File: LieGroupTheory.tex

package info (click to toggle)
siconos 4.3.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 82,496 kB
  • sloc: cpp: 159,693; ansic: 108,665; fortran: 33,248; python: 20,709; xml: 1,244; sh: 385; makefile: 226
file content (448 lines) | stat: -rw-r--r-- 21,090 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
\section{Basic elements of  Lie groups and Lie algebras theory.}
Let us recall the definitions of the  Lie group Theory taken from \cite{Iserles.ea_AN2000} and \cite{Varadarajan_book1984}.




\subsection{Differential equation (evolving) on a manifold $\mathcal M$}
\begin{definition}
 A $d$-dimensional manifold $\mathcal M$ is a $d$-dimensional smooth surface $ M\subset \RR^n$ for some $n\geq d$.
\end{definition}
\begin{definition}
  Let $\mathcal M$ be a $d$-dimensional manifold and suppose that $\rho(t) \in\mathcal M$  is a smooth curve such that $\rho(0) = p$. A tangent vector at $p$ is defined as
  \begin{equation}
    \label{eq:12}
    a = \left. \frac{d}{dt} (\rho(t)) \right|_{t=0}.
  \end{equation}
The set of all tangents at $p$ is called the tangent space at $p$ and denoted by $T\mathcal M|_p$. It has the structure of a linear space. 
\end{definition}
\begin{definition}
   A (tangent) vector field on $\mathcal M$ is a smooth function $F : \mathcal M \rightarrow T\mathcal M$ such that $F (p) \in T\mathcal M|_p$ for all $p \in \mathcal M$. The collection of all vector fields on $\mathcal M$ is denoted by $\mathcal X(\mathcal M)$.
 \end{definition}


 \begin{definition}[Differential equation (evolving) on $\mathcal M$]
   Let $F$ be a tangent vector field on $\mathcal M$. By a differential equation (evolving) on $\mathcal M$ we mean a differential equation of the form
   \begin{equation}
     \dot y =F(y), t\geq  0, y(0)\in \mathcal M\label{eq:13}
   \end{equation}
   where $F \in \mathcal X(\mathcal M)$. Whenever convenient, we allow $F$ in~\eqref{eq:13} to be a function of time, $F = F(t,y)$. The flow of $F$ is the solution operator $\Psi_{t,F} : \mathcal M \rightarrow  \mathcal M$ such that
   \begin{equation}
     y(t) = \Psi_{t,F} (y0).\label{eq:14}
   \end{equation}
 \end{definition}

 \subsection{Lie algebra and Lie group}
 \begin{definition}[commutator]
   Given two vector fields $F, G$ on $\RR^n$ , the commutator $H = [F, G]$ can
   be computed componentwise at a given point $y ∈ \RR^n$ as
   \begin{equation}
     H_i(y)= \sum_{j=1}^n  G_j(y)\frac{\partial F_i(y)}{\partial y_j}   −F_j(y) \frac{\partial G_i(y)}{\partial y_j} .\label{eq:15}
   \end{equation}
 \end{definition}

 \begin{lemma}\label{lemma:LieBracket}
The commutator of vector fields satisfies the identities
\begin{equation}
  \label{eq:16}
  \begin{array}[lclr]{lclr}
    \protect{[}F, G]&=& −\protect{[}G, F ] & (skew symmetry), \\
    \protect{[} \alpha F,G] &=& \alpha \protect{[}F,G], \alpha \in \RR &  \\
    \protect{[}F + G, H]&=& \protect{[}F, H] + \protect{[}G, H] & (bilinearity),\\
    0 &=&  \protect{[}F,\protect{[}G,H]]+\protect{[}G,\protect{[}H,F]]+\protect{[}H,\protect{[}F,G]] &(Jacobi’s identity).
  \end{array}
\end{equation}
\end{lemma}
\begin{definition}
  A Lie algebra of vector fields is a collection of vector fields which is closed under linear combination and commutation. In other words, letting $\mathfrak g$ denote the Lie algebra,
  
  \begin{equation}
    \begin{array}[lclr]{l}
    B \in \mathfrak g \implies \alpha B \in \mathfrak  g \text{ for all } \alpha ∈ R .\\
    B_1,B_2 \in\mathfrak g \implies B_1 +B_2, [B_1,B_2]\in\mathfrak g\label{eq:17}
    \end{array}
\end{equation}

