1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
|
% Siconos-Doc version 3.0.0, Copyright INRIA 2005-2008.
% Siconos is a program dedicated to modeling, simulation and control
% of non smooth dynamical systems.
% Siconos is a free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
% Siconos is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Siconos; if not, write to the Free Software
% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
%
% Contact: Vincent ACARY vincent.acary@inrialpes.fr
%/
\documentclass[10pt]{report}
\input{macro.tex}
\usepackage{graphicx, amsmath, amsfonts, amssymb, mathtools}
\usepackage{psfrag}
\usepackage{fancyhdr}
\usepackage{subfigure}
\usepackage{cases}
\usepackage{esvect}
\usepackage{placeins}
%\renewcommand{\baselinestretch}{1.2}
\textheight 23cm
\textwidth 16cm
\topmargin 0cm
%\evensidemargin 0cm
\oddsidemargin 0cm
\evensidemargin 0cm
\usepackage{layout}
\usepackage{mathpple}
\usepackage[T1]{fontenc}
%\usepackage{array}
\makeatletter
\renewcommand\bibsection{\paragraph{References
\@mkboth{\MakeUppercase{\bibname}}{\MakeUppercase{\bibname}}}}
\makeatother
\usepackage{lastpage}
\usepackage{showlabels}
\setlength{\fboxrule}{2pt}
\setlength{\fboxsep}{4mm}
%% style des entetes et des pieds de page
\fancyhf{} % nettoie le entetes et les pieds
\fancyhead[L]{\texttt{Siconos Development team -- Notes }}
\fancyhead[C]{}
\fancyhead[R]{\texttt{\thepage/\pageref{LastPage}}}
\fancyfoot[L]{}
\fancyfoot[C]{}
\fancyfoot[R]{\texttt{file DevNotes.tex -- \isodayandtime}}
\everymath{\displaystyle}
\begingroup
\count0=\time \divide\count0by60 % Hour
\count2=\count0 \multiply\count2by-60 \advance\count2by\time
% Min
\def\2#1{\ifnum#1<10 0\fi\the#1}
\xdef\isodayandtime{\the\year-\2\month-\2\day\space\2{\count0}:%
\2{\count2}}
\endgroup
\graphicspath{{./Figures}}
\def\free{{\sf free}}
%\usepackage{xcolor} % for colors in document (red for title, gray for English)
% Hyperref: links in document. Most links are hidden (black color) except URLs (blue)
%\usepackage[colorlinks=true,urlcolor=blue,linkcolor=black,citecolor=black]{hyperref}
\begin{document}
\thispagestyle{empty}
\title{Developer's Notes}
\author{Siconos Development Team}
\date{\today}
\maketitle
\tableofcontents
\clearpage
\pagestyle{fancy}
\chapter{OneStepNSProblem formalisation for several interactions}
\begin{table}[!ht]
\begin{tabular}{|l|l|}
\hline
author & F. P\'erignon \\
\hline
date & May 16, 2006 \\
\hline
version & ? \\
\hline
\end{tabular}
\end{table}
\section{LinearDS - Linear Time Invariant Relations}
\subsection{General notations}
We consider $n$ dynamical systems of the form:
\begin{equation}
\dot x_i = A_i x_i + R_i
\end{equation}
Each system if of dimension $n_i$, and we denote $N = \displaystyle{\sum_{i=1}^{n} n_i}$. \\
An interaction, $I_{\alpha}$ is composed with a non smooth law, $nslaw_{\alpha}$ and a relation:
\begin{equation}
y_{\alpha} = C_{\alpha}X_{\alpha} + D_{\alpha}\lambda_{\alpha}
\end{equation}
The ``dimension'' of the interaction, ie the size of vector $y_{\alpha}$, is denoted $m_{\alpha}$ and we set:
$$ M = \sum_{\alpha=1}^{m} m_{\alpha}$$
$m$ being the number of interactions in the Non Smooth Dynamical System. \\
$X_{\alpha}$ is a vector that represents the DS concerned by the interaction. Its dimension is noted $N_{\alpha}$, this for $n_{\alpha}$ systems in the interaction. \\
$C_{\alpha}$ is a $m_{\alpha} \times N_{\alpha}$ row-blocks matrix and $D_{\alpha}$ a $m_{\alpha} \times m_{\alpha}$ square matrix. \\
\begin{equation}
C_{\alpha}=\left[\begin{array}{ccc}
C_{\alpha}^i & C_{\alpha}^j & ...\end{array}\right]
\end{equation}
with $i,j,...\in \mathcal{DS}_{\alpha}$ which is the set of DS belonging to interaction $\alpha$.\\
We also have the following relation:
\begin{equation}
\left[\begin{array}{c}
R_{\alpha}^i \\
R_{\alpha}^j \\
...
\end{array}\right] = B_{\alpha}\lambda_{\alpha}
=\left[\begin{array}{c}
B_{\alpha}^i \\
B_{\alpha}^j \\
...
\end{array}\right]\lambda_{\alpha}
\end{equation}
$R_{\alpha}^i$ represents the contribution of interaction $\alpha$ on the reaction of the dynamical system $i$, and $B_{\alpha}^i$ is a $n_i \times m_{\alpha}$ block matrix. \\
And so:
\begin{equation}
R_i = \sum_{\beta\in\mathcal{I}_i}R_{\beta}^i=\sum_{\beta\in\mathcal{I}_i}B^i_{\beta} \lambda_{\beta}
\end{equation}
with $\mathcal{I}_i$ the set of interactions in which dynamical system number $i$ is involved. \\
Introducing the time discretization, we get:
\begin{eqnarray}
x_i^{k+1}-x_i^k = h A_i x_i^{k+1} + h R_i^{k+1} \\
\nonumber\\
y_{\alpha}^{k+1} = C_{\alpha}X_{\alpha}^{k+1} + D_{\alpha}\lambda_{\alpha}^{k+1}\\
\nonumber\\
R_i^{k+1} = \sum_{\beta\in\mathcal{I}_i}B^i_{\beta} \lambda_{\beta}^{k+1}
\end{eqnarray}
ie, with $W_i = (I-h A_i)^{-1}$:
\begin{eqnarray}
x_i^{k+1}&=& W_i x_i^{k} + hW_i R_i^{k+1} \\
\nonumber\\
y_{\alpha}^{k+1} &=& C_{\alpha}W_{\alpha} X_{\alpha}^{k} + C_{\alpha}hW_{\alpha}\sum_{\beta\in\mathcal{I}_i}B^i_{\beta} \lambda_{\beta}^{k+1} + D_{\alpha}\lambda_{\alpha}^{k+1} \\
&=& C_{\alpha}W_{\alpha} X_{\alpha}^{k} + (C_{\alpha}hW_{\alpha}B_{\alpha} + D_{\alpha}) \lambda_{\alpha}^{k+1} + \sum_{\beta\neq\alpha}(\sum_{i\in\mathcal{DS}_{\alpha}\cap\in\mathcal{DS}_{\beta}} hC_{\alpha}^iW_i B^i_{\beta} \lambda_{\beta}^{k+1})
\end{eqnarray}
with
\begin{equation}\label{Walpha}
W_{\alpha}=\left[\begin{array}{ccc}
W_i & 0 & ... \\
0 & W_j & ...\\
0 & ... & ... \\
\end{array}\right]
\end{equation}
the block-diagonal matrix of all the $W$ for the dynamical systems involved in interaction $\alpha$.\\
The global-assembled $Y$ vector, of dimension M, composed by $m$ $y_{\alpha}$ subvectors, is given by:
\begin{eqnarray}
Y_{k+1} = q_{OSNSP} + M_{OSNSP}\Lambda_{k+1}
\end{eqnarray}
or,
\begin{eqnarray}
Y_{k+1} =\left[\begin{array}{c}
y_1 \\
... \\
y_m
\end{array}\right]_{k+1}
&=&\left[\begin{array}{ccc}
C_1^1 & \ldots & C_1^n \\
\vdots & \ldots & \vdots \\
C_m^1 & \ldots & C_m^n
\end{array}\right]\left[\begin{array}{cccc}
W_1 & 0 & \ldots &0 \\
0 & W_2 & \ddots & \vdots \\
\vdots &\ddots & \ddots & \vdots \\
&&0& W_n
\end{array}\right]
\left[\begin{array}{c}
x_1 \\
\vdots \\
\vdots \\
x_n
\end{array}\right]_k \\
&+&\left[\begin{array}{cccc}
D_1+h\sum_{j\in \mathcal{DS}_1}C_1^jW_jB_1^j & h\displaystyle{\sum_{j\in \mathcal{DS}_1\cap\mathcal{DS}_2}C_1^jW_jB_2^j} & \ldots &\\
\vdots&\ddots& &\\
& h\displaystyle{\sum_{j\in \mathcal{DS}_m}C_m^jW_jB_{m-1}^j} & D_m+h\displaystyle{\sum_{j\in \mathcal{DS}_m\cap\mathcal{DS}_{m-1}}C_m^jW_jB_m^j} \\
\end{array}\right]\left[\begin{array}{c}
\lambda_1 \\
\vdots \\
\lambda_m
\end{array}\right]_{k+1} \nonumber
\end{eqnarray}
To sum it up, the block-diagonal term of matrix $M_{OSNSP}$, for block-row $\alpha$ is:
\begin{equation}
D_{\alpha}+h\sum_{j\in \mathcal{DS}_{\alpha}}C_{\alpha}^jW_jB_{\alpha}^j
\end{equation}
This is an $m_{\alpha}\times m_{\alpha}$ square matrix.
The extra-diagonal block term, in position ($\alpha,\beta$) is:
\begin{equation}
h\sum_{j\in \mathcal{DS}_{\alpha}\cap\mathcal{DS}_{\beta}}C_{\alpha}^jW_jB_{\beta}^j
\end{equation}
and is a $m_{\alpha}\times m_{\beta}$ matrix. This matrix differs from 0 when interactions $\alpha$ and $\beta$ are coupled, ie have common DS. \\
Or, for the relation l of interaction $\alpha$, we get:
\begin{equation}
D_{\alpha,l}+h\sum_{j\in \mathcal{DS}_{\alpha}}C_{\alpha,l}^jW_jB_{\alpha}^j
\end{equation}
for the diagonal, and
\begin{equation}
h\sum_{j\in \mathcal{DS}_{\alpha}\cap\mathcal{DS}_{\beta}}C_{\alpha,l}^jW_jB_{\beta}^j
\end{equation}
for extra-diagonal terms. \\
$D_{\alpha,l}$, row number $l$ of $D_{\alpha}$, the same for $C_{\alpha,l}$
Finally, the linked-Interaction map provides, for each interaction (named ``current interaction''), the list of all the interactions (named ``linked interaction'') that have common dynamical system with the ``current interaction''.
\subsection{A simple example}
%We consider $n=5$ dynamical systems and $m=4$ interactions:
%\begin{eqnarray*}
%I_{\mu}& \rightarrow& DS_1, DS_3, m_{\mu} = 3 \\
%I_{\theta}&\rightarrow& DS_3, DS_4, m_{\theta} = 1 \\
%I_{\gamma}&\rightarrow& DS_2, m_{\gamma} = 1 \\
%I_{\zeta}&\rightarrow& DS_1, DS_5, m_{\zeta} = 2
%\end{eqnarray*}
%The linked-interaction map is :
%\begin{eqnarray*}
%I_{\mu} &\rightarrow& I_{\theta}, commonDS = DS_3 \\
% &\rightarrow& I_{\zeta}, commonDS = DS_1 \\
%I_{\theta} &\rightarrow&I_{\mu}, commonDS = DS_3 \\
%I_{\zeta} &\rightarrow&I_{\mu}, commonDS = DS_1
%\end{eqnarray*}
%And:
%\begin{eqnarray*}
%M &=& 7, N = \displaystyle{\sum_{i=1}^{5} n_i} \\
%\mathcal{I}_1 &=& \{I_{\mu}, I_{\zeta} \}\\
%\mathcal{I}_2 &=& \{I_{\gamma}\} \\
%\mathcal{I}_3 &=& \{I_{\mu}, I_{\theta}\} \\
%\mathcal{I}_4 &=& \{I_{\theta} \} \\
%\mathcal{I}_4 &=& \{I_{\zeta}\}
%\end{eqnarray*}
We consider $n=3$ dynamical systems and $m=2$ interactions:
\begin{eqnarray*}
I_{\mu}& \rightarrow& \mathcal{DS}_{\mu} = \{DS_1, DS_3\}, m_{\mu} = 3 \\
I_{\theta}&\rightarrow& \mathcal{DS}_{\theta} = \{DS_2, DS_3\}, m_{\theta} = 1 \\
\end{eqnarray*}
The linked-interaction map is :
\begin{eqnarray*}
I_{\mu} &\rightarrow& I_{\theta}, commonDS = DS_3 \\
I_{\theta} &\rightarrow&I_{\mu}, commonDS = DS_3 \\
\end{eqnarray*}
And:
\begin{eqnarray*}
M &=& 4, N = \displaystyle{\sum_{i=1}^{3} n_i} \\
\mathcal{I}_1 &=& \{I_{\mu} \}\\
\mathcal{I}_2 &=& \{I_{\theta}\} \\
\mathcal{I}_3 &=& \{I_{\mu}, I_{\theta}\} \\
\end{eqnarray*}
\begin{eqnarray}
y_1 = \left[\begin{array}{ccc}
C_1^1 & C_1^3 \end{array}\right]
\left[\begin{array}{c}
x_1 \\
x_3
\end{array}\right]
+ D_1\lambda_1 \\
y_2 = \left[\begin{array}{ccc}
C_2^2 & C_2^3 \end{array}\right]
\left[\begin{array}{c}
x_2 \\
x_3
\end{array}\right]
+ D_2\lambda_2
\end{eqnarray}
%
\begin{eqnarray}
\left[\begin{array}{c}
R_1 \\
R_2 \\
R_3 \end{array}\right]=
\left[\begin{array}{c}
B_1^1\lambda_1 \\
B_2^2\lambda_2 \\
B_1^3\lambda_1 + B_2^3\lambda_2
\end{array}\right]
\end{eqnarray}
%
\begin{eqnarray}
M_{OSNSP} &=& \left[\begin{array}{cc}
D_1+hC_1^1W_1B_1^1+hC_1^3W_3B_1^3 & hC_1^3W_3B_2^3 \\
hC_2^3W_3B_1^3 & D_2+hC_2^2W_2B_2^2+hC_2^3W_3B_2^3
\end{array}\right]\left[\begin{array}{c}
\lambda_1 \\
\lambda_2
\end{array}\right]_{k+1}
\end{eqnarray}
\subsection{relative degree}
Let us consider the global vector
\begin{eqnarray}
Y =\left[\begin{array}{c}
y_1 \\
... \\
y_M
\end{array}\right] = CX + D\Lambda
\end{eqnarray}
We denote by $r_j$ the relative degree of equation $j$, $j\in [1..M]$.
We have:
\begin{eqnarray}
y_j = \displaystyle{\sum_{i=1}^n C_j^i x_i +D_{j,j}\lambda_j + \sum_{i\neq j, i=1}^m D_{j,i} \lambda_i }
\end{eqnarray}
$D_{j,i}$ a scalar and $C_j^i$ a $1 \times n_i$ line-vector. \\
If $D_{jj} \neq 0$, then $r_j=0$. Else, we should consider the first derivative of $y_j$. \\
Before that, recall that:
\begin{eqnarray}
R_i = \displaystyle{\sum_{k=1}^M B_k^i \lambda_j}
\end{eqnarray}
Through many of the $B_j^i$ are equal to zero, we keep them all in the following lines. \\
Then:
\begin{eqnarray}
\dot y_j &=& \displaystyle{\sum_{i=1}^n C_j^i (A_i x_i + \sum_{k=1}^M B_k^i \lambda_k ) + f(\lambda_k)_{k\neq j}} \\
&=& \displaystyle{\sum_{i=1}^n C_j^i (A_i x_i + B_j^i \lambda_j + \sum_{k=1,k\neq j}^M B_k^i \lambda_k ) + \ldots}
\end{eqnarray}
So, if $\displaystyle{\sum_{i=1}^n C_j^i B_j^i} \neq 0$ (note that this corresponds to the product between line $j$ of $C$ and column $j$ of $B$)
then $r_j=1$ else we consider the next derivative, and so on. \\
In derivative $r$, the coefficient of $\lambda_j$ will be:
\begin{eqnarray}
coeff_j&=& \displaystyle{\sum_{i=1}^n C_j^i (A_i)^{r-1} B_j^i }
\end{eqnarray}
if $coeff_j\neq 0$ then $r_j = r$.
%\subsection{Implementation}
%\begin{itemize}
%\item relative degree: function of $D,C,A$ off all interactions/relations, time invariant $\Rightarrow$ computed and saved in Topology.
%\item linkedInteractionMap $\Rightarrow$ computed and saved in Topology
%\item diagonal term: function of $D,C$ and $B$ of a specific interaction + function of $W$ of all DS concerned + time step. Time invariant. \\
%$\Rightarrow$ compute and save in OSNSP, during initialize.
%\item extra-diagonal terms: the same + depends of linkedInteractionMap $\Rightarrow$ compute and save in OSNSP, during initialize.
%
% ============= LAGRANGIAN =====================
%
\section{LagrangianDS - Lagrangian Linear Relations}
\subsection{General notations}
We consider $n$ dynamical systems, lagrangian and non linear, of the form:
\begin{equation}
M_i(q_i) \ddot q_i + N_i(\dot q_i, q_i) = F_{Int,i}(\dot q_i , q_i , t)+F_{Ext,i}(t) + p_i
\end{equation}
Each system if of dimension $n_i$, and we denote $N = \displaystyle{\sum_{i=1}^{n} n_i}$. \\
An interaction, $I_{\alpha}$ is composed with a non smooth law, $nslaw_{\alpha}$ and a relation:
\begin{equation}
y_{\alpha} = H_{\alpha}Q_{\alpha} + b_{\alpha}
\end{equation}
The ``dimension'' of the interaction, ie the size of vector $y_{\alpha}$, is denoted $m_{\alpha}$ and we set:
$$ M_y = \sum_{\alpha=1}^{m} m_{\alpha}$$
$m$ being the number of interactions in the Non Smooth Dynamical System. \\
$Q_{\alpha}$ is a vector that represents the DS concerned by the interaction. Its dimension is noted $N_{\alpha}$, this for $n_{\alpha}$ systems in the interaction. \\
$H_{\alpha}$ is a $m_{\alpha} \times N_{\alpha}$ row-blocks matrix and $b_{\alpha}$ a $m_{\alpha}$ vector. \\
\begin{equation}
H_{\alpha}=\left[\begin{array}{ccc}
H_{\alpha}^i & H_{\alpha}^j & ...\end{array}\right]
\end{equation}
with $i,j,...\in \mathcal{DS}_{\alpha}$ which is the set of DS belonging to interaction $\alpha$.\\
We also have the following relation:
\begin{equation}
\left[\begin{array}{c}
R_{\alpha}^i \\
R_{\alpha}^j \\
...
\end{array}\right] = {}^tH_{\alpha}\lambda_{\alpha}
=\left[\begin{array}{c}
{}^tH_{\alpha}^i \\
{}^tH_{\alpha}^j \\
...
\end{array}\right]\lambda_{\alpha}
\end{equation}
$R_{\alpha}^i$ represents the contribution of interaction $\alpha$ on the reaction of the dynamical system $i$, and ${}tH_{\alpha}^i$ is a $n_i \times m_{\alpha}$ block matrix. \\
And so:
\begin{equation}
R_i = \sum_{\beta\in\mathcal{I}_i}R_{\beta}^i=\sum_{\beta\in\mathcal{I}_i}{}H^i_{\beta} \lambda_{\beta}
\end{equation}
with $\mathcal{I}_i$ the set of interactions in which dynamical system number $i$ is involved. \\
Introducing the time dicretisation, we get:
\begin{eqnarray}
\dot q_i^{k+1} = \dot q_{free,i} + W_iR_i^{k+1}
\nonumber\\
\dot y_{\alpha}^{k+1} = H_{\alpha}\dot Q_{\alpha}^{k+1} \\
\nonumber\\
R_i^{k+1} = \sum_{\beta\in\mathcal{I}_i}H^i_{\beta} \lambda_{\beta}^{k+1}
\end{eqnarray}
ie,
\begin{eqnarray}
y_{\alpha}^{k+1} &=& H_{\alpha} Q_{\alpha}^{free} + H_{\alpha}W_{\alpha}{}^tH_{\alpha}\lambda_{\alpha}+\sum_{i\in \mathcal{DS}_{\alpha}}\sum_{\beta\in\mathcal{I}_i,\alpha\neq\beta}H_{\alpha}^iW_iH_{\beta}^j\lambda_{\beta}
\end{eqnarray}
with $W_{\alpha}$ given by \eqref{Walpha}.
The global-assembled $Y$ vector, of dimension M, composed by $m$ $y_{\alpha}$ subvectors, is given by:
\begin{eqnarray}
Y_{k+1} = q_{OSNSP} + M_{OSNSP}\Lambda_{k+1}
\end{eqnarray}
with:
\begin{eqnarray}
q_{OSNSP}^{\alpha} = H_{\alpha} Q_{\alpha}^{free}
\end{eqnarray}
and for $M_{OSNSP}$, the block-diagonal term for block-row $\alpha$ is
\begin{equation}
\sum_{j\in \mathcal{DS}_{\alpha}}H_{\alpha}^jW_j{}^tH_{\alpha}^j
\end{equation}
an $m_{\alpha}\times m_{\alpha}$ square matrix.
The extra-diagonal block term, in position ($\alpha,\beta$) is:
\begin{equation}
\sum_{j\in \mathcal{DS}_{\alpha}\cap\mathcal{DS}_{\beta}}H_{\alpha}^jW_j{}^tH_{\beta}^j
\end{equation}
and is a $m_{\alpha}\times m_{\beta}$ matrix. This matrix differs from 0 when interactions $\alpha$ and $\beta$ are coupled, ie have common DS. \\
Or, for the relation l of interaction $\alpha$, we get:
\begin{equation}
\sum_{j\in \mathcal{DS}_{\alpha}}H_{\alpha,l}^jW_j{}^tH_{\alpha}^j
\end{equation}
for the diagonal, and
\begin{equation}
\sum_{j\in \mathcal{DS}_{\alpha}\cap\mathcal{DS}_{\beta}}H_{\alpha,l}^jW_j{}^tH_{\beta}^j
\end{equation}
for extra-diagonal terms. \\
$H_{\alpha,l}$, row number $l$ of $H_{\alpha}$.
WARNING: depending on linear and non linear case for the DS, there should be a factor h ahead W. See Bouncing Ball template.
\section{Block matrix approach}
The built of the OSNSProblem matrix could be computed using block
matrix structure. This section describe these matrices. It is not
implemented in Siconos.
Using previous notations, $n$ is the number of DS. $m$ the number of
interations.
\subsection{Block matrix of DS}
\[\boldsymbol{M} \boldsymbol{\dot X}=\boldsymbol{A} \boldsymbol{X} + \boldsymbol{R}\]
where $\boldsymbol{M}=diag(M_1,...M_n)$ and
$\boldsymbol{A}=diag(A_1,..,A_n)$.
\[\boldsymbol{R}=\boldsymbol{B}\boldsymbol{\lambda}\]
\[\boldsymbol{B}=\left( \begin{array} {c} B^1_{1}...B^1_m\\.\\.\\
B^n_1...B^n_m \end{array}\right)\]
Some of $B^i_j$ doesn't exist.
\subsection{Block matrix of interaction}
\[ \boldsymbol{Y}= \boldsymbol{C} \boldsymbol{X}+
\boldsymbol{D} \boldsymbol{\lambda}\]
with $ \boldsymbol{D}=diag(D_1..D_m)$ and
\[ \boldsymbol{C}=\left( \begin{array} {c}
C^1_{1}..C^n_1\\.\\.\\C^1_{m}...C^n_{m} \end{array}\right)\]
Some of $C^i_j$ doesn't exist.
\subsection{OSNSProblem using block matrices}
The Matrix of the OSNS Problem could be assembled using the following
block-product-matrices $\boldsymbol{C}\boldsymbol{W}\boldsymbol{B}$.
\chapter{Dynamical Systems formulations in Siconos.}
\begin{table}[!ht]
\begin{tabular}{|l|l|}
\hline
author & F. P\'erignon \\
\hline
date & March 22, 2006 \\
\hline
version & Kernel 1.1.4 \\
\hline
\end{tabular}
\end{table}
\section{Class Diagram}
There are four possible formulation for dynamical systems in Siconos,
two for first order systems and two for second order Lagrangian systems. The main class is DynamicalSystem, all other derived from this one, as shown in the following diagram:
\begin{figure}[htbp]
\centering
\includegraphics[width=0.3\textwidth]{./DSClassDiagram.pdf}
\label{DSDiagram}
\end{figure}
% DYNAMICAL SYSTEMS
\section{General non linear first order dynamical systems \\ $\rightarrow$ class \it{DynamicalSystem}}
This is the top class for dynamical systems. All other systems classes derived from this one. \\
A general dynamical systems is described by the following set of $n$ equations, completed with initial conditions:
\begin{eqnarray}
\dot x &=& f(x,t) + T(x) u(x, \dot x, t) + r \\
x(t_0)&=&x_0
\end{eqnarray}
\begin{itemize}
\item $x$: state of the system - Vector of size $n$.
\item $f(x,t)$: vector field - Vector of size $n$.
\item $u(x, \dot x, t)$: control term - Vector of size $uSize$.
\item $T(x)$: $n\times uSize$ matrix, related to control term.
\item $r$: input due to non-smooth behavior - Vector of size $n$.
\end{itemize}
The Jacobian matrix, $\nabla_x f(x,t)$, of $f$ according to $x$, $n\times n$ square matrix, is also a member of the class. \\
Initial conditions are given by the member $x_0$, vector of size $n$. This corresponds to x value when
simulation is starting, ie after a call to strategy->initialize(). \\
There are plug-in functions in this class for $f$ (vectorField), $jacobianX$, $u$ and $T$. All
of them can handle a vector of user-defined parameters.
% LINEAR DS
\section{First order linear dynamical systems $\rightarrow$ class \it{LinearDS}}
Derived from DynamicalSystem, described by the set of $n$ equations and initial conditions:
\begin{eqnarray}
\dot x &=& A(t)x(t)+Tu(t)+b(t)+r \\
x(t_0)&=&x_0
\end{eqnarray}
With:
\begin{itemize}
\item $A(t)$: $n\times n$ matrix, state independent but possibly time-dependent.
\item $b(t)$: Vector of size $n$, possibly time-dependent.
\end{itemize}
Other variables are those of DynamicalSystem class. \\
$A$ and $B$ have corresponding plug-in functions. \\
Warning: time dependence for $A$ and $b$ is not available at the time in the simulation part for this kind of dynamical systems. \\
Links with vectorField and its Jacobian are:
\begin{eqnarray}
f(x,t) &=& A(t)x(t)+b(t) \\
jacobianX&=&\nabla_x f(x,t) = A(t)
\end{eqnarray}
% LAGRANGIANDS
\section{Second order non linear Lagrangian dynamical systems \\ $\rightarrow$ class \it{LagrangianDS}}
Lagrangian second order non linear systems are described by the following set of$nDof$ equations + initial conditions:
\begin{eqnarray}
M(q) \ddot q + NNL(\dot q, q) + F_{Int}(\dot q , q , t) &=& F_{Ext}(t) + p \\
q(t_0) &=& q0 \\
\dot q(t_0) &=& velocity0
\end{eqnarray}
With:
\begin{itemize}
\item $M(q)$: $nDof\times nDof$ matrix of inertia.
\item $q$: state of the system - Vector of size $nDof$.
\item $\dot q$ or $velocity$: derivative of the state according to time - Vector of size $nDof$.
\item $NNL(\dot q, q)$: non linear terms, time-independent - Vector of size $nDof$.
\item $F_{Int}(\dot q , q , t)$: time-dependent linear terms - Vector of size $nDof$.
\item $F_{Ext}(t)$: external forces, time-dependent BUT do not depend on state - Vector of size $nDof$.
\item $p$: input due to non-smooth behavior - Vector of size $nDof$.
\end{itemize}
The following Jacobian are also member of this class:
\begin{itemize}
\item jacobianQFInt = $\nabla_q F_{Int}(t,q,\dot q)$ - $nDof\times nDof$ matrix.
\item jacobianVelocityFInt = $\nabla_{\dot q} F_{Int}(t,q,\dot q)$ - $nDof\times nDof$ matrix.
\item jacobianQNNL = $\nabla_q NNL(q,\dot q)$ - $nDof\times nDof$ matrix.
\item jacobianVelocityNNL = $\nabla_{\dot q}NNL(q,\dot q)$ - $nDof\times nDof$ matrix.
\end{itemize}
There are plug-in functions in this class for $F_{int}$, $F_{Ext}$, $M$, $NNL$ and the four Jacobian matrices. All
of them can handle a vector of user-defined parameters. \\
Links with first order dynamical system are:
\begin{eqnarray}
n &= &2nDof \\
x &=&\left[\begin{array}{c}q \\ \dot q \end{array}\right] \\
f(x,t) &=& \left[\begin{array}{c} \dot q \\ M^{-1}(F_{Ext}-F_{Int}-NNL) \end{array}\right] \\
\\
\nabla_x f(x,t) &=&
\left[\begin{array}{cc}
0_{nDof\times nDof} & I_{nDof\times nDof} \\
\nabla_q(M^{-1})(F_{Ext}-F_{Int}-NNL) -M^{-1}\nabla_q(F_{Int}+NNL) & -M^{-1}\nabla_{\dot q}(F_{Int}+NNL)
\end{array}\right] \\
r &=& \left[\begin{array}{c} 0_{nDof} \\ p \end{array}\right] \\
u(x,\dot x,t) &=& u_L(\dot q, q, t) \text{ (not yet implemented)} \\
T(x) &=& \left[\begin{array}{c} 0_{nDof} \\ T_L(q) \end{array}\right] \text{ (not yet implemented)} \\
\end{eqnarray}
With $0_{n}$ a vector of zero of size $n$, $0_{n\times m}$ a $n\times m$ zero matrix and
$I_{n\times n}$, identity $n\times n$ matrix. \\
Warning: control terms ($Tu$) are not fully implemented in Lagrangian systems. This will be part of future version.
% LAGRANGIAN LINEAR TIME INVARIANT DS
\section{Second order linear and time-invariant Lagrangian dynamical systems $\rightarrow$ class \it{LagrangianLinearTIDS}}
\label{Sec:LagrangianLineatTIDS}
\begin{eqnarray}
M \ddot q + C \dot q + K q = F_{Ext}(t) + p
\end{eqnarray}
With:
\begin{itemize}
\item $C$: constant viscosity $nDof\times nDof$ matrix
\item $K$: constant rigidity $nDof\times nDof$ matrix
\end{itemize}
And:
\begin{eqnarray}
F_{Int} &=& C \dot q + K q \\
NNL &=& 0_{nDof}
\end{eqnarray}
\chapter{Dynamical Systems implementation in Siconos.}
\begin{table}[!ht]
\begin{tabular}{|l|l|}
\hline
author & F. P\'erignon \\
\hline
date & November 7, 2006 \\
\hline
version & Kernel 1.3.0 \\
\hline
\end{tabular}
\end{table}
\section{Introduction}
This document is only a sequel of notes and remarks on the way Dynamical Systems are implemented in Siconos.\\
It has to be completed, reviewed, reorganized etc etc for a future Developpers'Guide. \\
See also documentation in Doc/User/DynamicalSystemsInSiconos for a description of various dynamical systems types.
\section{Class Diagram}
There are four possible formulation for dynamical systems in Siconos,
two for first order systems and two for second order Lagrangian systems. The main class is DynamicalSystem, all other derived from this one, as shown in the following diagram:
\begin{figure}[htbp]
\centering
\includegraphics[width=0.3\textwidth]{./DSClassDiagram.pdf}
\label{DSDiagram}
\end{figure}
% DYNAMICAL SYSTEMS
\section{Construction}
Each constructor must:
\begin{itemize}
\item initialize all the members of the class and of the top-class if it exists
\item allocate memory and set value for all required inputs
\item allocate memory and set value for optional input if they are given as argument (in xml for example)
\item check that given data are coherent and that the system is complete (for example, in the LagrangianDS
if the internal forces are given as a plug-in, their Jacobian are also required. If they are not given, this leads to an exception).
\end{itemize}
No memory allocation is made for unused members $\Rightarrow$ requires if statements in simulation. (if!=NULL ...).\\
\subsection{DynamicalSystem}
{\bf Required data:}\\
n, x0, f, jacobianXF \\
{\bf Optional:}\\
T,u \\
\textbf{Always allocated in constructor:} \\
x, x0, xFree, r, rhs, jacobianXF
Warning: default constructor is always private or protected and apart from the others and previous rules or remarks do not always apply to it.
This for DS class and any of the derived ones.
\subsection{LagrangianDS}
\textbf{Required data:}\\
ndof, q0, velocity0, mass \\
\textbf{Optional:}\\
fInt and its Jacobian, fExt, NNL and its Jacobian. \\
\textbf{Always allocated in constructor:} \\
mass, q, q0, qFree, velocity, velocity0, velocityFree, p. \\
All other pointers to vectors/matrices are set to NULL by default. \\
Memory vectors are required but allocated during call to initMemory function.
Various rules:
\begin{itemize}
\item fInt (NNL) given as a plug-in $\Rightarrow$ check that JacobianQ/Velocity are present (matrices or plug-in)
\item any of the four Jacobian present $\Rightarrow$ allocate memory for block-matrix jacobianX (connectToDS function)
\item
\end{itemize}
check: end of constructor or in initialize? \\
computeF and JacobianF + corresponding set functions: virtual or not? \\
\section{Specific flags or members}
\begin{itemize}
\item isAllocatedIn: to check inside-class memory allocation
\item isPlugin: to check if operators are computed with plug-in or just directly set as a matrix or vector
\item workMatrix: used to save some specific matrices in order to avoid recomputation if possible (inverse of mass ...)
\end{itemize}
\section{plug-in management}
DynamicalSystem class has a member named parameterList which is a $map<string, SimpleVector*>$, ie a list of
pointers to SimpleVector*, with a string as a key to identified them.
For example, $parametersList["mass"]$ is a SimpleVector*, which corresponds to the last argument given in
mass plug-in function. \\
By default, each parameters vectors must be initialized with a SimpleVector of size 1, as soon as the plug-in is
declared. Moreover, to each vector corresponds a flag in isAllocatedIn map, to check if the corresponding vector has been
allocated inside the class or not. \\
For example, in DynamicalSystem, if $isPlugin["vectorField"]==true$, then, during call to constructor or set function,
it is necessary to defined the corresponding parameter: \\
$parametersList["vectorField"] = new SimpleVector(1)$ \\
and to complete the $isAllocatedIn$ flag: \\
$isAllocatedIn["parameter_for_vectorField"] = true$. \\
\chapter{Interactions}
\begin{table}[!ht]
\begin{tabular}{|l|l|}
\hline
author & F. P\'erignon \\
\hline
date & November 7, 2006 \\
\hline
version & Kernel 1.3.0 \\
\hline
\end{tabular}
\end{table}
\section{Introduction}
This document is only a sequel of notes and remarks on the way Interactions are implemented in Siconos.\\
It has to be completed, reviewed, reorganized etc etc for a future Developpers'Guide. \\
See also documentation in Doc/User/Interaction.
\section{Class Diagram}
\section{Description}
\begin{ndrfp}
review of interactions (for EventDriven implementation) 17th May 2006.
\end{ndrfp}
\bei
\item variable \varcpp{nInter} renamed in \varcpp{interactionSize}: represents the size of \varcpp{y} and \varcpp{$\lambda$}. NOT the number of relations !! \\
\item add a variable \varcpp{nsLawSize} that depends on the non-smooth law type.\\
Examples:
\bei
\item NewtonImpact -> \varcpp{nsLawSize} = 1
\item Friction 2D -> \varcpp{nsLawSize} = 2
\item Friction 3D -> \varcpp{nsLawSize} = 3
\item ...
\item \varcpp{nsLawSize} = n with n dim of matrix D in :
$y=Cx+D\lambda$, D supposed to be a full-ranked matrix. \\
Warning: this case is represented by only one relation of size n.
\ei
\item \varcpp{numberOfRelations}: number of relations in the interaction, \varcpp{numberOfRelations} = $\Frac{\varcpp{interactionSize}}{\varcpp{nsLawSize}}$.
\ei
\chapter{Notes on the Non Smooth Dynamical System construction}
\begin{table}[!ht]
\begin{tabular}{|l|l|}
\hline
author & F. P\'erignon \\
\hline
date & November 7, 2006 \\
\hline
version & Kernel 1.3.0 \\
\hline
\end{tabular}
\end{table}
\section{Introduction}
\section{Class Diagram}
\section{Description}
Objects must be constructed in the following order:
\bei
\item DynamicalSystems
\item NonSmoothLaw: depends on nothing
\item Relation: no link with an interaction during construction, this will be done during initialization.
\item Interaction: default constructor is private and copy is forbidden. Two constructors: xml and from data. Required data are a DSSet, a NonSmoothLaw and
a Relation (+ dim of the Interaction and a number). \\
Interaction has an initialize function which allocates memory for y and lambda, links correctly the relation and initializes it .... This function is called at the
end of the constructor. That may be better to call it in simulation->initialize? Pb: xml constructor needs memory allocation for y and lambda if they are
provided in the input xml file.
\item NonSmoothDynamicalSystem: default is private, copy fobidden. Two constructors: xml and from data. Required data are the DSSet and the InteractionsSet.
The topology is declared and constructed (but empty) during constructor call of the nsds, but initialize in the Simulation, this because it can not be initialize until the nsds has been fully described (ie this to allow user to add DS, Inter ...) at any time in the model, but before simulation initialization).
\ei
\section{misc}
\bei
\item no need to keep a number for Interactions? Only used in xml for OSI, to know which Interactions it holds.
\item pb: the number of saved derivatives for y and lambda in Interactions is set to 2. This must depends on the relative degree which is computes during
Simulation initialize and thus too late. It is so not available when memory is allocated (Interaction construction). Problem-> to be reviewed.
\ei
\chapter{OneStepIntegrator and derived classes.}
\begin{table}[!ht]
\begin{tabular}{|l|l|}
\hline
author & F. P\'erignon \\
\hline
date & November 7, 2006 \\
\hline
version & Kernel 1.3.0 \\
\hline
\end{tabular}
\end{table}
\section{Introduction}
This document is only a sequel of notes and remarks on the way OneStepIntegrators are implemented in Siconos.\\
It has to be completed, reviewed, reorganized etc etc for a future Developpers'Guide. \\
See also documentation in Doc/User/OneStepIntegrator for a description of various OSI.
\section{Class Diagram}
\section{Misc}
OSI review for consistency between Lsodar and Moreau:
\begin{itemize}
\item add set of DynamicalSystem*
\item add set of Interaction*
\item add link to strategy that owns the OSI
\item remove td object in OSI -> future: replace it by a set of td (one per ds)
\item add strat in constructors arg list
\end{itemize}
osi -> strat -> Model -> nsds -> topology \\
osi -> strat -> timeDiscretisation \\
let a timeDiscretisation object in the OSI? set of td (one per ds)? \\
create a class of object that corresponds to DS on the simulation side ? \\
will contain the DS, its discretization, theta for Moreau ... ? \\
Allow setStrategyPtr operation? Warning: need reinitialisation. \\
Required input by user: \\
\begin{itemize}
\item list of DS or list of Interactions ?
\item pointer to strategy
\item ...
\end{itemize}
\section{Construction}
Each constructor must:
\begin{itemize}
\item
\end{itemize}
\subsection{Moreau}
Two maps: one for W, and one for theta. To each DS corresponds a theta and a W. \\
Strategy arg in each constructor.
\textbf{Required data:}\\
\textbf{Optional:}\\
\textbf{Always allocated in constructor:} \\
Warning: default constructor is always private or protected and apart from the others and previous rules or remarks do not always apply to it.
\subsection{Lsodar}
\textbf{Required data:}\\
\textbf{Optional:}\\
\textbf{Always allocated in constructor:} \\
\chapter{First Order Nonlinear Relation }
\begin{table}[!ht]
\begin{tabular}{|l|l|}
\hline
author & 0. Bonnefon \\
\hline
date & July, 1 2009 \\
\hline
version & Kernel 3.0.0 \\
\hline
\end{tabular}
\end{table}
\chapter{Computation of the number of Index Set and various levels}
\begin{table}[!ht]
\begin{tabular}{|l|l|}
\hline
author & V. Acary \\
\hline
date & Septembre 16, 2011 \\
\hline
version & Kernel 3.3.0 \\
\hline
\end{tabular}
\end{table}
\input{ChapterLevelsAndIndices.tex}
\chapter{Newton's linearization for First Order Systems}
\input{chapterNewton.tex}
\chapter{Newton's linearization for Lagrangian systems}
\input{chapterNewtonLagrangian.tex}
\chapter{NewtonEuler Dynamical Systems}
\input{NewtonEuler.tex}
\chapter{NewtonEulerR: computation of $\nabla _qH$}
\input{NewtonImpactJacobian.tex}
\chapter{Projection On constraints}
\input{ProjOnConstraints.tex}
%\begin{figure}[htbp]
% \input{./Figures/Diagram.pstex_t}
%\end{figure}
\chapter{Simulation of a Cam Follower System}
{\textbf Main Contributors:} {\textit{Mario di Bernardo, Gustavo Osorio, Stefania Santini}}\\
\textit{University of Naples Federico II, Italy.}\\
\input{./CamFollower/Example_Manual_Cam_Follower}
\chapter{Quartic Formulation}
\input{QuarticFormulation.tex}
\chapter{Alart--Curnier Formulation}
\input{AlartCurnier.tex}
\bibliographystyle{plain}
\bibliography{bibli}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
|