1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
\section{Basic elements of Lie groups and Lie algebras theory.}
Let us recall the definitions of the Lie group Theory taken from \cite{Iserles.ea_AN2000} and \cite{Varadarajan_book1984}.
\subsection{Differential equation (evolving) on a manifold $\mathcal M$}
\begin{definition}
A $d$-dimensional manifold $\mathcal M$ is a $d$-dimensional smooth surface $ M\subset \RR^n$ for some $n\geq d$.
\end{definition}
\begin{definition}
Let $\mathcal M$ be a $d$-dimensional manifold and suppose that $\rho(t) \in\mathcal M$ is a smooth curve such that $\rho(0) = p$. A tangent vector at $p$ is defined as
\begin{equation}
\label{eq:12}
a = \left. \frac{d}{dt} (\rho(t)) \right|_{t=0}.
\end{equation}
The set of all tangents at $p$ is called the tangent space at $p$ and denoted by $T\mathcal M|_p$. It has the structure of a linear space.
\end{definition}
\begin{definition}
A (tangent) vector field on $\mathcal M$ is a smooth function $F : \mathcal M \rightarrow T\mathcal M$ such that $F (p) \in T\mathcal M|_p$ for all $p \in \mathcal M$. The collection of all vector fields on $\mathcal M$ is denoted by $\mathcal X(\mathcal M)$.
\end{definition}
\begin{definition}[Differential equation (evolving) on $\mathcal M$]
Let $F$ be a tangent vector field on $\mathcal M$. By a differential equation (evolving) on $\mathcal M$ we mean a differential equation of the form
\begin{equation}
\dot y =F(y), t\geq 0, y(0)\in \mathcal M\label{eq:13}
\end{equation}
where $F \in \mathcal X(\mathcal M)$. Whenever convenient, we allow $F$ in~\eqref{eq:13} to be a function of time, $F = F(t,y)$. The flow of $F$ is the solution operator $\Psi_{t,F} : \mathcal M \rightarrow \mathcal M$ such that
\begin{equation}
y(t) = \Psi_{t,F} (y0).\label{eq:14}
\end{equation}
\end{definition}
\subsection{Lie algebra and Lie group}
\begin{definition}[commutator]
Given two vector fields $F, G$ on $\RR^n$ , the commutator $H = [F, G]$ can
be computed componentwise at a given point $y ∈ \RR^n$ as
\begin{equation}
H_i(y)= \sum_{j=1}^n G_j(y)\frac{\partial F_i(y)}{\partial y_j} −F_j(y) \frac{\partial G_i(y)}{\partial y_j} .\label{eq:15}
\end{equation}
\end{definition}
\begin{lemma}\label{lemma:LieBracket}
The commutator of vector fields satisfies the identities
\begin{equation}
\label{eq:16}
\begin{array}[lclr]{lclr}
\protect{[}F, G]&=& −\protect{[}G, F ] & (skew symmetry), \\
\protect{[} \alpha F,G] &=& \alpha \protect{[}F,G], \alpha \in \RR & \\
\protect{[}F + G, H]&=& \protect{[}F, H] + \protect{[}G, H] & (bilinearity),\\
0 &=& \protect{[}F,\protect{[}G,H]]+\protect{[}G,\protect{[}H,F]]+\protect{[}H,\protect{[}F,G]] &(Jacobi’s identity).
\end{array}
\end{equation}
\end{lemma}
\begin{definition}
A Lie algebra of vector fields is a collection of vector fields which is closed under linear combination and commutation. In other words, letting $\mathfrak g$ denote the Lie algebra,
\begin{equation}
\begin{array}[lclr]{l}
B \in \mathfrak g \implies \alpha B \in \mathfrak g \text{ for all } \alpha ∈ R .\\
B_1,B_2 \in\mathfrak g \implies B_1 +B_2, [B_1,B_2]\in\mathfrak g\label{eq:17}
\end{array}
\end{equation}
Given a collection of vector fields $B = {B_1 , B_2 , \ldots}$, the least Lie algebra of vector fields containing $B$ is called the Lie algebra generated by $B$
\end{definition}
\begin{definition}
A Lie algebra is a linear space $V$ equipped with a Lie bracket, a bilinear, skew-symmetric mapping
\begin{equation}
\label{eq:18}
[ \cdot , \cdot ] : V \times V \rightarrow V
\end{equation}
that obeys identities \eqref{eq:16} from Lemma~\ref{lemma:LieBracket}
\end{definition}
\begin{definition}[(General) Lie algebra]
A Lie algebra homomorphism is a linear map between two Lie algebras, $\varphi : \mathfrak g \rightarrow \mathfrak h$, satisfying the identity
\begin{equation}
\varphi ([v, w]_{\mathfrak g}) = [\varphi(v), \varphi(w)]_{\mathfrak h}, v, w in \mathfrak g\label{eq:19}.
\end{equation}
An invertible homomorphism is called an isomorphism.
\end{definition}
\begin{definition}
A Lie group is a differential manifold $\mathcal G$ equipped with a product $\glaw : \mathcal G\times \mathcal G →\rightarrow \mathcal G$ satisfying
\begin{equation}
\label{eq:20}
\begin{array}[lclr]{lr}
p \glaw(q \glaw r) = (p\glaw q)\glaw r, \forall p, q, r ∈ \mathcal G &\text{(associativity)}\\
\exists I \in \mathcal G \text{ such that } I\glaw p = p \glaw I = p, \forall p \in \mathcal G&\text{(identity element)}\ \\
\forall p \in \mathcal G, \exists p^{-1} \in \mathcal G \text{ such that } p^{-1}\glaw p = I&\text{(inverse) }\ \\
\text{ The maps} (p, r) \rightarrow p\glaw r \text{ and } p \rightarrow p^{-1} \text{are smooth functions }&\text{(smoothness)}\
\end{array}
\end{equation}
\end{definition}
\begin{definition}[Lie algebra $\mathfrak g $ of a Lie group $\mathcal G$]
The Lie algebra $\mathfrak g$ of a Lie group $\mathcal G$ is defined as the linear space of all tangents to $G$ at the identity $I$. The Lie bracket in $\mathfrak g$ is defined as
\begin{equation}
[a,b]= \left.\frac{\partial^2 }{\partial s\partial t} \rho(s)\sigma(t)\rho(-s)\right|_{s=t=0}\label{eq:21}
\end{equation}
where $\rho(s)$ and $\sigma(t)$ are two smooth curves on $\mathcal G$ such that $\rho(0) = \sigma(0) = I$, and
$\dot \rho(0) = a$ and $\dot \sigma(0) = b$.
\end{definition}
\subsection{Actions of a group $\mathcal G$ on manifold $\mathcal M$}
\begin{definition}
A left action of Lie Group $\mathcal G$ on a manifold $\mathcal M$ is a smooth map $\Lambda^l: \mathcal G \times \mathcal M \rightarrow \mathcal M$ satisfying
\begin{equation}
\label{eq:22}
\begin{array}[lcl]{rcl}
\Lambda^l(I,y) &=& y, \quad \forall y \in \mathcal M \\
\Lambda^l(p,\Lambda(r,y)) &=& \Lambda^l(p\glaw r, y) , \quad \forall p,r \in \mathcal G,\quad \forall y \in \mathcal M .
\end{array}
\end{equation}
\end{definition}
\begin{definition}
A right action of Lie Group $\mathcal G$ on a manifold $\mathcal M$ is a smooth map $\Lambda^r: \mathcal M \times \mathcal G \rightarrow \mathcal M$ satisfying
\begin{equation}
\label{eq:23}
\begin{array}[lcl]{rcl}
\Lambda^r(y,I) &=& y, \quad \forall y \in \mathcal M \\
\Lambda^r(\Lambda(y,r), p) &=& \Lambda^r(y, r\glaw p) , \quad \forall p,r \in \mathcal G,\quad \forall y \in \mathcal M .
\end{array}
\end{equation}
\end{definition}
A given smooth curve $S(\cdot) : t\in \RR \mapsto S(t)\in \mathcal G$ in $\mathcal G$ such that $S(0)= I$ produces a flow $\Lambda^l(S(t),\cdot)$ (resp. $\Lambda^r(\cdot, S(t))$) on $\mathcal M$ and by differentiation we find a tangent vector field
\begin{equation}
\label{eq:24}
F(y) = \left. \frac{d}{dt} (\Lambda^l(S(t),y) \right|_{t=0}\quad( \text{resp. } F(y) = \left. \frac{d}{dt} (\Lambda^r(y,S(t)) \right|_{t=0} )
\end{equation}
that defines a ordinary differential equation on a Lie Group
\begin{equation}
\label{eq:25}
\dot y(t) = F(y(t)) = \left. \frac{d}{dt} (\Lambda^l(S(t),y) \right|_{t=0} \quad( \text{resp. }\dot y(t) = F(y(t)) = \left. \frac{d}{dt} (\Lambda^r(y,S(t)) \right|_{t=0})
\end{equation}
\begin{lemma}
Let $\lambda^l_{*} : \mathfrak g \rightarrow \mathcal X(\mathcal M) $ (resp. $\lambda^r_{*} : \mathfrak g \rightarrow \mathcal X(\mathcal M) $ be defined as
\begin{equation}
\lambda^l_{*}(a)(y) = \left.\frac{d}{ds}{ \Lambda^l (\rho(s), y)}\right|_{s=0} \quad (\text{ resp. } \lambda^r_{*}(a)(y) = \left.\frac{d}{ds}{ \Lambda^r (y, \rho(s))}\right|_{s=0})\label{eq:26}
\end{equation}
where $\rho(s)$ is a curve in $\mathcal G$ such that $\rho(0)=I$ and $\dot\rho (0)=a$. Then $\lambda^l_{8}$ is a linear
map between Lie algebras such that
\begin{equation}
[a, b]_{\mathfrak g} = [\lambda^l_{*}(a), \lambda^l_{*}(b)]_{\mathcal X(\mathcal M)}.\label{eq:27}
\end{equation}
\end{lemma}
The following product between an element of an algebra $a \in \mathfrak g$ with an element of a group $\sigma \in \mathcal G$
can be defined. This will served as a basis for defining the exponential map.
\begin{definition}
We define the left product $(\cdot, \cdot)^l : \mathfrak g \times \mathcal G \rightarrow \mathcal G$ of an element of an algebra $a \in \mathfrak g$ with an element of a group $\sigma \in \mathcal G$ as
\begin{equation}
(a, \sigma)^l = a \cdot \sigma = \left.\frac{d}{ds} \rho(s) \glaw \sigma \right|_{s=0}\label{eq:28}
\end{equation}
where $\rho(s)$ is a smooth curve such that $\dot\rho(0)=a$ and $\rho(0)=I$. In the same way, we can define the right product $(\cdot, \cdot)^r : \mathcal G \times \mathfrak g \rightarrow \mathcal G$
\begin{equation}
\label{eq:29}
(\sigma,a)^r = \sigma \cdot a = \left.\frac{d}{ds} \sigma \glaw \rho(s) \right|_{s=0}
\end{equation}
\end{definition}
\subsection{Exponential map}
\begin{definition}
Let $\mathcal G$ be a Lie group and $\mathfrak g$ its Lie algebra. The exponential mapping $exp : \mathfrak g \rightarrow \mathcal G$ is defined as $\exp(a) = \sigma(1)$ where $\sigma (t)$ satisfies the differential equation
\begin{equation}
\dot \sigma(t) = a \cdot \sigma(t), \quad \sigma (0) = I.\label{eq:30}
\end{equation}
\end{definition}
Let us define $a^k$ as
\begin{equation}
\label{eq:31}
\left\{\begin{array}[l]{l}
a^k = \underbrace{a\glaw a \glaw \ldots a\glaw a}_{k \text{ times}} \text{ for } k \geq 1 \\
a^0 = I
\end{array}\right.
\end{equation}
The exponential map can be expressed as
\begin{equation}
\label{eq:32}
\exp(at) = \sum_{k=0}^\infty \frac{(ta)^k}{k!}
\end{equation}
since it is a solution of \eqref{eq:30}. A simple computation allows to check this claim:
\begin{equation}
\label{eq:33}
\frac{d}{dt}\exp(at) = \sum_{k=1}^\infty k t^{k-1} \frac{a^k}{k!} = a \glaw \sum_{k=0}^\infty t^{k} \frac{a^k}{k!} = a \glaw \exp(at).
\end{equation}
A similar computation gives
\begin{equation}
\label{eq:34}
\frac{d}{dt}\exp(at) = \sum_{k=0}^\infty t^{k} \frac{a^k}{k!} \glaw a = \exp(at) \glaw a.
\end{equation}
The exponential mapping $exp : \mathfrak g \rightarrow \mathcal G$ can also be defined as $\exp(a) = \sigma(1)$ where $\sigma (t)$ satisfies the differential equation
\begin{equation}
\label{eq:35}
\dot \sigma(t) = \sigma(t) \cdot a, \quad \sigma (0) = I.
\end{equation}
\begin{theorem}
\label{Theorem:solutionofLieODE}
Let $\Lambda^l:\mathcal G\times\mathcal M \rightarrow \mathcal M$ be a left group action and $\lambda^l_{∗} : \mathfrak g\rightarrow \mathcal X(\mathcal M)$ the corresponding Lie algebra homomorphism. For any $a \in \mathfrak g$ the flow of the vector field $F = \lambda^l_{a}(a)$, i.e. the solution of the equation
\begin{equation}
\dot y(t) = F(y(t)) = \lambda^l_{*}(a)(y(t)),\quad t \geq 0, y(0) = y_0 \in \mathcal M,\label{eq:36}
\end{equation}
is given as
\begin{equation}
y(t) = \Lambda^l(\exp(ta), y_0).\label{eq:37}
\end{equation}
Let $\Lambda^r:\mathcal M\times\mathcal G \rightarrow \mathcal M$ be a right group action and $\lambda^r_{∗} : \mathfrak g\rightarrow \mathcal X(\mathcal M)$ the corresponding Lie algebra homomorphism. For any $a \in \mathfrak g$ the flow of the vector field $F = \lambda^r_{*}(a)$, i.e. the solution of the equation
\begin{equation}
\dot y(t) = F(y(t)) = \lambda^r_{*}(a)(y(t)),\quad t \geq 0, y(0) = y_0 \in \mathcal M,\label{eq:38}
\end{equation}
is given as
\begin{equation}
y(t) = \Lambda^r(y_0,\exp(ta)).\label{eq:39}
\end{equation}
\end{theorem}
\subsection{Translation (Trivialization) maps}
The left and right translation maps defined by
\begin{equation}
\label{eq:148}
\begin{array}{rcl}
L_z : \mathcal G \times \mathcal G &\rightarrow& \mathcal G \quad \text{ (left translation map )} \\
y &\mapsto& z \glaw y
\end{array}
\end{equation}
and
\begin{equation}
\label{eq:149}
\begin{array}{rcl}
R_z(y) : \mathcal G \times \mathcal G & \rightarrow& \mathcal G \quad \text{ (right translation map )} \\
y &\mapsto& y \glaw z
\end{array}
\end{equation}
If we identify the manifold $\mathcal M$ with the group $\mathcal G$, The left and right translations can be interpreted as the simplest example of group action on the manifold. Note that the left translation map can be viewed as a left or right action on the group.
If we consider $L_z(y)$ as a right group action $ L_z(y) = \Lambda^r( z, y) =z \glaw y $, by differentiation we get a $L'_z : T \mathfrak g \cong \mathfrak g \rightarrow T_z\mathcal G$ with $\dot\rho (0)=a$ such that
\begin{equation}
\label{eq:150}
\lambda^r_{*}(a)(z) = L'_z(a) = \left.\frac{d}{ds}{ \Lambda^r (z, \rho(s))}\right|_{s=0} = z \glaw a
\end{equation}
The map
\begin{equation}
\label{eq:152}
\begin{array}{rcl}
L'_z : \mathfrak g &\rightarrow& T_z\mathcal G \\
a &\mapsto& z \glaw a
\end{array}
\end{equation}
determines an isomorphism of $\mathfrak g$ with the tangent space $T_z\mathcal G$. In other words, the tangent space can be identified to $\mathfrak g$ as
\begin{equation}
\label{eq:153}
T_z\mathcal G =\{L'_z(a) = z \glaw a \mid a \in \mathfrak g \}
\end{equation}
Respectively, if we consider $R_z(y)$ as a left group action $ R_z(y) = \Lambda^l( y, z) =y \glaw z $, by differentiation we get a $R'_z : T \mathfrak g \cong \mathfrak g \rightarrow T_z\mathcal G$ with $\dot\rho (0)=a$ such that
\begin{equation}
\label{eq:150}
\lambda^l_{*}(a)(z) = R'_z(a) = \left.\frac{d}{ds}{ \Lambda^l (\rho(s),z)}\right|_{s=0} = a \glaw z
\end{equation}
The map
\begin{equation}
\label{eq:152}
\begin{array}{rcl}
R'_z : \mathfrak g &\rightarrow& T_z\mathcal G \\
a &\mapsto& a \glaw z
\end{array}
\end{equation}
determines an isomorphism of $\mathfrak g$ with the tangent space $T_z\mathcal G$. In other words, the tangent space can be identified to $\mathfrak g$ as
\begin{equation}
\label{eq:153}
T_z\mathcal G =\{R'_z(a) = a \glaw z \mid a \in \mathfrak g \}
\end{equation}
Any tangent vector $F : \mathcal G \rightarrow T_z\mathcal G$ can be written in either of the forms
\begin{equation}
\label{eq:155}
F(z) = L'_z(f(a)) = R'_z(g(z))
\end{equation}
where $f,g \mathcal G \rightarrow \mathfrak g$.
\subsection{Adjoint representation}
\begin{definition}
Let $p \in \mathcal G$ and let $\sigma (t)$ be a smooth curve on $\mathcal G$ such that $\sigma (0)$ = I and $\dot \sigma(0) = b \in \mathfrak g$. The adjoint representation is defined as
\begin{equation}
\Ad_p(b) =\left. \frac{d}{dt} p\sigma(t)p^{-1}\right|_{t=0}\label{eq:40}
\end{equation}
The derivative of $\Ad$ with respect to the first argument is denoted $\ad$. Let $\rho(s)$ be a smooth curve on $\mathcal G$ such that $\rho(0) = I$ and $\dot \rho(0) = a$, it yields:
\begin{equation}
\label{eq:41}
\ad_a(b) = \left.\frac{d}{ds} \Ad_{\rho(s)}(b)\right|_{s=0} = [a, b]
\end{equation}
\end{definition}
The adjoint representation can also be expressed with the map
\begin{equation}
\label{eq:154}
\Ad_p(b) = (L_p \glaw R_{p^{-1}})' (b) = (L'_p \glaw R'_{p^{-1}}) (b) = p \glaw b \glaw p^{-1}
\end{equation}
For a tangent vector given in~\eqref{eq:155}, we have
\begin{equation}
\label{eq:151}
g(z) = Ad_z(f(z))
\end{equation}
Another important relation relating $\Ad$, $\ad$ and $\exp$ is
\begin{equation}
\label{eq:164}
\Ad_{\exp(a)} =\exp{\ad_a}
\end{equation}
\subsection{Differential of the exponential map} There are multiple ways to represent the differential of $\exp(\cdot)$ at a point $a\in \mathfrak g$. Let us start by the following definition of the differential map at $a\in\mathfrak g$
\begin{equation}
\label{eq:147}
\begin{array}{lcl}
\exp_a' & : & \mathfrak g \rightarrow T_{exp(a)}\mathcal G\\
& & v \mapsto \exp'_a(v) = \left.\frac{d}{dt} \exp(a+tv)\right|_{t=0}
\end{array}
\end{equation}
The definition is very similar to the definition of the directional derivative of $\exp$ in the direction $v \in \mathfrak g$ at a point $a\in\mathfrak g$. Using the expression \eqref{eq:153} of the tangent space at $\exp(a)$, we can defined another expression of the differential map denoted as $\dlexp_a : \mathfrak g \rightarrow \mathfrak g$ such that
\begin{equation}
\label{eq:156}
\dlexp_a = L'_{\exp^{-1}(a)} \glaw \exp_a' = L'_{\exp(-a)} \glaw \exp_a'
\end{equation}
This expression appears as a trivialization of the differential map $\exp'_a$. Using the expression of $L'_z$ in \eqref{eq:152}.
In~\cite[Theorem 2.14.13]{Varadarajan_book1984}, an explicit formula relates $\dlexp_{a}$ to the iteration of the adjoint operator:
\begin{equation}
\label{eq:43}
\dlexp_a(b) = \sum_{k=0}^\infty \frac{(-1)^k}{(k+1)!} (\ad_a(b))^k \coloneqq \frac{e - \exp\glaw\ad_a}{\ad_a}(b)
\end{equation}
where $(\ad_a)^k$ is the kth iteration of the adjoint operator:
\begin{equation}
\label{eq:44}
\left\{\begin{array}[l]{l}
(\ad_a)^k(b) = \underbrace{[a, [ a, [ \ldots, a, [ a, b]]]}_{k \text{ times}} \text{ for } k \geq 1 \\
(\ad_a)^0(b) = b
\end{array}\right.
\end{equation}
It is also possible to define the right trivialized differential of the exponential map
\begin{equation}
\label{eq:162}
\drexp_a = R'_{\exp^{-1}(a)} \glaw \exp_a' = R'_{\exp(-a)} \glaw \exp_a'
\end{equation}
that is
\begin{equation}
\label{eq:163}
\drexp_a(b) = \exp'_a(b) \glaw \exp(-a)
\end{equation}
With these expression, we have equivalently for
\begin{equation}
\label{eq:157}
\exp_a'(b) = \exp_a \glaw \dlexp_a(b)\quad \text{ and } \exp_a'(b) = \drexp_a(b) \glaw \exp(a)
\end{equation}
To avoid to burden to much the notation, we introduced the unified definition of the differential map that corresponds to $\dexp=\drexp$
\begin{definition}
The differential of the exponential mapping, denoted by $\dexp_a : \mathfrak g \times \mathfrak g \rightarrow \mathfrak g$ is defined as the ``right trivialized'' tangent of the exponential map
\begin{equation}
\label{eq:42}
\frac{d}{dt} (\exp(a(t))) = \dexp_{a(t)}(a'(t)) \exp(a(t))
\end{equation}
\end{definition}
An explicit formula relates $\dexp_{a}$ to the iteration of the adjoint operator:
\begin{equation}
\label{eq:43}
\dexp_a(b) = \sum_{k=0}^\infty \frac{1}{(k+1)!} (\ad_a(b))^k \coloneqq \frac{\exp\glaw\ad_a-e}{\ad_a}(b)
\end{equation}
\begin{ndrva}
Say what is not the Jacobian in $\RR^4$
\end{ndrva}
As for $\Ad_a$ and $\ad_a$, the mapping $\dexp_{a}(b)$ is a linear mapping in its second argument for a fixed $a$. Using the relation~\eqref{eq:164}, we can also relate the right and the lest trivialization tangent
\begin{equation}
\label{eq:165}
\dlexp_a (b) = (\Ad_{\exp(a)} \glaw \dexp(a))(b) = (\exp(\ad_{-a}) \glaw \frac{e - \exp\glaw\ad_a}{\ad_a})(b) = \frac{e - \exp\glaw\ad_{-a}}{\ad_a}(b) = \dexp_{-a}(b)
\end{equation}
It is also possible to define the the ``left trivialized'' tangent of the exponential map
\begin{equation}
\label{eq:46}
\frac{d}{dt} (\exp(a(t))) = \exp(a(t)) \dlexp_{a(t)}(a'(t)) = \exp(a(t)) \dexp_{-a(t)}(a'(t))
\end{equation}
\begin{ndrva}
other notation and Lie derivative
\begin{equation}
\label{eq:178}
Df \cdot \widehat \Omega (p) = (\widehat \Omega^r f )(p)
\end{equation}
\end{ndrva}
\paragraph{Inverse of the exponential map}
The function $\dexp_{a}$ is an analytical function so it possible to invert it to get
\begin{equation}
\label{eq:45}
\dexp^{-1}_{a} = \sum_{k=0}^\infty \frac{B_k}{(k)!} (\ad_a)^k(b)
\end{equation}
where $B_k$ are the Bernouilli number.
\subsection{Differential of a map $f : \mathcal G \rightarrow \mathfrak g$}
We follow the notation developed in~\cite{Owren.Welfert_BIT2000}. Let us first define the differential of the map $f : \mathcal G \rightarrow \mathfrak g$ as
\begin{equation}
\label{eq:166}
\begin{array}[rcl]{rcl}
f'_z : T_z\mathcal G &\rightarrow&T_{f(z)}\mathfrak g \cong \mathfrak g\\
b &\mapsto& \left.\frac{d}{dt} f(z\glaw \exp(t L'_{z^{-1}}(b))) \right|_{t=0}
\end{array}
\end{equation}
The image of $b$ by $f'_z$ is obtained by first identifying $b$ with an element of $v \in \mathfrak g$ thanks to the left representation of $T_{f(z)}\mathfrak g$ view the left translation map $v= t L'_z(b)$. The exponential mapping transforms $v$ an element $y$ of the Lie Group $\mathcal G$. Then $f'_z$ is obtained by
\begin{equation}
\label{eq:167}
f'_z(b) = \lim_{t\rightarrow 0} \frac{f(z\glaw y) - f(z)}{t}
\end{equation}
As we have done for the exponential mapping, it is possible to get a left trivialization of
\begin{equation}
\label{eq:169}
\dd f_z = (f\glaw L_z)' = f'_z \glaw L'_z
\end{equation}
thus
\begin{equation}
\label{eq:170}
\dd f_z (a) = f'_z \glaw L'_z(a) = f'_z(L'_z(a)) = \left.\frac{d}{dt} f(z\glaw \exp(t a )) \right|_{t=0}
\end{equation}
\paragraph{Newton Method}
Let us imagine that we want to solve $f(y) = 0 $ for $y \in \mathcal G$. A newton method can be written as
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "DevNotes"
%%% End:
|