Given a collection of vector fields $B = {B_1 , B_2 , \ldots}$, the least Lie algebra of vector fields containing $B$ is called the Lie algebra generated by $B$
\end{definition}


\begin{definition}
  A Lie algebra is a linear space $V$ equipped with a Lie bracket, a bilinear, skew-symmetric mapping
  \begin{equation}
    \label{eq:18}
    [ \cdot , \cdot ] : V \times V \rightarrow V 
  \end{equation}
that obeys identities \eqref{eq:16} from Lemma~\ref{lemma:LieBracket}
\end{definition}

\begin{definition}[(General) Lie algebra]
  A Lie algebra homomorphism is a linear map between two Lie algebras, $\varphi : \mathfrak g \rightarrow \mathfrak h$, satisfying the identity
  \begin{equation}
\varphi ([v, w]_{\mathfrak g}) = [\varphi(v), \varphi(w)]_{\mathfrak h}, v, w in \mathfrak g\label{eq:19}.
\end{equation}
An invertible homomorphism is called an isomorphism.
\end{definition}

\begin{definition}
  A Lie group is a differential manifold $\mathcal G$ equipped with a product $\glaw : \mathcal G\times \mathcal G →\rightarrow \mathcal  G$ satisfying
  \begin{equation}
    \label{eq:20}
    \begin{array}[lclr]{lr}
      p \glaw(q \glaw r) = (p\glaw q)\glaw r, \forall  p, q, r ∈ \mathcal G &\text{(associativity)}\\
      \exists I \in \mathcal G \text{ such that } I\glaw p = p \glaw I = p,  \forall p \in \mathcal G&\text{(identity element)}\ \\
      \forall p \in \mathcal G, \exists  p^{-1}  \in \mathcal G \text{ such that }  p^{-1}\glaw p = I&\text{(inverse) }\ \\
      \text{ The maps}  (p, r)  \rightarrow p\glaw r \text{ and }  p  \rightarrow p^{-1} \text{are smooth functions }&\text{(smoothness)}\                                                                                                
    \end{array}
\end{equation}
\end{definition}

\begin{definition}[Lie algebra $\mathfrak g $ of a Lie group $\mathcal G$]
  The Lie algebra $\mathfrak g$ of a Lie group $\mathcal G$ is defined as the linear space of all tangents to $G$ at the identity $I$. The Lie bracket in $\mathfrak g$ is defined as
  \begin{equation}
    [a,b]= \left.\frac{\partial^2 }{\partial s\partial t} \rho(s)\sigma(t)\rho(-s)\right|_{s=t=0}\label{eq:21}
\end{equation}
where $\rho(s)$ and $\sigma(t)$ are two smooth curves on $\mathcal G$ such that $\rho(0) = \sigma(0) = I$, and 
$\dot \rho(0) = a$ and $\dot \sigma(0) = b$.
\end{definition}

\subsection{Actions of a group $\mathcal G$ on  manifold $\mathcal M$}
\begin{definition}
   A left  action of Lie Group $\mathcal G$ on a manifold $\mathcal M$ is a smooth map $\Lambda^l: \mathcal G \times  \mathcal M \rightarrow \mathcal M$ satisfying
\begin{equation}
  \label{eq:22}
  \begin{array}[lcl]{rcl}
    \Lambda^l(I,y) &=& y, \quad \forall y \in \mathcal M \\
    \Lambda^l(p,\Lambda(r,y)) &=& \Lambda^l(p\glaw r, y) , \quad \forall p,r \in \mathcal G,\quad  \forall y \in \mathcal M .
  \end{array}
\end{equation}
\end{definition}

\begin{definition}
   A  right  action of Lie Group $\mathcal G$ on a manifold $\mathcal M$ is a smooth map $\Lambda^r: \mathcal M \times \mathcal G   \rightarrow \mathcal M$ satisfying
\begin{equation}
  \label{eq:23}
  \begin{array}[lcl]{rcl}
    \Lambda^r(y,I) &=& y, \quad \forall y \in \mathcal M \\
    \Lambda^r(\Lambda(y,r), p) &=& \Lambda^r(y,  r\glaw p) , \quad \forall p,r \in \mathcal G,\quad  \forall y \in \mathcal M .
  \end{array}
\end{equation}
\end{definition}

A given smooth curve  $S(\cdot) : t\in \RR \mapsto S(t)\in \mathcal G$ in $\mathcal G$ such that $S(0)= I$ produces a flow $\Lambda^l(S(t),\cdot)$ (resp. $\Lambda^r(\cdot, S(t))$) on $\mathcal M$ and by differentiation we find a tangent vector field
\begin{equation}
  \label{eq:24}
  F(y) = \left. \frac{d}{dt} (\Lambda^l(S(t),y) \right|_{t=0}\quad( \text{resp.  }  F(y) = \left. \frac{d}{dt} (\Lambda^r(y,S(t)) \right|_{t=0} ) 
\end{equation}
that defines a ordinary differential equation on a Lie Group
\begin{equation}
  \label{eq:25}
  \dot y(t) = F(y(t)) = \left. \frac{d}{dt} (\Lambda^l(S(t),y) \right|_{t=0}  \quad( \text{resp.  }\dot y(t) = F(y(t)) = \left. \frac{d}{dt} (\Lambda^r(y,S(t)) \right|_{t=0})
\end{equation}
  
\begin{lemma}
  Let $\lambda^l_{*} : \mathfrak g \rightarrow \mathcal X(\mathcal M) $ (resp. $\lambda^r_{*} : \mathfrak g \rightarrow \mathcal X(\mathcal M) $ be defined as
  \begin{equation}
  \lambda^l_{*}(a)(y) = \left.\frac{d}{ds}{ \Lambda^l (\rho(s), y)}\right|_{s=0} \quad (\text{ resp. }  \lambda^r_{*}(a)(y) = \left.\frac{d}{ds}{ \Lambda^r (y, \rho(s))}\right|_{s=0})\label{eq:26}  
\end{equation}
 where $\rho(s)$ is a curve in $\mathcal G$ such that $\rho(0)=I$ and $\dot\rho (0)=a$. Then $\lambda^l_{8}$ is a linear
map between Lie algebras such that
\begin{equation}
  [a, b]_{\mathfrak g} = [\lambda^l_{*}(a), \lambda^l_{*}(b)]_{\mathcal X(\mathcal M)}.\label{eq:27}
\end{equation}
\end{lemma}


The following product between an element of an algebra $a \in \mathfrak g$ with an element of a group $\sigma  \in \mathcal G$ 
 can be defined. This will served as a basis for defining the exponential map.
\begin{definition}
  We define the left product $(\cdot, \cdot)^l : \mathfrak g \times \mathcal G \rightarrow  \mathcal G$ of an element of an algebra $a \in \mathfrak g$ with an element of a group $\sigma  \in \mathcal G$ as
  \begin{equation}
 (a, \sigma)^l = a \cdot \sigma = \left.\frac{d}{ds} \rho(s) \glaw \sigma \right|_{s=0}\label{eq:28}
\end{equation}
where $\rho(s)$ is a smooth curve such that $\dot\rho(0)=a$ and $\rho(0)=I$. In the same way, we can define the right product $(\cdot, \cdot)^r : \mathcal G \times \mathfrak g  \rightarrow   \mathcal G$ 
\begin{equation}
  \label{eq:29}
  (\sigma,a)^r = \sigma \cdot a  = \left.\frac{d}{ds} \sigma \glaw \rho(s)   \right|_{s=0}
\end{equation}
\end{definition}

\subsection{Exponential map}
\begin{definition}
  Let $\mathcal G$ be a Lie group and $\mathfrak g$ its Lie algebra. The exponential mapping $exp : \mathfrak g \rightarrow \mathcal G$ is defined as $\exp(a) = \sigma(1)$ where $\sigma (t)$ satisfies the  differential equation
\begin{equation}
\dot \sigma(t) = a \cdot \sigma(t), \quad \sigma (0) = I.\label{eq:30}
\end{equation}
\end{definition}

Let us define $a^k$ as
\begin{equation}
  \label{eq:31}
  \left\{\begin{array}[l]{l}
    a^k = \underbrace{a\glaw a \glaw \ldots a\glaw a}_{k \text{ times}} \text{ for } k \geq 1 \\
    a^0  = I
  \end{array}\right.
\end{equation}
The exponential map can be expressed as
\begin{equation}
  \label{eq:32}
  \exp(at) = \sum_{k=0}^\infty \frac{(ta)^k}{k!}
\end{equation}
since it is  a solution of \eqref{eq:30}. A simple computation allows to check this claim:
\begin{equation}
  \label{eq:33}
   \frac{d}{dt}\exp(at) = \sum_{k=1}^\infty  k t^{k-1} \frac{a^k}{k!} = a \glaw \sum_{k=0}^\infty  t^{k} \frac{a^k}{k!} = a \glaw \exp(at).
\end{equation}
A similar computation gives
\begin{equation}
  \label{eq:34}
  \frac{d}{dt}\exp(at)  = \sum_{k=0}^\infty  t^{k} \frac{a^k}{k!} \glaw a = \exp(at) \glaw a.
\end{equation}
The exponential mapping $exp : \mathfrak g \rightarrow \mathcal G$ can also be defined as $\exp(a) = \sigma(1)$ where $\sigma (t)$ satisfies the  differential equation
\begin{equation}
  \label{eq:35}
  \dot \sigma(t) = \sigma(t) \cdot a, \quad \sigma (0) = I.
\end{equation}

\begin{theorem}
  \label{Theorem:solutionofLieODE}
  Let $\Lambda^l:\mathcal G\times\mathcal M \rightarrow \mathcal M$ be a left  group action and $\lambda^l_{∗} : \mathfrak g\rightarrow \mathcal X(\mathcal M)$ the corresponding Lie algebra homomorphism. For any $a \in \mathfrak g$ the flow of the vector field $F = \lambda^l_{a}(a)$, i.e. the solution of the equation
  \begin{equation}
    \dot y(t) = F(y(t)) = \lambda^l_{*}(a)(y(t)),\quad  t \geq 0, y(0) = y_0 \in \mathcal M,\label{eq:36}
\end{equation}
  is given as
  \begin{equation}
y(t) = \Lambda^l(\exp(ta), y_0).\label{eq:37}
\end{equation}
Let $\Lambda^r:\mathcal M\times\mathcal G \rightarrow \mathcal M$ be a right group action and $\lambda^r_{∗} : \mathfrak g\rightarrow \mathcal X(\mathcal M)$ the corresponding Lie algebra homomorphism. For any $a \in \mathfrak g$ the flow of the vector field $F = \lambda^r_{*}(a)$, i.e. the solution of the equation
  \begin{equation}
    \dot y(t) = F(y(t)) = \lambda^r_{*}(a)(y(t)),\quad  t \geq 0, y(0) = y_0 \in \mathcal M,\label{eq:38}
\end{equation}
  is given as
  \begin{equation}
y(t) = \Lambda^r(y_0,\exp(ta)).\label{eq:39}
\end{equation}

\end{theorem}


\subsection{Translation (Trivialization) maps}
The left and right translation maps defined by 
\begin{equation}
  \label{eq:148}
  \begin{array}{rcl}
    L_z  : \mathcal G \times \mathcal G &\rightarrow& \mathcal G \quad \text{ (left translation map )} \\
    y &\mapsto&  z \glaw y
  \end{array}
\end{equation}
and 
\begin{equation}
  \label{eq:149}
  \begin{array}{rcl}
    R_z(y)  :  \mathcal G \times  \mathcal G  & \rightarrow& \mathcal G \quad \text{ (right translation map )} \\
    y  &\mapsto&  y \glaw z 
  \end{array}
\end{equation}

If we identify the manifold $\mathcal M$ with the group $\mathcal G$, The left and right translations can be interpreted as the simplest example of group action on the manifold. Note that the left translation map can be viewed as a left or right action on the group.

If we consider $L_z(y)$ as a right group action $ L_z(y) = \Lambda^r( z, y) =z \glaw y $, by differentiation we get a $L'_z : T \mathfrak g \cong  \mathfrak g \rightarrow T_z\mathcal G$ with $\dot\rho (0)=a$ such that
\begin{equation}
  \label{eq:150}
  \lambda^r_{*}(a)(z) = L'_z(a) = \left.\frac{d}{ds}{ \Lambda^r (z, \rho(s))}\right|_{s=0} = z \glaw a
\end{equation}
The map
\begin{equation}
  \label{eq:152}
  \begin{array}{rcl}
  L'_z  : \mathfrak g &\rightarrow& T_z\mathcal G  \\
         a &\mapsto&  z \glaw a
  \end{array}
\end{equation}
determines an isomorphism of $\mathfrak g$ with the tangent space  $T_z\mathcal G$. In other words, the  tangent space can be identified to $\mathfrak g$ as
\begin{equation}
  \label{eq:153}
  T_z\mathcal G =\{L'_z(a) = z \glaw a \mid a \in \mathfrak g  \}
\end{equation}

Respectively, if we consider $R_z(y)$ as a left group action $ R_z(y) = \Lambda^l( y, z) =y \glaw z $, by differentiation we get a $R'_z : T \mathfrak g \cong  \mathfrak g \rightarrow T_z\mathcal G$ with $\dot\rho (0)=a$ such that
\begin{equation}
  \label{eq:150}
  \lambda^l_{*}(a)(z) = R'_z(a) = \left.\frac{d}{ds}{ \Lambda^l (\rho(s),z)}\right|_{s=0} = a \glaw z
\end{equation}
The map
\begin{equation}
  \label{eq:152}
  \begin{array}{rcl}
  R'_z  : \mathfrak g &\rightarrow& T_z\mathcal G  \\
         a &\mapsto&  a \glaw z
  \end{array}
\end{equation}
determines an isomorphism of $\mathfrak g$ with the tangent space  $T_z\mathcal G$. In other words, the  tangent space can be identified to $\mathfrak g$ as
\begin{equation}
  \label{eq:153}
  T_z\mathcal G =\{R'_z(a) = a \glaw z \mid a \in \mathfrak g  \}
\end{equation}
Any tangent vector $F : \mathcal G \rightarrow T_z\mathcal G$ can be written in either of the forms
\begin{equation}
  \label{eq:155}
  F(z) = L'_z(f(a)) = R'_z(g(z))
\end{equation}
where $f,g \mathcal G \rightarrow \mathfrak g$. 
\subsection{Adjoint representation}
\begin{definition}
Let $p \in \mathcal G$ and let $\sigma (t)$ be a smooth curve on $\mathcal G$ such that $\sigma (0)$ = I and $\dot \sigma(0) = b \in \mathfrak g$. The adjoint representation is defined as
\begin{equation}
\Ad_p(b) =\left. \frac{d}{dt} p\sigma(t)p^{-1}\right|_{t=0}\label{eq:40}
\end{equation}
The derivative of $\Ad$ with respect to the first argument is denoted $\ad$. Let $\rho(s)$ be a smooth curve on $\mathcal G$ such that $\rho(0) = I$  and $\dot \rho(0) = a$, it  yields:
\begin{equation}
  \label{eq:41}
    \ad_a(b) = \left.\frac{d}{ds} \Ad_{\rho(s)}(b)\right|_{s=0}  = [a, b]
\end{equation}
\end{definition}
The adjoint representation can also be expressed with the map
\begin{equation}
  \label{eq:154}
  \Ad_p(b)  = (L_p \glaw R_{p^{-1}})' (b) = (L'_p \glaw R'_{p^{-1}}) (b) = p \glaw b \glaw p^{-1}  
\end{equation}

For a tangent vector given in~\eqref{eq:155}, we have
\begin{equation}
  \label{eq:151}
  g(z) = Ad_z(f(z))
\end{equation}
Another important relation relating $\Ad$, $\ad$ and $\exp$ is
\begin{equation}
  \label{eq:164}
  \Ad_{\exp(a)} =\exp{\ad_a}
\end{equation}


\subsection{Differential of the exponential map} There are multiple ways to represent the differential of $\exp(\cdot)$ at a point $a\in \mathfrak g$. Let us start by the following definition of the differential map at $a\in\mathfrak g$
\begin{equation}
  \label{eq:147}
  \begin{array}{lcl}
    \exp_a' & : & \mathfrak g \rightarrow  T_{exp(a)}\mathcal G\\
            & &  v \mapsto \exp'_a(v)  = \left.\frac{d}{dt} \exp(a+tv)\right|_{t=0}
  \end{array}
\end{equation}
The definition is very similar to the definition of the directional derivative of $\exp$ in the direction $v \in \mathfrak g$ at a point $a\in\mathfrak g$. Using the expression \eqref{eq:153} of the tangent space at $\exp(a)$, we can defined another expression of the differential map denoted as $\dlexp_a : \mathfrak g  \rightarrow \mathfrak g$ such that
\begin{equation}
  \label{eq:156}
  \dlexp_a = L'_{\exp^{-1}(a)} \glaw \exp_a' = L'_{\exp(-a)} \glaw \exp_a' 
\end{equation}
This expression appears as a trivialization of the differential map $\exp'_a$. Using the expression of $L'_z$ in \eqref{eq:152}.
In~\cite[Theorem 2.14.13]{Varadarajan_book1984}, an explicit formula relates $\dlexp_{a}$ to the iteration of the adjoint operator:
\begin{equation}
  \label{eq:43}
  \dlexp_a(b) = \sum_{k=0}^\infty \frac{(-1)^k}{(k+1)!} (\ad_a(b))^k \coloneqq \frac{e - \exp\glaw\ad_a}{\ad_a}(b)
\end{equation}
where $(\ad_a)^k$ is the kth iteration of the adjoint operator:
\begin{equation}
  \label{eq:44}
  \left\{\begin{array}[l]{l}
    (\ad_a)^k(b) = \underbrace{[a, [ a, [ \ldots, a, [ a, b]]]}_{k \text{ times}} \text{ for } k \geq 1 \\
    (\ad_a)^0(b)  = b
  \end{array}\right.
\end{equation}
It is also possible to define the right trivialized differential of the exponential map
\begin{equation}
  \label{eq:162}
  \drexp_a = R'_{\exp^{-1}(a)} \glaw \exp_a' = R'_{\exp(-a)} \glaw \exp_a' 
\end{equation}
that is
\begin{equation}
  \label{eq:163}
  \drexp_a(b) = \exp'_a(b) \glaw \exp(-a)
\end{equation}
With these expression, we have equivalently for 
\begin{equation}
  \label{eq:157}
   \exp_a'(b)  = \exp_a \glaw \dlexp_a(b)\quad \text{ and } \exp_a'(b)  = \drexp_a(b) \glaw   \exp(a)
\end{equation}


To avoid to burden to much the notation, we introduced the unified definition of the differential map  that corresponds to $\dexp=\drexp$ 
\begin{definition}
The differential of the exponential mapping, denoted by $\dexp_a : \mathfrak g \times \mathfrak g \rightarrow \mathfrak g$ is defined as the ``right trivialized'' tangent of the exponential map
\begin{equation}
  \label{eq:42}
  \frac{d}{dt} (\exp(a(t))) = \dexp_{a(t)}(a'(t)) \exp(a(t))
\end{equation}
\end{definition}
An explicit formula relates $\dexp_{a}$ to the iteration of the adjoint operator:
\begin{equation}
  \label{eq:43}
  \dexp_a(b) = \sum_{k=0}^\infty \frac{1}{(k+1)!} (\ad_a(b))^k \coloneqq \frac{\exp\glaw\ad_a-e}{\ad_a}(b)
\end{equation}


\begin{ndrva}
  Say what is not the Jacobian in $\RR^4$
\end{ndrva}

As for $\Ad_a$ and $\ad_a$, the mapping $\dexp_{a}(b)$ is a linear mapping in its second argument for a fixed $a$. Using the relation~\eqref{eq:164}, we can also relate the right and the lest trivialization tangent
\begin{equation}
  \label{eq:165}
\dlexp_a (b) =   (\Ad_{\exp(a)} \glaw \dexp(a))(b) = (\exp(\ad_{-a}) \glaw \frac{e - \exp\glaw\ad_a}{\ad_a})(b) = \frac{e - \exp\glaw\ad_{-a}}{\ad_a}(b) = \dexp_{-a}(b)
\end{equation}
It is also possible to define the  the ``left trivialized'' tangent of the exponential map
\begin{equation}
  \label{eq:46}
   \frac{d}{dt} (\exp(a(t))) =  \exp(a(t)) \dlexp_{a(t)}(a'(t)) = \exp(a(t)) \dexp_{-a(t)}(a'(t)) 
\end{equation}

\begin{ndrva}
  other notation and Lie derivative
  \begin{equation}
    \label{eq:178}
      Df \cdot \widehat \Omega (p) = (\widehat \Omega^r f )(p) 
  \end{equation}
\end{ndrva}



\paragraph{Inverse of the exponential map}


The function $\dexp_{a}$ is an analytical function so it possible to invert it to get
\begin{equation}
  \label{eq:45}
  \dexp^{-1}_{a} = \sum_{k=0}^\infty \frac{B_k}{(k)!} (\ad_a)^k(b) 
\end{equation}
where $B_k$ are the Bernouilli number.

\subsection{Differential of a map $f : \mathcal G \rightarrow \mathfrak g$}

We follow the notation developed in~\cite{Owren.Welfert_BIT2000}. Let us first define the differential of the map $f : \mathcal G \rightarrow \mathfrak g$ as
\begin{equation}
  \label{eq:166}
  \begin{array}[rcl]{rcl}
    f'_z : T_z\mathcal G &\rightarrow&T_{f(z)}\mathfrak g \cong  \mathfrak g\\
    b &\mapsto& \left.\frac{d}{dt} f(z\glaw \exp(t L'_{z^{-1}}(b))) \right|_{t=0}
  \end{array}
\end{equation}
The image of $b$ by $f'_z$   is obtained by first identifying $b$ with an element of $v \in \mathfrak g$ thanks to the left representation of $T_{f(z)}\mathfrak g$ view the left translation map $v= t L'_z(b)$. The exponential mapping transforms $v$ an element $y$ of the Lie Group $\mathcal G$. Then $f'_z$ is obtained by
\begin{equation}
  \label{eq:167}
  f'_z(b) = \lim_{t\rightarrow 0} \frac{f(z\glaw y) - f(z)}{t}
\end{equation}
As we have done for the exponential mapping, it is possible to get a left trivialization of  
\begin{equation}
  \label{eq:169}
  \dd f_z = (f\glaw L_z)' = f'_z \glaw L'_z
\end{equation}
thus
\begin{equation}
  \label{eq:170}
  \dd f_z (a) =  f'_z \glaw L'_z(a) = f'_z(L'_z(a)) =  \left.\frac{d}{dt} f(z\glaw \exp(t a )) \right|_{t=0}
\end{equation}

\paragraph{Newton Method}
Let us imagine that we want to solve $f(y) = 0 $ for $y \in \mathcal G$. A newton method can be written as 
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "DevNotes"
%%% End: