File: AlartCurnier.tex

package info (click to toggle)
siconos 4.3.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 82,496 kB
  • sloc: cpp: 159,693; ansic: 108,665; fortran: 33,248; python: 20,709; xml: 1,244; sh: 385; makefile: 226
file content (260 lines) | stat: -rw-r--r-- 9,556 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

\section{Reduced formulation to local variables.}

\subsection{Formulation}

Let us start with 
\begin{equation}
  \label{eq:AC-L7}
  \begin{array}{l}
  \varPhi_1(U,P) =  - U_{k+1}  + \widehat W P_{k+1}  + U_{\mathrm{free}}\\ \\
  \varPhi_2(U,P) =  P_{\n} - \proj_{\nbR^{a}_+} (P_{\n} - \rho_{\n}\circ (U_{\n} +e \circ  U_{\n,k}) ) \\ \\
  \varPhi_3(U,P) =  P_{\t} - \proj_{\widehat {\bf D}(P_{\n},U_{\n})} (P_{{\t}} - \rho_{\t}\circ \,U_{\t} )
\end{array}
\end{equation}
where the modified friction disk for a contact $\alpha$ is
\begin{equation}\label{eq:AC-L3}
  \widehat {\bf D}^\alpha(P^\alpha_{\n,k+1},U_{\n,k+1}^{\alpha}) = {\bf D}(\mu(\proj_{\nbR_+} (P^\alpha_{\n,k+1} - \rho^\alpha_{\n}\,(U_{\n,k+1}^{\alpha}+e^\alpha U_{\n,k}^{\alpha}) )).
\end{equation}
\subsection{Structure of the Jacobians}

Let us denote the one element of the  generalized Jacobian by  $ H(U,P) \in \partial \Phi(U,P)$ which has the structure
\begin{equation}
  \label{eq:AC-L6}
   H(U,P) = 
   \left[\begin{array}{cccc}
       - I & 0 &  \widehat W_{\n\n} & \widehat W_{\n\t} \\ \\
       0  & -I  &  \widehat W_{\t\n} & \widehat W_{\t\t} \\ \\
       \partial_{U_{\n}} \Phi_2(U,P) & 0 &   \partial_{P_{\n}} \Phi_2(U,P) & 0 \\ \\
       \partial_{U_{\n}} \Phi_3(U,P) &  \partial_{U_{\t}} \Phi_3(U,P) &  \partial_{P_{\n}} \Phi_3(U,P)  & \partial_{P_{\t}} \Phi_3(U,P)
   \end{array}\right]
\end{equation}


\subsection{Computation of the gradients}


Let us consider the single contact case.
\paragraph{Computation of the gradients of $\Phi_2$}
\begin{equation}
  \label{eq:AC-T1}
  \begin{array}{l}
  \varPhi_2(U,P) =  P_{\n} - \proj_{\nbR^{a}_+} (P_{\n} - \rho_{\n} (U_{\n} +e  U_{\n,k}) ) \\ \\
\end{array}
\end{equation}
\begin{itemize}
\item \textbf{If} $P_{\n} - \rho_{\n} (U_{\n} +e  U_{\n,k}) \geq 0 $, we get 
  \begin{equation}
    \label{eq:AC-T2}
    \begin{array}{l}
      \varPhi_2(U,P) =  + \rho_{\n} (U_{\n} +e  U_{\n,k})
    \end{array}
  \end{equation}
  and 
  \begin{equation}
    \label{eq:AC-T3}
    \begin{array}{l}
     \partial_{U_{\n}} \varPhi_2(U,P) =  + \rho_{\n} \\ \\
     \partial_{P_{\n}} \varPhi_2(U,P) =  0 \\ \\ 
    \end{array}
  \end{equation}
\item \textbf{If} $P_{\n} - \rho_{\n} (U_{\n} +e  U_{\n,k})  < 0 $, we get 
  \begin{equation}
    \label{eq:AC-T4}
    \begin{array}{l}
      \varPhi_2(U,P) =  P_{\n}
    \end{array}
  \end{equation}
  and 
  \begin{equation}
    \label{eq:AC-T5}
    \begin{array}{l}
     \partial_{U_{\n}} \varPhi_2(U,P) =  0 \\ \\
     \partial_{P_{\n}} \varPhi_2(U,P) =  1 \\ \\ 
    \end{array}
  \end{equation}
\end{itemize}
\paragraph{Computation of the gradients of $\Phi_3$}
\begin{equation}
  \label{eq:AC-TT1}
  \begin{array}{l}
  \varPhi_3(U,P) =  P_{\t} - \proj_{\widehat {\bf D}(P_{\n},U_{\n})} (P_{\t} - \rho_{\t} U_{\t} ) \\ \\
\end{array}
\end{equation}
\begin{itemize}
\item \textbf{If} $\|P_{\t} - \rho_{\t} U_{\t}\| \leq \mu \max (0 ,P_{\n} - \rho_{\n} (U_{\n} +e  U_{\n,k}) ) $  , we get 
\begin{equation}
  \label{eq:AC-TT2}
  \begin{array}{l}
  \varPhi_3(U,P) =  + \rho_{\t} U_{\t} 
\end{array}
\end{equation}
and
 \begin{equation}
    \label{eq:AC-TT3}
    \begin{array}{l}
     \partial_{U_{\n}} \varPhi_3(U,P) =  0 \\ \\
     \partial_{P_{\n}} \varPhi_3(U,P) =  0 \\ \\ 
     \partial_{U_{\t}} \varPhi_3(U,P) =  + \rho_{\t} \\ \\
     \partial_{P_{\t}} \varPhi_3(U,P) =  0 \\ \\ 
    \end{array}
  \end{equation}
\item \textbf{If} $\|P_{\t} - \rho_{\t} U_{\t}\| > \mu \max (0 ,P_{\n} - \rho_{\n} (U_{\n} +e  U_{\n,k}) ) $  , we get 
\begin{equation}
  \label{eq:AC-TT4}
  \begin{array}{l}
  \varPhi_3(U,P) =  P_{\t} - \mu \max(0,P_{\n} - \rho_{\n} (U_{\n} +e  U_{\n,k}) )  \Frac{P_{\t} - \rho_{\t} U_{\t} }{ \| P_{\t} - \rho_{\t} U_{\t}\| }
\end{array}
\end{equation}

\begin{itemize}
\item  \textbf{If} $P_{\n} - \rho_{\n} (U_{\n} +e  U_{\n,k}) \leq 0$, we get 
  \begin{equation}
  \label{eq:AC-TT5}
  \begin{array}{l}
  \varPhi_3(U,P) =   P_{\t}
\end{array}
\end{equation}
and 
 \begin{equation}
   \label{eq:AC-TT6}
   \begin{array}{l}
     \partial_{U_{\n}} \varPhi_3(U,P) =  0 \\ \\
     \partial_{P_{\n}} \varPhi_3(U,P) =  0 \\ \\ 
     \partial_{U_{\t}} \varPhi_3(U,P) =  0 \\ \\
     \partial_{P_{\t}} \varPhi_3(U,P) =  I_2 \\ \\ 
   \end{array}
 \end{equation}
\item  \textbf{If} $P_{\n} - \rho_{\n} (U_{\n} +e  U_{\n,k}) > 0$, we get 
\begin{equation}
  \label{eq:AC-TT7}
  \begin{array}{l}
  \varPhi_3(U,P) =  P_{\t} - \mu (P_{\n} - \rho_{\n} (U_{\n} +e  U_{\n,k}) )  \Frac{P_{\t} - \rho_{\t} U_{\t} }{ \| P_{\t} - \rho_{\t} U_{\t}\| }
\end{array}
\end{equation}
and 
 \begin{equation}
   \label{eq:AC-TT8}
   \begin{array}{l}
     \partial_{U_{\n}} \varPhi_3(U,P) =  \mu \rho_{\n}  \Frac{P_{\t} - \rho_{\t} U_{\t} }{ \| P_{\t} - \rho_{\t} U_{\t}\| }\text{{\bf WARNING} case was not taken into account}\\ \\
     \partial_{P_{\n}} \varPhi_3(U,P) =  -\mu  \Frac{P_{\t} - \rho_{\t} U_{\t} }{ \| P_{\t} - \rho_{\t} U_{\t}\| } \\ \\ 
     \partial_{U_{\t}} \varPhi_3(U,P) =  \mu\rho_{\t}(P_{\n} - \rho_{\n} (U_{\n} +e  U_{\n,k}) ) \Gamma(P_{\t} - \rho_{\t} U_{\t})  \\ \\
     \partial_{P_{\t}} \varPhi_3(U,P) =  I_2-\mu(P_{\n} - \rho_{\n} (U_{\n} +e  U_{\n,k}) ) \Gamma(P_{\t} - \rho_{\t} U_{\t})  \\ \\ 
   \end{array}
 \end{equation}
\end{itemize}



\end{itemize}

\subsection{Rearranging the cases}

{\bf TO BE COMPLETED}
\section{Formulation with global variables.}

\subsection{Formulation}
Let us start with 
\begin{equation}
  \label{eq:GAC-L1}
  \begin{array}{l}
  \Psi_{1}^{a}(v,U,P) =  - \widehat M v_{k+1}  +  H P_{k+1}  + q \\ \\
  \Psi_{1}^{b}(v,U,P) =  - U_{k+1}  + H^\top v _{k+1}  + b \\ \\
  \Psi_2(v,U,P) =  P_{\n} - \proj_{\nbR^{a}_+} (P_{\n} - \rho_{\n}\circ (U_{\n} +e \circ  U_{\n,k}) ) \\ \\
  \Psi_3(v,U,P) =  P_{\t} - \proj_{\widehat {\bf D}(P_{\n},U_{\n})} (P_{{\t}} - \rho_{\t}\circ \,U_{\t} )
\end{array}
\end{equation}
where the modified friction disk for a contact $\alpha$ is
\begin{equation}\label{eq:GAC-L2}
  \widehat {\bf D}^\alpha(P^\alpha_{\n,k+1},U_{\n,k+1}^{\alpha}) = {\bf D}(\mu(\proj_{\nbR_+} (P^\alpha_{\n,k+1} - \rho^\alpha_{\n}\,(U_{\n,k+1}^{\alpha}+e^\alpha U_{\n,k}^{\alpha}) )).
\end{equation}

\subsection{Structure of the Jacobians}

 Let us denote the one element of the  generalized Jacobian by  $ H(v,U,P) \in \partial \Psi(s,U,P)$ which has the structure
\begin{equation}
  \label{eq:GAC-L3}
   H(v,U,P) = 
   \left[\begin{array}{ccccc}
       - \widehat M & 0 & 0 & H_{\n} & H_{\t} \\ \\
        H_{\n}^\top &  - I & 0 & 0 &0 \\ \\
        H_{\t}^\top &  0  & -I & 0 &0 \\ \\
        0 & \partial_{U_{\n}} \Psi_2(v,U,P) & 0 &   \partial_{P_{\n}} \Psi_2(v,U,P) & 0 \\ \\
        0 & \partial_{U_{\n}} \Psi_3(v,U,P) &  \partial_{U_{\t}} \Psi_3(v,U,P) &  \partial_{P_{\n}} \Psi_3(v,U,P)  & \partial_{P_{\t}} \Psi_3(v,U,P)
   \end{array}\right]
\end{equation}

