1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
Due to the fact that two of the studied classes of systems that are studied in this paper are affine functions in terms of $f$ and $g$, we propose to solve the "one--step nonsmooth problem'' (\ref{eq:toto1}) by performing an external Newton linearization.
\paragraph{Newton's linearization of the first line of~(\ref{eq:toto1})} The first line of the problem~(\ref{eq:toto1}) can be written under the form of a residue $\mathcal R$ depending only on $x_{k+1}$ and $r_{k+1}$ such that
\begin{equation}
\label{eq:NL3}
\mathcal R (x_{k+1},r _{k+1}) =0
\end{equation}
with
\begin{equation}
\mathcal R(x,r) = M(x - x_{k}) -h\theta f( x , t_{k+1}) - h(1-\theta)f(x_k,t_k) - h\gamma r
- h(1-\gamma)r_k.
\end{equation}
The solution of this system of nonlinear equations is sought as a limit of the sequence $\{ x^{\alpha}_{k+1},r^{\alpha}_{k+1} \}_{\alpha \in \NN}$ such that
\begin{equation}
\label{eq:NL7}
\begin{cases}
x^{0}_{k+1} = x_k \\ \\
r^{0}_{k+1} = r_k \\ \\
\mathcal R_L( x^{\alpha+1}_{k+1},r^{\alpha+1}_{k+1}) = \mathcal
R(x^{\alpha}_{k+1},r^{\alpha}_{k+1}) + \left[ \nabla_{x} \mathcal
R(x^{\alpha}_{k+1},r^{\alpha}_{k+1})\right] (x^{\alpha+1}_{k+1}-x^{\alpha}_{k+1} ) +
\left[ \nabla_{r} \mathcal R(x^{\alpha}_{k+1},r^{\alpha}_{k+1})\right] (r^{\alpha+1}_{k+1} - r^{\alpha}_{k+1} ) =0
\end{cases}
\end{equation}
\begin{ndrva}
What about $r^0_{k+1}$ ?
\end{ndrva}
The residu \free $\mathcal R _{\free}$ is also defined (useful for implementation only):
\[\mathcal R _{\free}(x) \stackrel{\Delta}{=} M(x - x_{k}) -h\theta f( x , t_{k+1}) - h(1-\theta)f(x_k,t_k),\]
which yields
\[\mathcal R (x,r) = \mathcal R _{\free}(x) - h\gamma r - h(1-\gamma)r_k.\]
\begin{equation}
\mathcal R (x^{\alpha}_{k+1},r^{\alpha}_{k+1}) = \fbox{$\mathcal R^{\alpha}_{k+1} \stackrel{\Delta}{=} \mathcal R
_{\free}(x^{\alpha}_{k+1}) - h\gamma r^{\alpha}_{k+1} - h(1-\gamma)r_k$}\label{eq:rfree-1}
\end{equation}
\[ \mathcal R
_{\free}(x^{\alpha}_{k+1},r^{\alpha}_{k+1} )=\fbox{$ \mathcal R _{\free, k+1} ^{\alpha} \stackrel{\Delta}{=} M(x^{\alpha}_{k+1} - x_{k}) -h\theta f( x^{\alpha}_{k+1} , t_{k+1}) - h(1-\theta)f(x_k,t_k)$}\]
% The computation of the Jacobian of $\mathcal R$ with respect to $x$, denoted by $ W^{\alpha}_{k+1}$ leads to
% \begin{equation}
% \label{eq:NL9}
% \begin{array}{l}
% W^{\alpha}_{k+1} \stackrel{\Delta}{=} \nabla_{x} \mathcal R (x^{\alpha}_{k+1},r^{\alpha}_{k+1})= M - h \theta \nabla_{x} f( x^{\alpha}_{k+1}, t_{k+1} ).\\
% \end{array}
% \end{equation}
At each time--step, we have to solve the following linearized problem,
\begin{equation}
\label{eq:NL10}
\mathcal R^{\alpha}_{k+1} + (M-h\theta A ^{\alpha}_{k+1}) (x^{\alpha+1}_{k+1} -
x^{\alpha}_{k+1}) - h \gamma (r^{\alpha+1}_{k+1} - r^{\alpha}_{k+1} ) =0 ,
\end{equation}
with
\begin{equation}
\begin{array}{l}
A^{\alpha}_{k+1} = \nabla_x f(t_{k+1}, x^{\alpha}_{k+1})
\end{array}
\end{equation}
By using (\ref{eq:rfree-1}), we get
\begin{equation}
\label{eq:rfree-2}
\mathcal R
_{\free}(x^{\alpha}_{k+1},r^{\alpha}_{k+1} ) - h\gamma r^{\alpha+1}_{k+1} - h(1-\gamma)r_k + (M-h\theta A^{\alpha}_{k+1}) (x^{\alpha+1}_{k+1} -
x^{\alpha}_{k+1}) =0
\end{equation}
% %\fbox
% {
% \begin{equation}
% \label{eq:rfree-11}
% \boxed{ x^{\alpha+1}_{k+1} = h\gamma (W^{\alpha}_{k+1})^{-1}r^{\alpha+1}_{k+1} +x^\alpha_{\free}}
% \end{equation}
% }
% with :
% \begin{equation}
% \label{eq:rfree-12}
% \boxed{x^\alpha_{\free}\stackrel{\Delta}{=}x^{\alpha}_{k+1}-(W^{\alpha}_{k+1})^{-1}\mathcal (R_{\free,k+1}^{\alpha} \textcolor{red}{- h(1-\gamma) r_k})}
% \end{equation}
The matrix $W$ is clearly non singular for small $h$.
% that is
% \begin{equation}
% \begin{array}{l}
% h \gamma r^{\alpha+1}_{k+1} = r_c + W^{\alpha}_{k+1} x^{\alpha+1}_{k+1}
% .\label{eq:NL11}
% \end{array}
% \end{equation}
% with
% \begin{equation}
% \begin{array}{l}
% r_c \stackrel{\Delta}{=} h \gamma r^{\alpha}_{k+1} - W^{\alpha}_{k+1} x^{\alpha}_{k+1} + \mathcal R
% ^{\alpha}_{k+1}=- W^{\alpha}_{k+1} x^{\alpha}_{k+1} + \mathcal R_{\free k+1} ^{\alpha} - h(1-\gamma)r_k\\ \\
% \end{array}
% \end{equation}
% \begin{equation}
% \begin{array}{l}
% \mathcal R ^{\alpha}_{k+1}=M( x^{\alpha}_{k+1} - x_k) -h \theta f(x^{\alpha}_{k+1})-h(1-\theta)f(x_k)
% - h \gamma r^{\alpha}_{k+1} -h(1- \gamma)r_k
% \end{array}
% \end{equation}
% \[x^{\alpha+1}_{k+1} = h(W^{\alpha}_{k+1})^{-1}r^{\alpha+1}_{k+1} +(W^{\alpha}_{k+1})^{-1}(\mathcal
% R_{\free k+1} ^{\alpha})+x^{\alpha}_{k+1}\]
\paragraph{Newton's linearization of the second line of~(\ref{eq:toto1})}
The same operation is performed with the second equation of (\ref{eq:toto1})
\begin{equation}
\begin{array}{l}
\mathcal R_y(x,y,\lambda)=y-h(t_{k+1},x,\lambda) =0\\ \\
\end{array}
\end{equation}
which is linearized as
\begin{equation}
\label{eq:NL9}
\begin{array}{l}
\mathcal R_{Ly}(x^{\alpha+1}_{k+1},y^{\alpha+1}_{k+1},\lambda^{\alpha+1}_{k+1}) = \mathcal
R_{y}(x^{\alpha}_{k+1},y^{\alpha}_{k+1},\lambda^{\alpha}_{k+1}) +
(y^{\alpha+1}_{k+1}-y^{\alpha}_{k+1})- \\[2mm] \qquad \qquad \qquad \qquad \qquad \qquad
C^{\alpha}_{k+1}(x^{\alpha+1}_{k+1}-x^{\alpha}_{k+1}) - D^{\alpha}_{k+1}(\lambda^{\alpha+1}_{k+1}-\lambda^{\alpha}_{k+1})=0
\end{array}
\end{equation}
This leads to the following linear equation
\begin{equation}
\boxed{y^{\alpha+1}_{k+1} = y^{\alpha}_{k+1}
-\mathcal R^{\alpha}_{yk+1}+ \\
C^{\alpha}_{k+1}(x^{\alpha+1}_{k+1}-x^{\alpha}_{k+1}) +
D^{\alpha}_{k+1}(\lambda^{\alpha+1}_{k+1}-\lambda^{\alpha}_{k+1})}. \label{eq:NL11y}
\end{equation}
with,
\begin{equation}
\begin{array}{l}
C^{\alpha}_{k+1} = \nabla_xh(t_{k+1}, x^{\alpha}_{k+1},\lambda^{\alpha}_{k+1} ) \\ \\
D^{\alpha}_{k+1} = \nabla_{\lambda}h(t_{k+1}, x^{\alpha}_{k+1},\lambda^{\alpha}_{k+1})
\end{array}
\end{equation}
and
\begin{equation}\fbox{$
\mathcal R^{\alpha}_{yk+1} \stackrel{\Delta}{=} y^{\alpha}_{k+1} - h(x^{\alpha}_{k+1},\lambda^{\alpha}_{k+1})$}
\end{equation}
\paragraph{Newton's linearization of the third line of~(\ref{eq:toto1})}
The same operation is performed with the third equation of (\ref{eq:toto1})
\begin{equation}
\begin{array}{l}
\mathcal R_r(r,x,\lambda)=r-g(t_{k+1},x,\lambda) =0\\ \\ \end{array}
\end{equation}
which is linearized as
\begin{equation}
\label{eq:NL9}
\begin{array}{l}
\mathcal R_{Lr}(r^{\alpha+1}_{k+1},x^{\alpha+1}_{k+1},\lambda^{\alpha+1}_{k+1}) = \mathcal
R_{rk+1}^{\alpha} + (r^{\alpha+1}_{k+1} - r^{\alpha}_{k+1}) -
K^{\alpha}_{k+1}(x^{\alpha+1}_{k+1} - x^{\alpha}_{k+1})- B^{\alpha}_{k+1}(\lambda^{\alpha+1}_{k+1} -
\lambda^{\alpha}_{k+1})=0
\end{array}
\end{equation}
\begin{equation}
\label{eq:rrL}
\begin{array}{l}
\boxed{r^{\alpha+1}_{k+1} = g(t_{k+1},x ^{\alpha}_{k+1},\lambda ^{\alpha}_{k+1}) +
K^{\alpha}_{k+1}(x^{\alpha+1}_{k+1} - x^{\alpha}_{k+1})
+ B^{\alpha}_{k+1}(\lambda^{\alpha+1}_{k+1} - \lambda^{\alpha}_{k+1})
}
\end{array}
\end{equation}
with,
\begin{equation}
\begin{array}{l}
K^{\alpha}_{k+1} = \nabla_xg(t_{k+1},x^{\alpha}_{k+1},\lambda ^{\alpha}_{k+1}) \\ \\
B^{\alpha}_{k+1} = \nabla_{\lambda}g(t_{k+1},x^{\alpha}_{k+1},\lambda ^{\alpha}_{k+1})
\end{array}
\end{equation}
and the residue for $r$:
\begin{equation}
\boxed{\mathcal
R_{rk+1}^{\alpha} = r^{\alpha}_{k+1} - g(t_{k+1},x^{\alpha}_{k+1},\lambda ^{\alpha}_{k+1})}
\end{equation}
\paragraph{Reduction to a linear relation between $x^{\alpha+1}_{k+1}$ and $\lambda^{\alpha+1}_{k+1}$}
Inserting (\ref{eq:rrL}) into~(\ref{eq:rfree-2}), we get the following linear relation between $x^{\alpha+1}_{k+1}$ and
$\lambda^{\alpha+1}_{k+1}$,
\begin{equation}
\label{eq:rfree-3}
\begin{array}{l}
\mathcal R^{\alpha}_{\free, k+1} - h\gamma\left[ g(t_{k+1},x^{\alpha}_{k+1},\lambda^{\alpha}_{k+1}) +
B^{\alpha}_{k+1} (\lambda^{\alpha+1}_{k+1} - \lambda^{\alpha}_{k+1})+K^{\alpha}_{k+1}
(x^{\alpha+1}_{k+1} - x^{\alpha}_{k+1}) \right] \\
\quad\quad - h(1-\gamma)r_k + (M-h\theta A^{\alpha}_{k+1}) (x^{\alpha+1}_{k+1} -
x^{\alpha}_{k+1}) =0
\end{array}
\end{equation}
that is
\begin{equation}
\label{eq:rfree-4}
\begin{array}[l]{lcl}
(M-h\theta A^{\alpha}_{k+1}-h\gamma K^{\alpha}_{k+1}) (x^{\alpha+1}_{k+1} - x^{\alpha}_{k+1}) &=&
- \mathcal R^{\alpha}_{\free, k+1} -h(1-\gamma) r_k \\ & & + h\gamma \left[ g(t_{k+1},x^{\alpha}_{k+1},\lambda^{\alpha}_{k+1}) +
B^{\alpha}_{k+1} (\lambda^{\alpha+1}_{k+1} - \lambda^{\alpha}_{k+1}) \right]
\end{array}
\end{equation}
Let us introduce some intermediate notation:
\begin{equation}
\label{eq:NL9}
\begin{array}{l}
W^{\alpha}_{k+1} \stackrel{\Delta}{=} M-h\theta A^{\alpha}_{k+1}-h\gamma K^{\alpha}_{k+1})\\
\end{array}
\end{equation}
\begin{equation}
\label{eq:rfree-12}
\boxed{x^\alpha_{\free}\stackrel{\Delta}{=}x^{\alpha}_{k+1}-(W^{\alpha}_{k+1})^{-1}\mathcal (R_{\free,k+1}^{\alpha} \textcolor{red}{- h(1-\gamma) r_k})}
\end{equation}
and
\begin{equation}
\boxed{x^\alpha_p \stackrel{\Delta}{=} h\gamma(W^{\alpha}_{k+1} )^{-1}\left[g(t_{k+1},x^{\alpha}_{k+1},\lambda^{\alpha}_{k+1})
-B^{\alpha}_{k+1} (\lambda^{\alpha}_{k+1}) \right ] +x^\alpha_{\free}}.
\end{equation}
The relation (\ref{eq:rfree-4}) can be written as
\begin{equation}
\label{eq:rfree-13}
\begin{array}{l}
\boxed{ x^{\alpha+1}_{k+1}\stackrel{\Delta}{=} x^\alpha_p + \left[ h \gamma (W^{\alpha}_{k+1})^{-1} B^{\alpha}_{k+1} \lambda^{\alpha+1}_{k+1}\right]}
\end{array}
\end{equation}
\paragraph{Reduction to a linear relation between $y^{\alpha+1}_{k+1}$ and
$\lambda^{\alpha+1}_{k+1}$.}
Inserting (\ref{eq:rfree-13}) into (\ref{eq:NL11y}), we get the following linear relation between $y^{\alpha+1}_{k+1}$ and $\lambda^{\alpha+1}_{k+1}$,
\begin{equation}
\begin{array}{l}
y^{\alpha+1}_{k+1} = y_p + \left[ h \gamma C^{\alpha}_{k+1} ( W^{\alpha}_{k+1})^{-1} B^{\alpha}_{k+1} + D^{\alpha}_{k+1} \right]\lambda^{\alpha+1}_{k+1}
\end{array}
\end{equation}
with
\begin{equation}\boxed{
y_p = y^{\alpha}_{k+1} -\mathcal R^{\alpha}_{yk+1} + C^{\alpha}_{k+1}(x_q) - D^{\alpha}_{k+1} \lambda^{\alpha}_{k+1} }
\end{equation}
\textcolor{red}{
\begin{equation}
\boxed{ x_q=x^\alpha_p -x^{\alpha}_{k+1}\label{eq:xqq}}
\end{equation}
}
% \paragraph{With $\gamma =1$:}
% \[(W^{\alpha}_{k+1} )x^{\alpha+1}_{k+1}= hr^{\alpha+1}_{k+1}- \mathcal R_{\free, k+1} ^{\alpha}+W^{\alpha}_{k+1}x^{\alpha}_{k+1}\]
% \[x^{\alpha+1}_{k+1}= h( W^{\alpha}_{k+1})^{-1}r^{\alpha+1}_{k+1}-
% ( W^{\alpha}_{k+1})^{-1} \mathcal R_{\free k+1} ^{\alpha}+x^{\alpha}_{k+1}\]
% \[x^{\alpha+1}_{k+1}= h( W^{\alpha}_{k+1})^{-1}r^{\alpha+1}_{k+1}+x_{\free}\]
% with, using \ref{}
% \begin{equation}
% x_p-x^{\alpha}_{k+1}=h(
% W^{\alpha}_{k+1})^{-1}(g(x^{\alpha}_{k+1},\lambda^{\alpha}_{k+1},t_{k+1})-B^{\alpha}_{k+1}
% \lambda^{\alpha}_{k+1}-K^{\alpha}_{k+1} x^{\alpha}_{k}))+\tilde x_{\free}
% \end{equation}
% \[ \tilde x_{\free}= -( W^{\alpha}_{k+1})^{-1} \mathcal R _{\free k+1} ^{\alpha} \]
% \[x_{\free} = \tilde x_{\free} + x^{\alpha}_{k+1}=\fbox{$- W^{-1}R_{\free k+1} ^{\alpha} + x^{\alpha}_{k+1}$}\]
% \[ \fbox{$x_p = x_{\free} + h ( W^{\alpha}_{k+1})^{-1}( g(x ^{\alpha}_{k+1},\lambda ^{\alpha}_{k+1},t_{k+1}) -
% B^{\alpha}_{k+1} \lambda^{\alpha}_{k+1}-K^{\alpha}_{k+1} x^{\alpha}_{k+1} )$} \]
\paragraph{Mixed linear complementarity problem (MLCP)}To summarize, the problem to be solved in each Newton iteration is:\\{
\begin{minipage}[l]{1.0\linewidth}
\begin{equation}
\begin{cases}
\begin{array}[l]{l}
y^{\alpha+1}_{k+1} = W_{mlcpk+1}^{\alpha} \lambda^{\alpha+1}_{k+1} + b^{\alpha}_{k+1}
\\ \\
-y^{\alpha+1}_{k+1} \in N_{[l,u]}(\lambda^{\alpha+1}_{k+1} ).
\end{array}
\label{eq:NL14}
\end{cases}
\end{equation}
\end{minipage}
}
with $W_{mlcpk+1}\in \RR^{m\times m}$ and $b\in\RR^{m}$ defined by
\begin{equation}
\label{eq:NL15}
\begin{array}[l]{l}
W_{mlcpk+1}^{\alpha} = h \gamma C^{\alpha}_{k+1} (W^{\alpha}_{k+1})^{-1} B^{\alpha}_{k+1} + D^{\alpha}_{k+1} \\
b^{\alpha}_{k+1} = y_p
\end{array}
\end{equation}
The problem~(\ref{eq:NL14}) is equivalent to a Mixed Linear Complementarity Problem (MLCP) which can be solved under suitable assumptions by many linear complementarity solvers such as pivoting techniques, interior point techniques and splitting/projection strategies. The reformulation into a standard MLCP follows the same line as for the MCP in the previous section. One obtains,
\begin{equation}
\begin{array}[l]{l}
y^{\alpha+1}_{k+1} = - W^{\alpha}_{k+1} \lambda^{\alpha+1}_{k+1} + b^{\alpha}_{k+1}
\\ \\
(y^{\alpha+1}_{k+1})_i = 0 \qquad \textrm{ for } i \in \{ 1..n\}\\[2mm]
0 \leq (\lambda^{\alpha+1}_{k+1})_i\perp (y^{\alpha+1}_{k+1})_i \geq 0 \qquad \textrm{ for } i \in \{ n..n+m\}\\
\end{array}
\label{eq:MLCP1}
\end{equation}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "DevNotes"
%%% End:
|