contacting) part of the equations of motion with a Moreau-Jean time-stepping
approach to handle impulses and velocity jumps. This is the implementation of what is proposed in :cite:`Issanchou.2018` for the simulation of musical string instruments.
Some simulation examples are proposed in examples/Mechanics/Music directory of Siconos repository.
Summary
-------
Detailed calculations
---------------------
For comparison purpose, we consider two different schemes, the classical (in Siconos) 'Moreau-Jean' and an implementation of what is proposed in :cite:`Bilbao.2008`, denoted respectively MJ and BMJ in the following.
Let us integrate the dynamics over a time step, :math:`\Delta t = t^{i+1} - t^i`.
Notations :
.. math::
q_k(t^i) = q_k^i \\
v_k(t^{i}) = v_k^i \\
In the following, we will use k for space (bottom) indices and i for time (top) indices.
MJ is based on a theta-scheme, for :math:`\theta \in [0,1]`
MJ we consider diagonal stiffness and damping,
.. math::
:nowrap:
\begin{eqnarray}
M = diag(\mu) \\
K = \mu.diag(\omega_k^2) \\
C = \mu.diag(2\sigma_k)
\end{eqnarray}
:math:`\omega_k` and :math:`\sigma_k` being respectively the modal pulsation and the damping parameter (see for instance values taken from :cite:`Issanchou.2018`).
Bilbao exact scheme writes:
.. math::
\begin{array}{ccc}
Kq &\approx \Gamma Kq^i + \frac{(\mathcal{I}-\Gamma)K}{2}(q^{i+1} + q^{i-1}) \\
C\dot q &\approx \frac{1}{\Delta t}\Sigma^*(q^{i+1} - q^{i-1}) \\
\end{array}
for :math:`\Gamma = diag(\gamma_k)` and :math:`\Sigma^* = diag(\sigma_k^*)` some diagonal matrices, with
.. math::
\gamma_{k} &= \frac{2}{\omega_k^2\Delta t^2} - \frac{A_k}{1+e_k-A_k}, \\
\sigma^*_{k} &= \left(\frac{1}{\Delta t} + \frac{\omega_k^2\Delta t}{2} - \gamma_k\frac{\omega_k^2\Delta t}{2} \right)\frac{1-e_k}{1+e_k} \\
A_k &= e^{-\sigma_k\Delta t}\left(e^{\sqrt{\sigma_k^2 - \omega_k^2}\Delta t} + e^{-\sqrt{\sigma_k^2 - \omega_k^2}\Delta t}\right) \\
e_k &= e^{-2\sigma_k\Delta t} \\
.. math::
\begin{array}{c|c|c}
Dynamics & Moreau-Jean & Modal-Moreau-Jean \\
\int_{t^i}^{t^{i+1}} Mdv & \approx M(v^{i+1}-v^{i}) & \approx M(v^{i+1}-v^{i}) \\
\int_{t^i}^{t^{i+1}} Kqdt & \approx \Delta t(\theta Kq^{i+1} + (1 - \theta) Kq^i) & \approx \Delta t\Gamma Kq^i + \frac{\Delta t}{2}(\mathcal{I}-\Gamma)K(q^{i+1} + q^{i-1}) \\
\int_{t^i}^{t^{i+1}} Cvdt & \approx \Delta t(\theta Cv^{i+1} + (1 - \theta) Cv^i) & \approx \Sigma^*(q^{i+1} - q^{i-1})\\
\int_{t^i}^{t^{i+1}} dr & \approx p^{i+1} & \approx p^{i+1} \\
\end{array}
For MJ, this leads to
.. math::
M(v^{i+1}-v^{i}) + \Delta t(\theta Kq^{i+1} + (1 - \theta) Kq^i) + \Delta t(\theta Cv^{i+1} + (1 - \theta) Cv^i) &= p^{i+1} \\
using :math:`q^{i+1} = q^i + \Delta t(\theta v^{i+1} + (1 - \theta) v^i)`, we get
.. math::
[M + \Delta t^2\theta^2 K + \Delta t\theta C] (v^{i+1}-v^{i}) + \Delta tKq^i + (\Delta t^2\theta K + \Delta tC) v^i = p^{i+1} \\
And for BMJ:
.. math::
M(v^{i+1}-v^{i}) + \Delta t\Gamma Kq^i + \frac{\Delta t}{2}(\mathcal{I}-\Gamma)K(q^{i+1} + q^{i-1}) +\Sigma^*(q^{i+1} - q^{i-1}) = p^{i+1}
With :math:`q^{i+1} = q^{i} + \Delta tv^{i+1}`, we get
.. math::
q^{i+1} - q^{i-1} &= \Delta t(v^{i+1} + v^i) \\
q^{i+1} + q^{i-1} &= 2q^i + \Delta t(v^{i+1} - v^i) \\
and
.. math::
[M + \frac{\Delta t^2}{2}(\mathcal{I} - \Gamma)K + \Delta t\Sigma^*] (v^{i+1}-v^{i}) + \Delta tKq^i + 2\Delta t \Sigma^* v^i = p^{i+1} \\
Both discretisations writes
.. math::
W(v^{i+1}-v^{i}) = v_{free}^i + p^{i+1} \\
or \\
v^{i+1} = v^i_{free} + W^{-1}p^{i+1} \\
with
.. math::
\begin{array}{c|c|c}
& Moreau-Jean & Modal-Moreau-Jean \\
W & = M + \Delta t^2\theta^2 K + \Delta t\theta C & = M + \frac{\Delta t^2}{2}(\mathcal{I} - \Gamma)K + \Delta t\Sigma^*\\
v_{free}^{i} &= v^i - W^{-1}(\Delta tKq^i + (\Delta t^2\theta K + \Delta tC) v^i) & = v^i - W^{-1}(\Delta tKq^i + 2\Delta t \Sigma^* v^i) \\
\end{array}
Taylor expansions
^^^^^^^^^^^^^^^^^
For some values of the time step it may be necessary to use Taylor expansions of iteration matrix and :math:`\Delta t\sigma^*` to avoid convergence problems.
Those terms write:
.. math::
\Delta t\sigma^* & = \Delta t \sigma + \frac{\Delta t^{3} \sigma}{12} \omega^{2} + \Delta t^{5} \left(\frac{\omega^{4} \sigma}{240} - \frac{\omega^{2} \sigma^{3}}{180}\right) \\
& + \Delta t^{7} \left(\frac{\omega^{6} \sigma}{6048} - \frac{\omega^{4} \sigma^{3}}{1512} + \frac{\omega^{2} \sigma^{5}}{1890}\right) + \mathcal{O}\left(\Delta t^{8}\right) \\
\frac{1}{W_{kk}} &= 1 - \Delta t \sigma + \Delta t^{2} \left(- \frac{\omega^{2}}{12} + \frac{2 \sigma^{2}}{3}\right) \\
&+\Delta t^{3} \left(\frac{\omega^{2} \sigma}{12} - \frac{\sigma^{3}}{3}\right) + \Delta t^{4} \left(\frac{\omega^{4}}{360} - \frac{\omega^{2} \sigma^{2}}{20} + \frac{2 \sigma^{4}}{15}\right)\\
&+ \Delta t^{5} \left(- \frac{\omega^{4} \sigma}{360} + \frac{\omega^{2} \sigma^{3}}{45} - \frac{2 \sigma^{5}}{45}\right) \\
&+ \Delta t^{6} \left(- \frac{\omega^{6}}{20160} + \frac{\omega^{4} \sigma^{2}}{630} - \frac{\omega^{2} \sigma^{4}}{126} + \frac{4 \sigma^{6}}{315}\right)\\
&+ \Delta t^{7} \left(\frac{\omega^{6} \sigma}{20160} - \frac{\omega^{4} \sigma^{3}}{1512} + \frac{\omega^{2} \sigma^{5}}{420} - \frac{\sigma^{7}}{315}\right) + \mathcal{O}\left(\Delta t^{8}\right)\\
Non-smooth problem formulation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. math::
\dot y &= S_c \dot q \\
P &= S_c^T\lambda
.. math::
\dot y_c^{i+1} &= S_c \dot q^{i+1} \\
P^{i+1} &= S_c^T\lambda^{i+1}
.. math::
\dot y^{i+1} &= S_cv^{i} - S_cW^{-1}(\Delta tKq^i + 2\Delta t \Sigma^* v^i) + S_cW^{-1}S_c^T\lambda^{i+1} \\
&= q_{LCP} + M_{LCP}\lambda^{i+1}
with
.. math::
0 \leq \dot y^{i+1} \perp \lambda^{i+1} \geq 0
|