We clearly have
\begin{equation}
  \label{eq:equivalentJacobian}
  \begin{array}{lcl}
     \partial_{U} \Psi_2(v,U,P) &=& \partial_{U} \Phi_2(U,P) \\ 
     \partial_{P} \Psi_2(v,U,P) &=& \partial_{P} \Phi_2(U,P) \\     
     \partial_{U} \Psi_3(v,U,P) &=& \partial_{U} \Phi_3(U,P) \\ 
     \partial_{P} \Psi_3(v,U,P) &=& \partial_{P} \Phi_3(U,P) \\
  \end{array}
\end{equation}
and we get
\begin{equation}
  \label{eq:GAC-L4}
   H(v,U,P) = 
   \left[\begin{array}{ccccc}
       - \widehat M & 0 & 0 & H_{\n} & H_{\t} \\ \\
        H_{\n}^\top &  - I & 0 & 0 &0 \\ \\
        H_{\t}^\top &  0  & -I & 0 &0 \\ \\
        0 & \partial_{U_{\n}} \Phi_2(U,P) & 0 &   \partial_{P_{\n}} \Phi_2(U,P) & 0 \\ \\
        0 & \partial_{U_{\n}} \Phi_3(U,P) &  \partial_{U_{\t}} \Phi_3(U,P) &  \partial_{P_{\n}} \Phi_3(U,P)  & \partial_{P_{\t}} \Phi_3(U,P)
   \end{array}\right]
\end{equation}


\subsection{Simplification ?}
Since the second line $\Psi_1^b$ is linear, we should be able to derive a reduced Jacobian using the chain rule. Let us define $\widetilde \Psi$
\begin{equation}
  \label{eq:chainrule}
  \widetilde \Psi(v,P)  = \Psi(v,H^\top v +b,P)
\end{equation}

\begin{equation}
  \label{eq:GAC-L5}
  \begin{array}{l}
  \widetilde \Psi_{1}(v,P) =  - \widehat M v_{k+1}  +  H P_{k+1}  + q \\ \\
  \widetilde \Psi_2(v,P) =  P_{\n} - \proj_{\nbR^{a}_+} (P_{\n} - \rho_{\n}\circ (H^\top_{\n}v+b_{\n} +e \circ  U_{\n,k}) ) \\ \\
  \widetilde \Psi_3(v,P) =  P_{\t} - \proj_{\widehat {\bf D}(P_{\n},U_{\n})} (P_{{\t}} - \rho_{\t}\circ \,(H^\top_\t v + b_\t) )
\end{array}
\end{equation}

\paragraph{Chain rule}
\begin{equation}
  \label{eq:chainrule1}
  \begin{array}{lcl}
  \partial_v \widetilde \Psi_{2,3}(v,P) &=&  \partial_v \Psi_{2,3}(v,H^\top v +b,P)  \\ \\
  &=& H_{\n}^\top \partial_{U_\n} \Phi_{2,3}(H^\top v + b,P) + H_{\t}^\top \partial_{U_\t} \Phi_{2,3}(H^\top v + b,P)  
\end{array}
\end{equation}

\begin{equation}
  \label{eq:GAC-L6}
   H(v,P) = 
   \left[\begin{array}{ccc}
       - \widehat M &   H_{\n} & H_{\t} \\ \\
       H_{\n}^\top \partial_{U_\n} \Phi_{2}(H^\top v + b,P) &   \partial_{P_{\n}} \Phi_2(H^\top v + b,P) & 0 \\ \\
       \begin{array}{c}
         H_{\n}^\top \partial_{U_\n} \Phi_{3}(H^\top v + b,P) \\
         \quad \quad + H_{\t}^\top \partial_{U_\t} \Phi_{3}(H^\top v + b,P)\\
     \end{array}
     &  \partial_{P_{\n}} \Phi_3(H^\top v + b,P)  & \partial_{P_{\t}} \Phi_3(H^\top v + b,P)
   \end{array}\right]
\end{equation}

\paragraph{discussion}
\begin{itemize}
\item Formulae has to be checked carefully
\item I do not known if there an interest in the simplification. With sparse matrices, it is perhaps easier to deal with~(\ref{eq:GAC-L4})
\end{itemize}


%%% Local Variables: 
%%% mode: latex
%%% TeX-master: t
%%% End: