File: NewtonEuler.tex

package info (click to toggle)
siconos 4.3.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 82,496 kB
  • sloc: cpp: 159,693; ansic: 108,665; fortran: 33,248; python: 20,709; xml: 1,244; sh: 385; makefile: 226
file content (1507 lines) | stat: -rw-r--r-- 64,433 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507



\begin{tabular}{lll}
  \centering
  Author &  O. Bonnefon &2010\\
  Revision& section \ref{Sec:NE_motion} to \ref{Sec:NE_TD} V. Acary&  05/09/2011\\
  Revision& section \ref{Sec:NE_motion}  V. Acary&  01/06/2016\\
  Revision& complete edition V. Acary&  06/01/2017\\

\end{tabular}

\def\glaw{\cdot}
\def\cg{\sf \small g}

\section{The equations of motion}


In the maximal coordinates framework, the most natural choice for the kinematic  variables and for the formulation of the equations of motion is the Newton/Euler formalism, where the equation of motion describes the translational and rotational dynamics of each body using a specific choice of parameters. For the translational motion, the position of the center of mass $x_{\cg}\in \RR^3$ and its velocity  $v_{\cg} = \dot x_{\cg} \in \RR^3$ is usually chosen. For the orientation of the body is usually defined by the rotation matrix $R$ of the body-fixed frame with respect to a given inertial frame.

For the rotational motion, a common choice is to choose the rotational velocity  $\Omega \in \RR^3$ of the body expressed in the body--fixed frame. This choice comes from the formulation of a rigid body motion of a point $X$ in the inertial frame as
\begin{equation}
  \label{eq:1}
  x(t) = \Phi(t,X) = x_{\cg}(t) + R(t) X.
\end{equation}
The velocity of this point can be written as
\begin{equation}
  \label{eq:2}
  \dot x(t) = v_{\cg}(t) + \dot R(t) X
\end{equation}
Since $R^\top R=I$, we get $R^\top \dot R + \dot R^\top R =0$. We can conclude that it exists a matrix $\tilde \Omega := R^\top \dot R $ such that $\tilde \Omega + \tilde \Omega^\top=0$, i.e. a skew symmetric matrix. The notation $\tilde \Omega$ comes from the fact that there is a bijection between the skew symmetric matrix in $\RR^{3\times3}$ and $\RR^3$ such that
\begin{equation}
  \label{eq:3}
  \tilde \Omega x  = \Omega \times x, \quad \forall x\in \RR^3.
\end{equation}
The rotational velocity is then related to the $R$ by :
\begin{equation}
  \label{eq:angularvelocity}
  \widetilde \Omega = R^\top \dot R, \text { or equivalently, } \dot R  = R \widetilde \Omega
\end{equation}

Using these coordinates, the equations of motion are given by 
\begin{equation}
  \label{eq:motion-NewtonEuler}
  \left\{\begin{array}{rcl}
      m \;\dot v_{\cg}  & = &f(t,x_{\cg}, v_{\cg},  R,  \Omega) \\
      I \dot \Omega + \Omega \times I \Omega &= & M(t,x_{\cg}, v_{\cg}, R, \Omega) \\
      \dot x_{\cg}&=& v_{\cg}\\
      \dot R  &=& R \widetilde \Omega
    \end{array}
  \right.
\end{equation}
where $m> 0$ is the mass, $I\in \RR^{3\times 3}$ is the matrix of moments of inertia around the center of mass and the axis of the body--fixed frame.

The vectors $f(\cdot)\in \RR^3$ and $M(\cdot)\in \RR^3$ are the total forces and torques applied to the body. It is important to outline that the total applied forces $f(\cdot)$ has to be expressed in a consistent frame w.r.t. to $v_{\cg}$. In our case, it hae to be expressed in the inertial frame. The same applies for the moment $M$ that has to be expressed in the body-fixed frame. If we consider a moment $m(\cdot)$ expressed in the inertial frame, then is has to be convected to  the body--fixed frame thanks to
\begin{equation}
  \label{eq:convected_moment}
  M (\cdot) =R^\top  m (\cdot)
\end{equation}


\begin{remark}
If we perform the time derivation of $RR^\top =I$ rather than $R^\top R=I$, we get $R \dot R^\top + \dot R R^\top =0$.  We can conclude that it exists a matrix $\tilde \omega := \dot R R^\top $ such that $\tilde \omega + \tilde \omega^\top=0$, i.e. a skew symmetric matrix. Clearly, we have
 \begin{equation}
   \label{eq:4}
   \tilde \omega = R \tilde \Omega R^\top
 \end{equation}
 and it can be proved that is equivalent to $ \omega =R \Omega$. The vector $\omega$ is the rotational velocity expressed in the inertial frame. The equation of motion can also be expressed in the inertial frame as follows
  \begin{equation}
  \label{eq:motion-NewtonEuler-inertial}
  \left\{\begin{array}{rcl}
      m \;\dot v_{\cg}  & = &f(t,x_{\cg}, v_{\cg},  R,  R^T \omega) \\
      J(R) \dot \omega + \omega \times J(R) \omega &= & m(t,x_{\cg}, v_{\cg}, R, \omega) \\
      \dot x_{\cg}&=& v_{\cg}\\
      \dot R  &=& \widetilde \omega R
    \end{array}
  \right.
\end{equation}
where the matrix $J(R) = R I R^T$ is the inertia matrix in the inertial frame.
Defining the angular momentum with respect to the inertial frame as
\begin{equation}
  \label{eq:1}
  \pi(t) = J(R(t)) \omega(t)
\end{equation}
the equation of the angular motion is derived from the balance equation of the angular momentum
\begin{equation}
  \label{eq:5}
  \dot \pi(t) = m(t,x_{\cg}, v_{\cg}, R, \omega)).
\end{equation}

\end{remark}

For a given constant (time invariant) $\tilde \Omega$, let us consider the differential equation
\begin{equation}
  \label{eq:5}
  \begin{cases}
    \dot R(t) = R \tilde \Omega\\
    R(0) = I
  \end{cases}
\end{equation}
Let us recall the definition of the matrix exponential,
\begin{equation}
  \label{eq:6}
  \exp(A) = \sum_{k=0}^{\infty} \frac {1}{k!} A^k
\end{equation}
A trivial solution of \eqref{eq:5} is $R(t) = \exp(t\tilde\Omega) $ since
\begin{equation}
  \label{eq:7}
  \frac {d}{dt}(\exp(At)) = \exp(At) A.
\end{equation}
More generally, with the initial condition $R(t_0)= R_0$, we get the solution
\begin{equation}
R(t) = R_0 \exp((t-t_0)\tilde\Omega)\label{eq:8}
\end{equation}

Another interpretation is as follows. From a (incremental) rotation vector, $\Omega$ and its associated matrix $\tilde \Omega$, we obtain a rotation matrix by the exponentation of $\tilde \Omega$:
\begin{equation}
  \label{eq:9}
  R = \exp(\tilde\Omega).
\end{equation}
Since we note that $\tilde \Omega^ 3 = - \theta^2 \tilde \Omega$ with $\theta = \|\Omega\|$, it is possible to get a closed form of the matrix exponential of $\tilde \Omega$
\begin{equation}
  \label{eq:10}
  \begin{array}[lcl]{lcl}
    \exp(\tilde \Omega) &=& \sum_{k=0}^{\infty} \frac {1}{k!} (\tilde \Omega)^k \\
                        &=&  I_{3\times 3} + \sum_{k=1}^{\infty} \frac {(-1)^{k-1}}{(2k-1)!}  \theta ^{2k-1} \tilde \Omega + (\sum_{k=0}^{\infty} \frac {(-1)^{k-1}}{(2k)!} \theta)^{2k-2} \tilde \Omega^2\\[2mm]
                        &=&  I_{3\times 3} + \frac{\sin{\theta}} {\theta} \tilde \Omega +  \frac{(\cos{\theta}-1)}{\theta^2}\tilde \Omega^2   
  \end{array} 
\end{equation}
that is
\begin{equation}
  \label{eq:11}
  R =  I_{3\times 3} + \frac{\sin{\theta}} {\theta} \tilde \Omega +  \frac{(\cos{\theta}-1)}{\theta^2}\tilde \Omega^2  
\end{equation}
The formula \eqref{eq:11} is the Euler--Rodrigues formula that allows to compute the rotation matrix on closed form.


\begin{ndrva}
  todo :
  \begin{itemize}
  \item add the formulation in the inertial frame of the Euler
    equation with $\omega =R \Omega$.
  \item Check that \eqref{eq:10} is the Euler-Rodrigues formula and not the Olinde Rodrigues formula. (division by $\theta$)
\end{itemize}

\end{ndrva}

In the numerical practice, the choice of the rotation matrix is not convenient since it introduces redundant parameters. Since $R$ must belong to $SO^+(3)$, we have also to satisfy $\det(R)=1$ and $R^{-1}=R^\top$. In general, we use a reduced vector of parameters $p\in\RR^{n_p}$ such $R = \Phi(p)$ and $\dot p = \psi(p)\Omega $. We denote  by $q$ the vector of coordinates of the position and the orientation of the body, and by $v$ {the body twist}:
\begin{equation}
  q \coloneqq \begin{bmatrix}
    x_{\cg}\\
    p
  \end{bmatrix},\quad 
  v \coloneqq \begin{bmatrix}
     v_{\cg}\\
     \Omega
   \end{bmatrix}.
 \end{equation}
 The relation between $v$ and the time derivative of $q$ is
\begin{equation}
  \label{eq:TT}
  \dot q = 
  \begin{bmatrix}
     \dot x_{\cg}\\
     \psi(p) \dot p
   \end{bmatrix}
   = 
   \begin{bmatrix}
     I & 0 \\
     0 & \psi(p)
   \end{bmatrix}
   v
   \coloneqq
   T(q) v
\end{equation}
with $T(q) \in \RR^{{3+n_p}\times 6}$.
{Note that the twist $v$ is not directly the time derivative of the coordinate vector as a major difference with Lagrangian systems. }

%
The Newton-Euler equation in compact form may be written as:
\begin{equation}
\label{eq:Newton-Euler-compact}
\boxed{ \left \{ 
 \begin{aligned}
  &\dot q=T(q)v, \\
  & M \dot v = F(t, q, v)
 \end{aligned}
 \right.}
\end{equation}
where $M\in\RR^{6\times6}$ is the total inertia matrix
\begin{equation}
  M:= \begin{pmatrix}
    m I_{3\times 3} & 0 \\
    0 & I 
  \end{pmatrix},
\end{equation}
and $F(t, q, v)\in \RR^6$ collects all the forces and torques applied to the body
\begin{equation}
  F(t,q,v):= \begin{pmatrix}
    f(t,x_{\cg},  v_{\cg}, R, \Omega ) \\
    I \Omega \times \Omega + M(t,x_{\cg}, v_{\cg}, R, \Omega )
  \end{pmatrix}.
\end{equation}
When a collection of bodies is considered, we will use the same notation as in~(\ref{eq:Newton-Euler-compact}) extending the definition of the variables $q,v$ and the operators $M,F$ in a straightforward way.




\input{LieGroupTheory.tex}
\section{ Lie group $SO(3)$ of finite rotations and Lie algebra $\mathfrak{so}(3)$ of infinitesimal rotations}
The presentation is this section follows the notation and the developments taken from~\cite{Iserles.ea_AN2000,Munthe-Kaas.BIT1998}. For more details on Lie groups and Lie algebra, we refer to \cite{Varadarajan_book1984} and \cite{Helgason_Book1978}.


The Lie group $SO(3)$ is the group of linear proper orthogonal transformations in $\RR^3$ that may be represented by a set of matrices in $\RR^{3\times 3}$ as
\begin{equation}
  \label{eq:47}
  SO(3) = \{R \in \RR^{3\times3}\mid R^TR=I , det(R) = +1  \}
\end{equation}
with the group law given by $R_1\glaw R_2 = R_1R_2$ for $R_1,R_2\in SO(3)$. The identity element is $e = I_{3\times 3}$. At any point of $R\in SO(3)$, the tangent space $T_RSO(3)$ is the set of tangent vectors at a point $R$.

\paragraph{Left representation of  the tangent space at $R$, $T_RSO(3)$ } Let $S(t)$ be a smooth curve $S(\cdot) : \RR  \rightarrow SO(3)$ in $SO(3)$. An element $a$ of the tangent space at $R$ is given by 
\begin{equation}
  \label{eq:174}
  a  = \left.\frac{d}{dt} S(t)\right|_{t=0}
\end{equation}
such that $S(0)= R$.
Since $S(t)\in SO(3)$, we have  $\frac{d}{dt} (S(t)) = \dot S(t)S^T(t) +  S(t) \dot S^T(t) =0$. At $t=0$, we get $a R^T +  R a^T =0$.
We conclude that it exists a skew--symmetric matrix $\tilde \Omega = R^T a$ such that $\tilde \Omega^T + \tilde \Omega =0$. Hence, a possible representation of  $T_RSO(3)$ is
\begin{equation}
  \label{eq:49}
  T_RSO(3) = \{ a = R \tilde \Omega \in \RR^{3\times 3} \mid \tilde \Omega^T + \tilde \Omega =0 \}.
\end{equation}
For $R=I$, the tangent space is directly given by the set of  skew--symmetric matrices:
\begin{equation}
  \label{eq:50}
  T_ISO(3) = \{ \tilde \Omega\in \RR^{3\times 3} \mid \tilde \Omega^T + \tilde \Omega =0 \}.
\end{equation}
The tangent space $T_ISO(3)$ with the Lie Bracket $[\cdot,\cdot]$ defined by the matrix commutator
\begin{equation}
  \label{eq:51}
  [A,B] = AB-BA
\end{equation}
is a Lie algebra that is denoted by
\begin{equation}
  \label{eq:53}
  \mathfrak{so}(3) =\{\Omega\in \RR^{3\times 3} \mid \Omega + \tilde \Omega^T =0\}.
\end{equation}
 For skew symmetric matrices, the commutator can be expressed with the cross product in $\RR^3$
\begin{equation}
  \label{eq:52}
  [\tilde \Omega, \tilde \Gamma] = \tilde \Omega \tilde \Gamma - \tilde \Gamma \tilde \Omega= \widetilde{\Omega \times \Gamma }
\end{equation}
We use   $T_ISO(3) \cong  \mathfrak{so}(3)$ whenever there is no ambiguity.

The notation $\tilde \Omega$ is implied by the fact that the Lie algebra is isomorphic to $\RR^3$ thanks to the operator $\widetilde{(\cdot)} :\RR^3 \rightarrow \mathfrak{so}(3)$ and defined by
\begin{equation}
  \label{eq:54}
 \widetilde{(\cdot)}: \Omega \mapsto \tilde \Omega =
  \begin{bmatrix}
    0 & -\Omega_3 & \Omega_2 \\
    \Omega_3 & 0 & -\Omega_1 \\
    -\Omega_2  & \Omega_1 & 0
  \end{bmatrix}
\end{equation}
Note that $\tilde \Omega x = \Omega \times x$.

\paragraph{ A special  (right)  action of Lie Group $\mathcal G$ on a manifold $\mathcal M$. } 

Let us come back to the representation of  $T_RSO(3)$ given in~\eqref{eq:49}. It is clear it can expressed with a representation that relies on $\mathfrak{so}(3)$
\begin{equation}
  \label{eq:58}
   T_RSO(3) = \{ a = R \tilde \Omega \in \RR^{3\times 3} \mid \tilde \Omega \in \mathfrak{so}(3) \}.
\end{equation}
With \eqref{eq:58}, we see that there is a linear map that relates $T_RSO(3)$ to  $\mathfrak{so}(3)$. This can be formalize by noting that the left translation map for a point $R \in SO(3)$ 
\begin{equation}
  \label{eq:59}
  \begin{array}[lcl]{rcl}
    L_R& :&   SO(3)  \rightarrow  SO(3)\\
       & &  S  \mapsto L_R(S) = R \glaw S = RS\\
  \end{array}
\end{equation}
which is diffeomorphism on $SO(3)$ is a group action. In our case, we identify the manifold and the group. Hence, the mapping $L_R$ can be viewed as a left or a right group action. We choose a right action such that $\Lambda^r(R,S) = L_{R}(S) =  R \glaw S $. By differentiation, we get a mapping $L'_R: T_I\mathfrak{so(3)} \cong \mathfrak{so(3)} \rightarrow T_R SO(3)$. For a given $\tilde\Omega \in \mathfrak{so(3)}$ and a point $R$, the differential $L'_R$ by computing the tangent vector field $\lambda^r_{*}(a)(R)$ of the group action  $\Lambda^r(R,S)$ for a smooth curve $S(t) : \RR \rightarrow S0(3)$ such that $\dot S(0) = \tilde\Omega$:
\begin{equation}
  \label{eq:60}
   \lambda^r_{*}(a)(R) \coloneqq  \left. \frac{d}{dt} \Lambda^r(R,S(t)) \right|_{t=0} = \left. \frac{d}{dt} L_{R}(S(t)) \right|_{t=0} =  \left. \frac{d}{dt} R \glaw S(t) \right|_{t=0} =  R \glaw \dot S(0) = R \tilde\Omega \in X(\mathcal M)
 \end{equation}
%
Therefore, the vector field in \eqref{eq:60} is a tangent vector field that defines a Lie-Type ordinary differential equation
\begin{equation}
  \label{eq:61}
  \dot R(t) = \lambda^r_{*}(a)(R(t)) = R(t)  \tilde \Omega
\end{equation}


In~\cite{Bruls.Cardona2010}, the linear operator $\lambda^r_{*}(a)$  is defined as  the directional derivative with respect to $S$ an denoted $DL_R(S)$. It defines a diffeomorphism between $T_SSO(3)$ and $T_{RS}SO(3)$. In particular, for $S=I_{3\times3}$, we get
\begin{equation}
  \label{eq:62}
  \begin{array}{rcl}
    DL_R(I_{3\times3}) : \mathfrak{so}(3) & \rightarrow & T_R SO(3) \\
    \tilde \Omega &\mapsto &DL_R(I_{3\times3}). \tilde \Omega = R \tilde \Omega
  \end{array}
\end{equation}
We end up with a possible representation of $T_{R} SO(3)$ as
\begin{equation}
  \label{eq:63}
  T_{R} SO(3) =\{\tilde \Omega_R \mid \tilde \Omega_R = DL_R(I_{3\times3}). \tilde \Omega = R \tilde \Omega, \tilde \Omega \in\mathfrak{so}(3)  \}.
\end{equation}
In other words, a tangent vector $\tilde \Omega \in \mathfrak{so}(3)$ defines a left invariant vector field on $SO(3)$ at the point $R$ given by $R \tilde \Omega$.




\begin{ndrva}
  what happens at $S(0)=R$, with $ a =R \tilde \Omega =\dot S(0)$ and then $\dot y(t) = F(y(t)) = R \tilde \Omega y(t) =  R\Omega \times y(t)= \dot S(0) y(t) $. What else ? 
\end{ndrva}


\paragraph{Exponential map $\expm \mathfrak{so(3)} \rightarrow SO(3)$}
The relations \eqref{eq:24} and \eqref{eq:25} shows that is possible to define tangent vector field from a group action. We can directly apply Theorem~\ref{Theorem:solutionofLieODE} and we get that the solution of
\begin{equation}
  \label{eq:130}
  \begin{cases}
  \dot R(t) = \lambda^r_{*}(a)(R(t)) = R(t)  \tilde \Omega \\
  R(0) = R_0
\end{cases}
\end{equation}
 is
\begin{equation}
  \label{eq:138}
  R(t) = R_0 \expm(t \tilde \Omega)
\end{equation}

Let us do the  computation in this case. Let us assume that the solution can be sought as $R(t) = \Lambda^r(y_o,S(t))$. The initial condition imposes that  $R(0) = R_0 = \Lambda(R_0,I) = \Lambda(R_0,S(0))$ that implies $S(0)=I$. Since $\Lambda(R_0,S(t))$ is the flow that is produces by $S(t)$ and let us try to find the relation satisfied by $S(\cdot)$. For a smooth curve $T(s) \in SO(3)$ such that $\dot T(0)= \tilde \Omega$, we have
\begin{equation}
  \label{eq:64}
  \begin{array}[lcl]{lcl}
    \dot R(t) = \lambda^r_*(\tilde \Omega)(R(t)) &=& \left. \frac{d}{ds}\Lambda^r(R(t),T(s)) \right|_{s=0} \\
                                &=& \left. \frac{d}{ds} \Lambda^r(\Lambda(R_0, S(t)),T(s)) \right|_{s=0} \\
                                &=& \left. \frac{d}{ds} (\Lambda^r(R_0, S(t)\glaw T(s)) \right|_{s=0} \\
                                &=& D_2 \Lambda^r(R_0, \glaw S(t) \glaw \dot T(0) ) \\
                                &=& D_2 \Lambda^r(R_0,  S(t)\glaw \tilde \Omega )
  \end{array}
\end{equation}
On the other side, the relation $y(t) = \Lambda^r(y_0,S(t))$ gives $\dot y(t) = D_2 \Lambda^r(y_0,S'(t))$ and we conclude that
\begin{equation}
  \label{eq:65}
  \begin{cases}
    \dot S(t) =  S(t)\glaw\tilde\Omega    = S(t) \tilde \Omega\\
    S(0) = I.
  \end{cases}
\end{equation}
The ordinary differential equation~\eqref{eq:65} is a matrix ODE that admits the following solution
\begin{equation}
  \label{eq:66}
  S(t) = \expm(t\tilde\Omega)
\end{equation}
where $\exp : \RR^{3\times 3} \rightarrow \RR^{3\times 3}$ is the matrix exponential defined by
\begin{equation}
  \label{eq:67}
  \begin{array}[lcl]{lcl}
    \expm(A) &=& \sum_{k=0}^{\infty} \frac {1}{k!} (A)^k.
  \end{array}
\end{equation}
We conclude that $R(t) =\Lambda(R_0,S(t)) = R_0\expm(t\tilde\Omega)$ is the solution of \eqref{eq:35}.

We can use the closed form solution for the matrix exponential of $t \tilde\Omega  \in \mathfrak{so}(3)$ as
\begin{equation}
  \label{eq:68}
  \expm(t\tilde\Omega) = I_{3\times 3} + \frac{\sin{t\theta}} {\theta}  \tilde\Omega  +  \frac{(\cos{t \theta}-1)}{\theta^2} \tilde\Omega^2   
\end{equation}
with $\theta = \|\Omega\|$.
For given  $\tilde \Omega \in\mathfrak{so}(3)$, we have
\begin{equation}
  \label{eq:69}
  \det(\tilde \Omega) = \det(\tilde \Omega^T) = \det (-\tilde \Omega^T) = (-1)^3 \det(\tilde \Omega ) = - \det (\tilde \Omega )
\end{equation}
that implies that $\det(\tilde \Omega ) =0 $. From \eqref{eq:68}, we conclude that
\begin{equation}
  \label{eq:70}
  \det( \expm(t\tilde \Omega)) = 1.
\end{equation}
Furthermore, we have $\expm(t\tilde \Omega)\expm( -t\tilde \Omega) = \expm(t(\tilde \Omega-\tilde \Omega)) = I$. We can verify  that  $\expm(t\tilde \Omega) \in SO(3)$.

\paragraph{Adjoint representation}
In the case of $SO(3)$, the definition of the operator $\Ad$ gives
\begin{equation}
  \label{eq:121}
  \Ad_R(\tilde\Omega)  = R \tilde\Omega R^T
\end{equation}
 and then mapping $\ad_{\tilde\Omega}(\tilde \Gamma)$ is defined by
\begin{equation}
  \label{eq:56}
  \ad_{\tilde\Omega}(\tilde\Gamma) = \tilde \Omega \tilde\Gamma - \tilde \Gamma \tilde\Omega  =  [\tilde \Omega,\tilde \Gamma] = \widetilde{\Omega \times \Gamma}.
\end{equation}
Using the isomorphism between $\mathfrak so(3)$ and $\RR^3$, it possible the define the mapping $\ad_{\Omega}(\Gamma) : \RR^3\times\RR^3 \rightarrow \RR^3$ with the realization of the Lie algebra in $\RR^3$ as
\begin{equation}
  \label{eq:55}
  \ad_\Omega(\Gamma) = \tilde\Omega \Gamma = \Omega\times\Gamma
\end{equation}

\paragraph{Differential of the exponential map $\dexpm$}
The differential of the exponential mapping, denoted by $\dexpm$ is defined as the 'right trivialized' tangent of the exponential map 
\begin{equation}
  \label{eq:71}
  \frac{d}{dt} (\exp(\tilde \Omega(t))) = \dexp_{\tilde\Omega(t)}(\frac{d \tilde{\Omega}(t)}{dt}) \exp(\tilde\Omega(t))
\end{equation}



% \begin{ndrva}
%   explain briefly the notion of left-invariant vector field 
% \end{ndrva}
%\href{https://en.wikipedia.org/wiki/Lie_group}{https://en.wikipedia.org/wiki/Lie_group}
%Finally, the straight line $\alpha \tilde \Omega$ for $\Omega$ 

The differential of the exponential mapping, denoted by $\dexpm$ is defined as the 'left trivialized' tangent of the exponential map
\begin{equation}
  \label{eq:72}
   \frac{d}{dt} (\exp(\tilde \Omega(t))) = \dexp_{\tilde\Omega(t)}(\frac{d \tilde{\Omega}(t)}{dt}) \exp(\tilde\Omega(t))
\end{equation}

Using the formula~\eqref{eq:43} and the fact that $\ad_\Omega(\Gamma) = \Tilde\Omega \Gamma$, we can write the differential as
\begin{equation}
  \label{eq:122}
  \begin{array}{lcl}
    \dexp_{\tilde\Omega}(\tilde\Gamma) &=& \sum_{k=0}^\infty \frac{1}{(k+1)!} \ad_{\tilde \Omega}^k (\tilde\Gamma) \\
                                       &=& \sum_{k=0}^\infty \frac{1}{(k+1)!} \tilde\Omega^k \tilde \Gamma \\
  \end{array}
\end{equation}
Using again the fact that $\tilde\Omega^3 = -\theta^2 \tilde\Omega$, we get
\begin{equation}
  \label{eq:123}
   \begin{array}{lcl}
     \dexp_{\tilde\Omega} &=& \sum_{k=0}^\infty  \frac{1}{(k+1)!} \tilde\Omega^k \\
                          &=& I  + \sum_{k=0}^\infty  \frac{(-1)^k}{((2(k+1))!} \theta^{2k} \tilde\Omega + \sum_{k=0}^\infty  \frac{(-1)^k}{((2(k+1)+1)!} \theta^{2k} \tilde\Omega^2\\
  \end{array}
\end{equation}
Hence, we get
\begin{equation}
  \label{eq:124}
   \begin{array}{lcl}
     \dexp_{\tilde\Omega}  &=& I  + \frac{(1-\cos(\theta))}{\theta^2}\tilde\Omega + \frac{(\theta-\sin(\theta))}{\theta^3}\tilde\Omega^2 
  \end{array}
\end{equation}
Since $\dexp_{\tilde\Omega}$ is a linear mapping from $\mathfrak{so(3)}$ to $\mathfrak{so(3)}$, we will use the following notation
\begin{equation}
  \label{eq:172}
  \dexp_{\tilde\Omega}\tilde\Gamma  \coloneqq T(\Omega)\tilde\Gamma 
\end{equation}
with
\begin{equation}
  \label{eq:173}
   T(\Omega) \coloneqq I  + \frac{(1-\cos(\theta))}{\theta^2}\tilde\Omega + \frac{(\theta-\sin(\theta))}{\theta^3}\tilde\Omega^2  \in \RR^{3\times 3}
\end{equation}




\subsection{Newton method and differential of a map $f : \mathcal G \rightarrow \mathfrak g$}
Finally, let us define the differential of the map $f : SO(3) \rightarrow \mathfrak {so}(3)$ as
\begin{equation}
  \label{eq:183}
  \begin{array}[rcl]{rcl}
    f'_R : T_RSO(3) &\rightarrow&T_{f(R)}\mathfrak {so}(3) \cong  \mathfrak {so}(3)\\
           a &\mapsto& \left.\frac{d}{dt} f(R\glaw \expm(t L'_{R^{-1}}(a))) \right|_{t=0}
  \end{array}
\end{equation}
The image of $b$ by $f'_z$   is obtained by first identifying $a$ with an element of $\tilde\Omega \in \mathfrak {so}(3)$ thanks to the left representation of $T_{f(R)}\mathfrak {so}(3)$ view the left translation map $\tilde\Omega= t L'_R(b)$. The exponential mapping transforms $\tilde\Omega$ an element $S$ of the Lie Group $SO(3)$. Then $f'_z$ is obtained by
\begin{equation}
  \label{eq:184}
  f'_R(b) = \lim_{t\rightarrow 0} \frac{f(R\glaw S) - f(R)}{t}
\end{equation}
As we have done for the exponential mapping, it is possible to get a left trivialization of  
\begin{equation}
  \label{eq:185}
  \dd f_R = (f\circ L_R)' = f'_R \circ L'_R
\end{equation}
thus
\begin{equation}
  \label{eq:186}
  \dd f_R (\tilde\Omega) =  f'_R \circ L'_R(\tilde\Omega) = f'_R(L'_R(\tilde\Omega)) =  \left.\frac{d}{dt} f(R\glaw \expm(t \tilde\Omega )) \right|_{t=0}
\end{equation}

\begin{ndrva}
  The computation of this differential is non linear with respect to $\tilde\Omega$.


  not clear if we write $\dd f_R (\tilde\Omega)$. Better understand the link with $\dexp_{\tilde \Omega}{\tilde\Gamma}$
\end{ndrva}
Sometimes, it can be formally written as
\begin{equation}
  \label{eq:180}
  \dd f_R (\tilde\Omega) = C(\tilde\Omega)\tilde\Omega 
\end{equation}
Nevertheless, an explicit expression of $C(\cdot)$ is not necessarily trivial. 

Let us consider a first simple example of a mapping $f(R) = \widetilde{R  x}$ for a given $x\in\RR^3$. The computation yields
\begin{equation}
  \label{eq:181}
  \begin{array}{rcl}
    \dd f_R (\tilde\Omega) &=& \widetilde{ \left.\frac{d}{dt} R \exp(t \tilde\Omega) x  \right|_{t=0}} \\
                           &=& \widetilde{R \left.\frac{d}{dt}\exp(t \tilde\Omega)\right|_{t=0}  x} \\
                           &=& \widetilde{R \left. \dexp_{\tilde\Omega}(\tilde\Omega)\exp(t \tilde\Omega) \right|_{t=0}  x} \\
                           &=& \widetilde{R \dexp_{\tilde\Omega}(\tilde\Omega) x} \\
                           &=& \widetilde{R T(\Omega) \tilde\Omega  x} \\
                           &=& \widetilde{-R T(\Omega) \tilde x \Omega } 
  \end{array}
\end{equation}
In that case, it is difficult to find a expression as in \eqref{eq:180}, but considering the function $g(R)$ such that $f(R) = \widetilde g(x)$ we get
\begin{equation}
  \label{eq:181}
  \begin{array}{rcl}
    \dd g_R (\tilde\Omega)  =- R T(\Omega) \tilde x \Omega  = C(\Omega) \Omega
  \end{array}
\end{equation}
with
\begin{equation}
  \label{eq:182}
   C(\Omega) = -R T(\Omega) \tilde x
\end{equation}


\section{Lie group of unit quaternions $\HH_1$ and pure imaginary quaternions $\HH_p$.}


In Siconos we choose to parametrize the rotation with a unit quaternion $p \in \HH$ such that $R = \Phi(p)$. This parameterization has no singularity and has only one redundant variable that is determined by imposing $\|p\|=1$.


\paragraph{Quaternion definition.} There is many ways to define quaternions. The most convenient one is to define a quaternion as 
a $2\times 2$ complex matrix, that is an element of $\CC^{2\times 2}$. For this end, we write for $z \in \CC$, $z=a+ib$ with $a,b \in \RR^2$ and $i^2=-1$ and its conjugate $\bar z= a-ib$. Let ${e, \bf, i, j, k}$ the following matrices in $\CC^{2\times 2}$
\begin{equation}
  \label{eq:127}
  e =
  \begin{bmatrix}
    1 & 0 \\
    0 & 1  \\
  \end{bmatrix},
  \quad   \bf{i} =
  \begin{bmatrix}
    i & 0 \\
    0 & -i  \\
  \end{bmatrix}
  \quad   \bf{j} =
  \begin{bmatrix}
    0 & 1 \\
    -1 & 0  \\
  \end{bmatrix}
   \quad   \bf{k} =
  \begin{bmatrix}
    0 & i \\
    i & 0  \\
  \end{bmatrix}
\end{equation}

\begin{definition}
  Let $\HH$ be the set of all matrices of the form
  \begin{equation}
    \label{eq:128}
    p_0 e + p_1 {\bf i} + p_2 {\bf j} + p_3 {\bf k}
  \end{equation}
  where $(p_0,p_1,p_2,p_3) \in \RR^4$. Every Matrix in $\HH$ is of the form
  \begin{equation}
    \label{eq:129}
    \begin{bmatrix}
      x &y  \\
      - \bar y  & \bar x
    \end{bmatrix}
  \end{equation}
where $x = p_0 + i p_1$ and $y = p_2 + i p_3$. The matrices in $\HH$ are called quaternions. 
\end{definition}


\begin{definition}
  The null quaternion generated by $[0,0,0,0] \in \RR^4$ is denoted by $0$ . Quaternions of the form $p_1 \bf {i} + p_2 \bf{j} + p_3 \bf{k}$ are called pure quaternions. The set of pure quaternions is denoted by $\HH_p$.
\end{definition}

With the definition of $\HH$ as a set of complex matrices, It can be show that $\HH$ is a real vector space of dimension $4$ with basis ${e, \bf, i, j, k}$. Furthermore, with the matrix product, $\HH$ is a real algebra.

\paragraph{Representation of quaternions} Thanks to the equations~\eqref{eq:128}, ~\eqref{eq:128} and ~\eqref{eq:129}, we see that there are several manner to represent a quaternion $p\in \HH$. It can be represented as a complex matrix as in~\eqref{eq:129}. It can also be represented as a vector in $\RR^4$ , $p= [p_0,p_1,p_2,p_3]$ with the isomorphism~\eqref{eq:128}. In other words,  $\HH$ is isomorphic to $\RR^4$.  The first element $p_0$ can also be viewed as  a scalar and three last ones as a vector in $\RR^3$ denoted by $\vv{p} = [p_1,p_2,p_3]$, and in that case, $\HH$ is viewed as $\RR\times \RR^3$. The quaternion can be written as $p=(p_0,\vv{p})$.

\paragraph{Quaternion product} The quaternion product denoted by $p \glaw q $ for $p,q\in \HH_1$ is naturally defined as the product of complex matrices. With its representation in $\RR\times \RR^3$, the quaternion product is defined by
\begin{equation}
  \label{eq:73}
  p \glaw q =
  \begin{bmatrix}
    p_oq_o - \vv{p}\vv{q} \\
    p_0\vv{q}+q_o\vv{p} + \vv{p}\times\vv{q}
  \end{bmatrix}.
\end{equation}
Since the product is a matrix product, it is not communicative, but it is associative.  The identity element for the quaternion product is 
\begin{equation}
e=  \begin{bmatrix}
    1 & 0 \\
    0 & 1  \\
  \end{bmatrix} =(1,\vv{0})\label{eq:57}.
\end{equation}Let us note that 
\begin{equation}
  \label{eq:74}
  (0,\vv{p})\glaw (0,\vv(q)) = - (0,\vv{q})\glaw (0,\vv{p}).
\end{equation}
The quaternion multiplication can also be represented as a matrix operation in $\RR^{4\times4}$. Indeed, we have
\begin{equation}
  \label{eq:75}
  p \glaw q  =
  \begin{bmatrix}
    q_0 p_0 -q_1p_1-q_2p_2-q_3p_3\\
    q_0 p_1 +q_1p_0-q_2p_3+q_3p_2\\
    q_0 p_2 +q_1p_3+q_2p_0-q_3p_1\\
    q_0 p_3 -q_1p_2+q_2p_1+q_3p_0\\
  \end{bmatrix}
\end{equation}
that can be represented as
\begin{equation}
  \label{eq:76}
  p \glaw q  =
  \begin{bmatrix}
    p_0 & -p_1 & -p_2 & -p_3 \\
    p_1 & p_0 & -p_3 & p_2 \\
    p_2 & p_3 & p_0 & -p_1 \\
    p_3 & -p_2 & p_1 & p_0 \\
  \end{bmatrix}
  \begin{bmatrix}
    q_0\\
    q_1\\
    q_2\\
    q_3
  \end{bmatrix} := [p_\glaw]q
\end{equation}
or
\begin{equation}
  \label{eq:77}
  p \glaw q  = 
  \begin{bmatrix}
    q_0 & -q_1 & -q_2 & -q_3 \\
    q_1 & q_0 & q_3 & -q_2 \\
    q_2 & -q_3 & q_0 & q_1 \\
    q_3 & q_2 & -q_1 & q_0 \\
  \end{bmatrix}
  \begin{bmatrix}
    p_0\\
    p_1\\
    p_2\\
    p_3
  \end{bmatrix} := [{}_\glaw q] p
\end{equation}

\paragraph{Adjoint quaternion, inverse and norm}
The adjoint quaternion of $p$ is denoted by
\begin{equation}
  p^\star = \overline{  \begin{bmatrix}
      x &y  \\
      - \bar y  & \bar x
    \end{bmatrix}}^T
  =\begin{bmatrix}
    \bar x & - y  \\
    \bar y  &  x
  \end{bmatrix} =
  \begin{bmatrix}
    p_0, -p_1, -p_2, -p_3
  \end{bmatrix} = (p_0, - \vv{p})
\end{equation}
We note that
\begin{equation}
  \label{eq:131}
  p \glaw p^\star = 
  \begin{bmatrix}
      x &y  \\
      - \bar y  & \bar x
    \end{bmatrix}
    \begin{bmatrix}
    \bar x & - y  \\
    \bar y  &  x
  \end{bmatrix} = \det(\begin{bmatrix}
      x &y  \\
      - \bar y  & \bar x
    \end{bmatrix}) e = (x\bar x + y \bar y) e  = (p^2_0 + p^2_1+ p_2^2 + p_3^2)e
\end{equation}


The norm of a quaternion is given by $|p|^2=p^\top p = p_o^2+p_1^2+p_2^2+p_3^2$. In particular, we have $p \glaw p^\star = p^\star \glaw p = |p|^2 e$. This allows to define the reciprocal of a non zero quaternion by
\begin{equation}
  \label{eq:78}
  p ^{-1} = \frac 1 {|p|^2} p^\star
\end{equation}
A quaternion $p$ is said to be unit if $|p| =1$. 

\paragraph{Unit quaternion and rotation}
For two vectors $x\in \RR^3$ and $x'\in \RR^3$, we define the quaternion $p_x = (0,x)\in \HH_p$ and  $p_{x'} = (0,x')\in \HH_p$.
For a given unit quaternion $p$, the transformation
\begin{equation}
  \label{eq:79}
  p_{x'} = p \glaw p_x \glaw  p^\star 
\end{equation}
defines a rotation $R$ such that $x'  = R x$ given by
\begin{equation}
  \label{eq:80}
  x' = (p_0^2- p^\top \vv{p}) x +2 p_0(\vv{p}\times x) +  2 (\vv{p}^\top x) p = R x
\end{equation}
The rotation matrix may be computed as 
\begin{equation}
  \label{eq:81}
  R = \Phi(p) =
  \begin{bmatrix}
    1-2 p_2^2- 2 p_3^2 & 2(p_1p_2-p_3p_0) & 2(p_1p_3+p_2p_0)\\
    2(p_1p_2+p_3p_0) & 1-2 p_1^2- 2 p_3^2 & 2(p_2p_3-p_1p_0)\\
    2(p_1p_3-p_2p_0) & 2(p_2p_3+p_1p_0)  & 1-2 p_1^2- 2 p_2^2\\
  \end{bmatrix}
\end{equation} 


\paragraph{Computation of the time derivative of a unit  quaternion associated with a rotation.}
The derivation with respect to time can obtained as follows. The rotation transformation for a unit quaternion is given by
\begin{equation}
  \label{eq:82}
  p_{x'}(t) = p(t) \glaw p_x \glaw p^\star(t) =  p(t) \glaw p_x \glaw p^{-1}(t)
\end{equation}
and can be derived as
\begin{equation}
  \label{eq:83}
  \begin{array}{lcl}
    \dot p_{x'}(t) &=& \dot p(t) \glaw p_x \glaw p^{-1}(t) + p(t) \glaw p_x \glaw \dot p^{-1}(t) \\
                  &=& \dot p(t) \glaw p^{-1}(t)  \glaw   p_{x'}(t)  +      p_{x'}(t) \glaw p(t)  \glaw \dot p^{-1}(t)    
  \end{array}
\end{equation}
From $p(t) \glaw p^{-1}(t) =e$, we get
\begin{equation}
  \label{eq:84}
  \dot p(t) \glaw p^{-1}(t) + p \glaw \dot p^{-1}(t) = 0
\end{equation}
so (\ref{eq:82}) can be rewritten
\begin{equation}
  \label{eq:85}
  \begin{array}{lcl}
    \dot p_{x'}(t) = \dot p(t) \glaw p^{-1}(t)   \glaw   p_{x'}(t)  -    p_{x'}(t) \glaw  \dot p(t) \glaw p^{-1}(t)
  \end{array}
\end{equation}
The scalar part of $\dot p(t) \glaw p^{-1}(t)$ is $(\dot p(t) \glaw p^{-1}(t))_0 = p_o \dot p_0 + \vv{p}^T\vv{\dot p}$. Since $p$ is a unit quaternion, we have
\begin{equation}
  \label{eq:86}
  |p|=1 \implies \frac{d}{dt} (p^\top p) = 0 =  \dot p^\top p + p^\top \dot p =   2( p_o \dot p_0 + \vv{p}^T\vv{\dot p}).
\end{equation}
Therefore, the scalar part $(\dot p(t) \glaw p^{-1}(t))_0 =0$.
The quaternion product $\dot p(t) \glaw p^{-1}(t)$ and  $p_{x'}(t)$ is a product of quaternions with zero scalar part (see~\eqref{eq:74}), so we have 
\begin{equation}
  \label{eq:87}
  \begin{array}{lcl}
    \dot p_{x'}(t) = 2 \dot p(t) \glaw p^{-1}(t)   \glaw p_{x'}(t).
  \end{array}
\end{equation}
In terms of vector of $\RR^3$, this corresponds to
\begin{equation}
  \label{eq:88}
  \dot x'(t) = 2 \vv{ \dot p(t) \glaw p^{-1}(t) } \times x'(t).
\end{equation}
Since $x'(t) = R(t) x$, we have $\dot x' = \dot R(t) x = \tilde \omega(t) R(t) x  = \tilde \omega(t) x'(t) $. Comparing \eqref{eq:87} and \eqref{eq:88}, we get
\begin{equation}
  \label{eq:89}
  \tilde \omega(t)  = 2 \vv{ \dot p(t) \glaw p^{-1}(t) } 
\end{equation}
or equivalently
\begin{equation}
  \dot p(t) \glaw p^{-1}(t) = (0, \frac{\omega(t)}{2} )
  \label{eq:90}
\end{equation}
Finally, we can conclude that
\begin{equation}
  \label{eq:91}
  \dot p(t) = (0, \frac{\omega(t)}2 ) \glaw p(t).
\end{equation}
Since $\omega(t)=R(t)\Omega(t)$, we have
\begin{equation}
  \label{eq:92}
  (0, \omega(t) ) = (0, R(t) \Omega(t) ) = p(t) \glaw (0, \Omega(t) ) \glaw \bar p(t) = p(t) \glaw (0, \Omega(t) ) \glaw  p^{-1}(t)
\end{equation}
and then
\begin{equation}
  \label{eq:93}
  \dot p(t) =\frac 1 2 p(t) \glaw(0, \Omega(t) ) .
\end{equation}

The time derivation is compactly written
\begin{equation}
  \label{eq:94}
  \dot p = \frac  1 2 p  \glaw(0, \frac\Omega 2 ) =  [p_\glaw] p_{\frac \Omega 2} = \Psi(p)\frac \Omega 2,
\end{equation}
and using the matrix representation of product of  quaternion
we get
\begin{equation}
  \label{eq:95}
  \Psi(p) =  \begin{bmatrix}
    -p_1 & -p_2 & -p_3 \\
    p_0 & -p_3 & p_2 \\
    p_3 & p_0 & -p_1 \\
    -p_2 & p_1 & p_0 \\
  \end{bmatrix}
\end{equation}
The relation \eqref{eq:93} can be also inverted by writing
\begin{equation}
  \label{eq:96}
   (0, \Omega(t) ) = 2 p^{-1}(t) \glaw \dot p(t)
\end{equation}
Using again  matrix representation of product of  quaternion, we get 
\begin{equation}
  \label{eq:97}
  \Omega(t)  = 2 \vv{p^{-1}(t) \glaw \dot p(t)}  = 2  \begin{bmatrix}
    -p_1 & p_0 & p_3 & -p_2 \\
    -p_2 & -p_3 & p_0 & p_1 \\
    -p_3 & p_2 & -p_1  & p_0\\
  \end{bmatrix}\dot p(t) = 2 \Psi(p)^\top \dot p(t)
\end{equation}
Note that we have $\Psi^\top(p)\Psi(p)= I_{4\times 4 }$ and  $\Psi(p)\Psi^\top(p)= I_{3\times 3 }$

\paragraph{Lie group structure of unit quaternions.} In terms of complex matrices, an unit quaternion $p$ satisfies
\begin{equation}
  \label{eq:125}
  \det\left(    \begin{bmatrix}
      x &y  \\
      - \bar y  & \bar x
    \end{bmatrix} \right) =1
\end{equation}
The set of all unit quaternions that we denote $\HH_1$ is the set of unitary matrices of determinant equal to $1$. From~\eqref{eq:131}, we get that
\begin{equation}
  \label{eq:126}
  p \glaw p^\star = e  
\end{equation}
It implies that the set $\HH_1$ is the set of special unitary complex matrices. The set is a Lie group usually denoted as $SU(2)$. Since we used multiple representation of a quaternion, we continue to use $\HH_1 \cong SU(2)$ as a notation but with the Lie group structure implied by $SU(2)$.

Let us compute the tangent vector at a point $p \in \HH_1$. Let $q(t)$ be  a smooth curve $q(\cdot) : t\in \RR \mapsto q(t)\in H_1$ in $H_1$ such that $q(O)= p$.
Since $q(t)\in H_1$, we have $|q(t)|=1$ and then $\frac{d}{dt} |q(t)| = 2(q_0(0) \dot q_0(0) + \vec{q}^T(0) \vec{\dot q}(0) ) =0$. At $t=0$, we get
\begin{equation}
  \label{eq:48}
  2(p_0 a_0 + \vec{p}^T \vec{a})= 0.
\end{equation}
This relation imposes that the quaternions $2 p^\star \glaw a \in H_1$ and $2 a \glaw p^\star \in H_1$, that is, have to be pure quaternions. Therefore, it exists $\omega \in \RR^3$  and $\Omega \in \RR^3$ such that
\begin{equation}
  \label{eq:132}
  (0, \Omega) = 2 p ^\star \glaw a 
\end{equation}
and
\begin{equation}
  \label{eq:132}
  (0, \omega) = 2 a\glaw p^\star
\end{equation}
In other terms, the tangent vector spaces at $p \in \HH_1$ can be represented as a left representation
\begin{equation}
  \label{eq:133}
  T_p\HH_1 = \{ a \mid a = p \glaw (0, \frac \Omega 2 ), \Omega \in \RR^3\}
\end{equation}
or a right representation
\begin{equation}
  \label{eq:1330}
  T_p{\HH_1} = \{ a \mid a =  (0, \frac \omega 2 ) \glaw p, \omega \in \RR^3\}
\end{equation}

At $p=e$, we get the Lie algebra defined by
\begin{equation}
  \label{eq:134}
  \mathfrak h_1 =  T_e{\HH_1} =  \{ a = (0, \frac \Omega 2 ), \Omega \in \RR^3 \}
\end{equation}
equipped with the Lie bracket given by the commutator
\begin{equation}
  \label{eq:135}
  [p,q] = p \glaw q- q\glaw p.
\end{equation}
We can easily verify that for $a = (0, \frac \Omega 2 ), \, b = (0, \frac \Gamma 2 ) \in \mathfrak h_1 $, we have
\begin{equation}
  \label{eq:136}
  [a,b] = (0, \frac \Omega 2 ) \glaw (0, \frac \Gamma 2 ) - (0, \frac \Gamma 2 ) \glaw  (0, \frac \Omega 2 )  = (0, \frac{\Omega\times \Gamma}{2}) \in \mathfrak h_1
\end{equation}
As for $\mathfrak so(3)$,  the Lie algebra $\mathfrak h_1$ is isomorphic to $\RR^3$ thanks to the operator $\widehat{(\cdot)} :\RR^3 \rightarrow \mathfrak h_1$ and defined by
\begin{equation}
  \label{eq:54}
 \widehat{(\cdot)}: \Omega \mapsto \widehat \Omega = (0, \frac \Omega 2 ) 
\end{equation}
With this operator, the Lie Bracket can be written
\begin{equation}
  \label{eq:137}
  [\widehat{\Omega},\widehat{\Gamma}] = \widehat{\Omega \times \Gamma} 
\end{equation}


\paragraph{ A special  (right)  action of Lie Group $\mathcal G$ on a manifold $\mathcal M$. } 
Let us come back to the representation of  $T_p\HH_1$ given in~\eqref{eq:133}. It is clear it can expressed with a representation that relies on $\mathfrak h_1$
\begin{equation}
  \label{eq:158}
   T_RSO(3) = \{ a = p \glaw  \widehat \Omega \mid \widehat \Omega \in \mathfrak h_1 \}.
\end{equation}
With \eqref{eq:58}, we see that there is a linear map that relates $T_p\HH_1$ to  $\mathfrak h_1$. This linear map defines a vector field. 
A special group action is defined by the left translation map for a point $p \in \HH_1$ 
\begin{equation}
  \label{eq:159}
  \begin{array}[lcl]{rcl}
    L_p& :&   \HH_1 \rightarrow  \HH_1\\
       & &  q  \mapsto L_p(q) = p \glaw q\\
  \end{array}
\end{equation}
which is diffeomorphism on $\HH_1$. In that case, we identify the manifold and the group. So, $L_p$ can be viewed as a left or a right group action. We choose a right action. For our application where $\mathcal G = \mathcal M = \HH_1$ and $\Lambda^r(p,q) = L_{p}(q) =  p \glaw q $, we get
\begin{equation}
  \label{eq:160}
   \lambda^r_{*}(a)(p) = \left. \frac{d}{dt} L_{p}(q(t)) \right|_{t=0}  = \left. \frac{d}{dt} p \glaw q(t) \right|_{t=0} =  p \glaw \dot q(0) = p  \glaw \dot q(0)  \in X(\mathcal M)
 \end{equation}
 for a smooth curve $q(t)$ in $\HH_1$.
Since $q(\cdot)$ is a smooth curve in $\HH_1$, $\dot q(0)$ is a tangent vector at the point $q(0)=I$, that is an element $a = \widehat  \Omega  \in \mathfrak h_1 $ defined by the relation~\eqref{eq:33}. Therefore, the vector field in \eqref{eq:160} is a tangent vector field and we get
\begin{equation}
  \label{eq:161}
  \dot p(t) = \lambda^r_{*}(a)(p(t)) = p(t)  \glaw \widehat \Omega
\end{equation}

\paragraph{Exponential map $\expq : \mathfrak h_1 \rightarrow \HH_1$}
We can directly apply Theorem~\ref{Theorem:solutionofLieODE} and we get that the solution of
\begin{equation}
  \label{eq:130}
  \begin{cases}
  \dot p(t) = \lambda^r_{*}(a)(p(t)) = p(t) \glaw \widehat \Omega \\
  p(0) = Rp_0
\end{cases}
\end{equation}
 is
\begin{equation}
  \label{eq:138}
  p(t) = p_0 \expq(t \widehat \Omega)
\end{equation}
The exponential mapping $\expq : \mathfrak h_1 \rightarrow \HH_1$ can also be defined as $\expq(\widehat \Omega) = q(1)$ where $q (t)$ satisfies the  differential equation
\begin{equation}
  \label{eq:235}
  \dot q(t) = q(t) \cdot \widehat \Omega , \quad q (0) = e.
\end{equation}
Using the quaternion product, the exponential map can be expressed as
\begin{equation}
  \label{eq:232}
  \expq(t \widehat \Omega ) = \sum_{k=0}^\infty \frac{(t\widehat \Omega)^k}{k!}
\end{equation}
since it is  a solution of \eqref{eq:130}. A simple computation allows to check this claim:
\begin{equation}
  \label{eq:233}
   \frac{d}{dt}\expq(t \widehat \Omega ) = \sum_{k=1}^\infty  k t^{k-1} \frac{ \widehat \Omega ^k}{k!} =  \sum_{k=0}^\infty  t^{k} \frac{t \widehat \Omega ^k}{k!}\glaw  \widehat \Omega  =   \expq(t \widehat \Omega ) \glaw \widehat \Omega.
\end{equation}

A closed form relation for the form the quaternion exponential can also be found by noting that
\begin{equation}
  \label{eq:140}
  \widehat \Omega ^2  = - \left(\frac \theta 2 \right)^2 e, \text{ and } \widehat \Omega ^3  = - \left(\frac \theta 2 \right)^2 \widehat \Omega.
\end{equation}
A simple expansion of \eqref{eq:232} at $t=1$ equals
\begin{equation}
  \label{eq:141}
  \begin{array}{lcl}
    \expq(\widehat \Omega ) &=& \sum_{k=0}^\infty \frac{(\widehat \Omega)^k}{k!}\\
                            &=& \sum_{k=0}^\infty \frac{(-1)^k}{(2k)!}\left(\frac \theta 2 \right)^{2k} e + \sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)!} \left(\frac \theta 2 \right)^{2k+1} \widehat \Omega \\
                            &=& \cos(\frac \theta 2) e + \frac{\sin(\frac \theta 2)}{\frac \theta 2} \widehat \Omega \\
  \end{array}
\end{equation}
that is
\begin{equation}
  \label{eq:144}
  \expq(\widehat \Omega )  = (\cos(\frac \theta 2), \sin(\frac \theta 2) \frac{\Omega}{\theta}   ).
\end{equation}

\paragraph{Adjoint representation}
In the case of $\HH_1$, the definition of the operator $\Ad$ gives
\begin{equation}
  \label{eq:121}
  \Ad_p(\widehat\Omega)  = p\glaw \widehat\Omega p^\star
\end{equation}
 and then mapping $\ad_{\widehat\Omega}(\widehat \Gamma)$ is defined by
\begin{equation}
  \label{eq:56}
  \ad_{\widehat\Omega}(\widehat\Gamma) = \widehat \Omega \widehat\Gamma - \widehat \Gamma \widehat\Omega  =  [\widehat \Omega,\widehat \Gamma] = \widehat{\Omega \times \Gamma}.
\end{equation}
Using the isomorphism between $\mathfrak h_1$ and $\RR^3$, we can use the  the mapping $\ad_{\Omega}(\Gamma) : \RR^3\times\RR^3 \rightarrow \RR^3$ given by \eqref{eq:55} to get 
\begin{equation}
  \label{eq:145}
   \ad_{\widehat\Omega}(\widehat\Gamma) = \widehat{\Omega \times \Gamma} = \widehat{\ad_{\Omega}(\Gamma)} =  \widehat{\tilde \Omega \Gamma}
\end{equation}

\paragraph{Differential of the exponential map $\dexpq$}
The differential of the exponential mapping, denoted by $\dexpq$ is defined as the 'right trivialized' tangent of the exponential map 
\begin{equation}
  \label{eq:71}
  \frac{d}{dt} (\expq(\widehat \Omega(t))) = \dexpq_{\widehat\Omega(t)}(\frac{d \widehat{\Omega}(t)}{dt}) \expq(\widehat\Omega(t))
\end{equation}

An explicit expression of $\dexp_{\widehat\Omega}(\widehat\Gamma)$ can also be developed either by developing the expansion and~\eqref{eq:137}.
\begin{equation}
  \label{eq:168}
   \dexpq_{\widehat\Omega}(\Gamma) = \sum_{k=0}^\infty \frac{1}{(k+1)!} \ad_{\widehat\Omega}^k (\widehat\Gamma) = \widehat{T(\Omega)\Gamma}
\end{equation}

\begin{remark}
Note that the time derivative in $\RR^4$ is not differential mapping.
The standard time derivative of $\expq$ in the expression \eqref{eq:144} gives
\begin{equation}
  \label{eq:171}
    \frac{d}{dt}\expq(\widehat \Gamma(t)) = (- \frac{\sin(\theta)}{\theta} \Omega^T\Gamma, \frac{\sin(\theta)}{\theta}\Gamma  +\frac{\theta \cos(\theta)-\sin(\theta)}{\theta^3}\Omega^T\Omega \Gamma  )
\end{equation}
that can be expressed in $\RR^4$ by
\begin{equation}
  \label{eq:175}
  \frac{d}{dt}\expq(\widehat \Gamma(t))  = \nabla \expq(\widehat\Omega) \widehat{\dot\Omega} 
\end{equation}
with
\begin{equation}
  \label{eq:176}
  \nabla \expq(\widehat\Omega) =
  \begin{bmatrix}
    - \frac{\sin(\theta)}{\theta} \Omega^T \\
    \frac{\sin(\theta)}{\theta}I  +\frac{\theta \cos(\theta)-\sin(\theta)}{\theta^3}\Omega^T\Omega
  \end{bmatrix}
\end{equation}

Clearly, we have 
\begin{equation}
  \label{eq:177}
  \nabla \expq(\widehat\Omega) \neq  \dexpq_{\widehat\Omega}
\end{equation}
\end{remark}


\paragraph{Directional derivative and Jacobians of functions of a quaternion}
\begin{ndrva}
  experimental
\end{ndrva}

Let $f : \HH_1 \rightarrow \RR $ be a mapping from the group to $\RR^3$. The directional derivative of $f$ in the direction $\widehat \Omega \in \mathfrak h_1$ at $p\in \HH_1$ is 
defined by
\begin{equation}
  \label{eq:139}
 df_p(\widehat \Omega) =\left. \frac{d}{dt} f(p\glaw \expq(t\widehat \Omega)) \right|_{t=0}
\end{equation}

As a first simple example let us choose $f(p) = \vv{p \glaw p_x \glaw p^\star}$ for a given $x \in \RR^3 $, we get
\begin{equation}
  \label{eq:142}
  \begin{array}{lcl}
    D Id \cdot \widehat \Omega (p) = (\widehat \Omega^r f )(p) &=& \left. \frac{d}{dt}\vv{p\glaw \expq(t\widehat \Omega) \glaw p_x \glaw (p \glaw \expq(t\widehat \Omega))^\star}  \right|_{t=0}\\
                                                               & = & \vv{p\glaw \frac{d}{dt}\left. \expq(t\widehat \Omega) \right|_{t=0} \glaw p_x \glaw p^\star +  p \glaw p_x \glaw (p \glaw\frac{d}{dt}\left. \expq(t\widehat \Omega) \right|_{t=0})^\star}\\                                              
  \end{array}
\end{equation}
We have form the definition of the time derivative of the exponential
\begin{equation}
  \label{eq:143}
  \begin{array}{lcl}
    \frac{d}{dt}\left. \expq(t\widehat \Omega) \right|_{t=0} &=&  \left. \dexpq_{\widehat\Omega}(\widehat \Omega)\expq(t\widehat \Omega) \right|_{t=0} \\
                                                            &=&  \dexpq_{\widehat\Omega}(\widehat \Omega)
  \end{array}
\end{equation}

Then, the directional derivative can be written
\begin{equation}
  \label{eq:146}
  \begin{array}{lcl}
    D Id \cdot \widehat \Omega (p) &=& \vv{p\glaw \dexpq_{\widehat\Omega}(\widehat \Omega)\glaw p_x \glaw p^\star  + p \glaw p_x \glaw (\dexpq_{\widehat\Omega}(\widehat \Omega))^* \glaw  p^\star } \\
  &=& \vv{p\glaw ( \dexpq_{\widehat\Omega}(\widehat \Omega)\glaw p_x +   p_x \glaw (\dexpq_{\widehat\Omega}(\widehat \Omega))^*) \glaw  p^\star } 
  \end{array}
\end{equation}




\section{Newton-Euler equation in quaternion  form}

\paragraph{Computation of $T$ for unit quaternion} The operator $T(q)$ is directly obtained as
\begin{equation}
  T(q)=\frac 1 2 \label{eq:98}
  \begin{bmatrix}
    2 I_{3\times 3} & & 0_{3\times 3} & \\
    &   -p_1 & -p_2 & -p_3 \\
    0_{4\times 3}  &  p_0 & -p_3 & p_2 \\
    & p_3 & p_0 & -p_1 \\
    & -p_2 & p_1 & p_0 
  \end{bmatrix}
\end{equation}

\paragraph{}




\begin{ndrva}
  todo :
  \begin{itemize}
  \item computation of the directional derivative of $R(\Omega)= exp(\tilde \Omega)$ in the direction $\tilde\Omega$, to get $T(\Omega)$  
  \end{itemize}
\end{ndrva}

\paragraph{Quaternion representation}If the Lie group is described by unit quaternion, we get
\begin{equation}
  \label{eq:99}
  SO(3) = \{p = (p_0,\vv{p}) \in \RR^{4}\mid |p|=1  \}
\end{equation}
with the composition law  $p_1\glaw p_2$ given by the quaternion product.



Note that the concept of exponential map for Lie group that are not parameterized by matrices is also possible.


\subsection{Mechanical systems  with bilateral and unilateral constraints}
\label{section22}


Let us consider that the system~(\ref{eq:Newton-Euler-compact}) is  subjected to $m$ constraints, with $m_{e}$ holonomic bilateral 
constraints
\begin{equation}
  \label{eq:bilateral-constraints}
  h^\alpha(q)=0, \alpha \in \mathcal{E}\subset\NN,  |\mathcal E| = m_e,
\end{equation}
and  $m_{i}$ unilateral constraints
\begin{equation}
  \label{eq:unilateral-constraints}
  g_{\n}^\alpha(q)\geq 0, \alpha \in \mathcal{I}\subset\NN,  |\mathcal I| = m_i.
\end{equation} 
%
Let us denote as $J^\alpha_h(q) = \nabla^\top_q h^\alpha(q)  $ the Jacobian matrix of the bilateral constraint $h^\alpha(q)$ with respect to $q$ and as $J^\alpha_{g_\n}(q)$ respectively for $g_{\n}^\alpha(q)$  .
%
The bilateral constraints at the velocity level can be obtained as:
\begin{equation}
  \label{eq:bilateral-constraints-velocity}
 0 = \dot h^\alpha(q)= J^\alpha_h(q)\dot q = J^\alpha_h(q) T(q) v \coloneqq H^\alpha(q)  v,\quad  \alpha \in \mathcal{E}.
\end{equation}
By duality and introducing a Lagrange multiplier $\lambda^\alpha, \alpha \in \mathcal E$, the constraint generates a force applied to the body equal to $H^{\alpha,\top}(q)\lambda^\alpha$. For the unilateral constraints, a Lagrange multiplier $\lambda_{\n}^\alpha, \alpha \in \mathcal I$ is also associated and the constraints at the velocity level can also be derived as
\begin{equation}
  \label{eq:unilateral-constraints-velocity}
 0 \leq  \dot g_\n^\alpha(q)= J^\alpha_{g_\n}(q) \dot q = J^\alpha_{g_\n}(q)  T(q) v , \text{ if } g_{\n}^\alpha(q) = 0,\quad  \alpha \in \mathcal{I}. 
\end{equation}
Again, the force applied to the body is given by $(J^\alpha_{g_\n}(q) T(q))^\top\lambda^\alpha_\n$. {Nevertheless, there is no reason that $\lambda^\alpha_\n =r^\alpha_\n$ and $u_\n = J^\alpha_{g_\n}(q) T(q) v$ if the $g_n$ is not chosen as the signed distance (the gap function)}. This is the reason why  we prefer  directly define the normal and the tangential local relative velocity with respect to the {twist vector} as
\begin{equation}
  \label{eq:unilateral-constraints-velocity-kinematic1}
   u^\alpha_\n  \coloneqq G_\n^\alpha(q) v, \quad u^\alpha_\t  \coloneqq G_\t^\alpha(q) v, \quad \alpha \in \mathcal{I},
\end{equation}
and the associated force as $G_\n^{\alpha,\top}(q) r^{\alpha}_\n $ and $G_\t^{\alpha,\top}(q) r^{\alpha}_\t$. For the sake of simplicity, we use the notation $u^\alpha  \coloneqq G^\alpha(q) v$ and its associated total force generated by the contact $\alpha$ as $G^{\alpha,\top}(q) r^{\alpha} \coloneqq G_\n^{\alpha,\top}(q) r^{\alpha}_\n + G_\t^{\alpha,\top}(q) r^{\alpha}_\t $.

The complete system of equation of motion can finally be written as
\begin{numcases}{ }
  ~~\dot q = T(q)v ,\nonumber \\[0.5ex]
  ~~ M \dot v  = F(t,q,v) + H^\top(q) \lambda +  G^\top(q) r, \nonumber \\ [0.5ex]
  ~~\begin{array}{ll}
    H^\alpha(q) v  =  0 ,& \alpha \in \mathcal E \\[1ex]
    \left. \begin{array}{ll}
      r^\alpha= 0 , &\text{ if } g_{\n}^\alpha(q) > 0,\\[1ex]
      {K}^{\alpha,*} \ni \widehat u^\alpha  \bot~ r^\alpha \in {K}^\alpha, &\text{ if } g_{\n}^\alpha(q) = 0, \\[1ex]
      u_{\n}^{\alpha,+} = -e_r^\alpha u_{\n}^{\alpha,-}, &\text{ if } g_{\n}^\alpha(q) = 0 \text{ and } u_{\n}^{\alpha,-} \leq 0, 
    \end{array}\right\} & \alpha \in \mathcal I  \label{eq:NewtonEuler-uni}
\end{array}
\end{numcases}
where the definition of the variables $\lambda\in \RR^{m_e}, r\in \RR^{3m_i}$ and the operators $H,G$ are extended to collect all the variables for each constraints.

Note that all the constraints are written at the velocity integrators. {Another strong advantage is the straightforward introduction of  the contact dissipation processes that are naturally written at the velocity level such as the Newton impact law and the Coulomb friction. Indeed, in Mechanics, dissipation processes are always given in terms of rates of changes, or if we prefer, in terms of velocities.}

\paragraph{Siconos Notation} In the siconos notation, we have for the applied torques on the system the following decomposition
\begin{equation}
  F(t,q,v):= \begin{pmatrix}
    f(t,x_{\cg},  v_{\cg}, R, \Omega ) \\
    I \Omega \times \Omega + M(t,x_{\cg}, v_{\cg}, R, \Omega )
  \end{pmatrix}
  := \begin{pmatrix}
    f_{ext}(t)  - f_{int}(x_{\cg},  v_{\cg}, R, \Omega ) \\
    - M_{gyr}(\Omega) + M_{ext}(t) -  M_{int}(x_{\cg}, v_{\cg}, R, \Omega )
  \end{pmatrix}.
\end{equation}
with
\begin{equation}
  M_{gyr} := \begin{pmatrix}
     \Omega \times I\Omega
  \end{pmatrix}
\end{equation}



In the siconos notation, we have for the relation
\begin{equation}
  \label{eq:100}
   C =   J^\alpha(q) \quad CT = J^\alpha(q)T(q)
\end{equation}







\section{Time integration scheme in scheme}


\subsection{Moreau--Jean scheme based on a  $\theta$-method}
The complete Moreau--Jean scheme based on a  $\theta$-method is written as follows
 \begin{equation}
    \label{eq:Moreau--Jean-theta}
    \begin{cases}
      ~~\begin{array}{l}
        q_{k+1} = q_{k} + h T(q_{k+\theta}) v_{k+\theta} \quad \\[1ex]
        M(v_{k+1}-v_k) - h  F(t_{k+\theta}, q_{k+\theta},v_{k+\theta}) =  H^\top(q_{k+1}) Q_{k+1} + G^\top(q_{k+1}) P_{k+1},\quad\,\\[1ex]
      \end{array}\\
      ~~\begin{array}{lcl}
        \begin{array}{l}
          H^\alpha(q_{k+1}) v_{k+1}  =  0\\
        \end{array} & \left. \begin{array}{l}
          \vphantom{H^\alpha(q_{k+1}) v_{k+1}  =  0}\\[1ex]
        \end{array}\right\}    &\alpha \in \mathcal E  \\[1ex]
      ~~~P_{k+1}^\alpha= 0, &
      \left. \begin{array}{l}
          \vphantom{P_{k+1}^\alpha= 0,  \delta^\alpha_{k+1}=0}\\[1ex]
        \end{array}\right\}   & \alpha \not\in \mathcal I^\nu \\[1ex]
      % 
      % 
      \begin{array}{l}
          {K}^{\alpha,*} \ni \widehat u_{k+1}^\alpha~ \bot~ P_{k+1}^\alpha \in {K}^\alpha \\
      \end{array} &
      \left.\begin{array}{l}
          \vphantom{{K}^{\alpha,*} \ni \widehat u_{k+1}^\alpha~ \bot~ P_{k+1}^\alpha \in {K}^\alpha} \\
        \end{array}\right\}
      &\alpha \in \mathcal I^\nu\\
  \end{array}
\end{cases}
\end{equation}
where $\mathcal I^\nu$ is the set of forecast constraints, that may be evaluated as
\begin{equation}
  \label{eq:101}
  \mathcal I^\nu = \{\alpha \mid \bar g_\n^\alpha \coloneqq g_\n + \frac h 2 u^\alpha_\n \leq 0\}.
\end{equation}


\subsection{Semi-explicit version Moreau--Jean scheme based on a  $\theta$-method}

\begin{equation}
    \label{eq:Moreau--Jean-explicit}
    \begin{cases}
      ~~\begin{array}{l}
        q_{k+1} = q_{k} + h T(q_{k}) v_{k+\theta} \quad \\[1ex]
        M(v_{k+1}-v_k) - h  F(t_{k}, q_{k},v_{k}) =  H^\top(q_{k}) Q_{k+1}+  G^\top(q_{k}) P_{k+1},\quad\,\\[1ex]
      \end{array}\\
      ~~\begin{array}{lcl}
        \begin{array}{l}
          H^\alpha(q_{k+1}) v_{k+1}  =  0\\
        \end{array} & \left. \begin{array}{l}
          \vphantom{H^\alpha(q_{k+1}) v_{k+1}  =  0}\\[1ex]
        \end{array}\right\}    &\alpha \in \mathcal E  \\[1ex]
      ~~P_{k+1}^\alpha= 0, &
      \left. \begin{array}{l}
          \vphantom{P_{k+1}^\alpha= 0,  \delta^\alpha_{k+1}=0}\\[1ex]
        \end{array}\right\}   & \alpha \not\in \mathcal I^\nu \\[1ex]
      % 
      % 
      \begin{array}{l}
          {K}^{\alpha,*} \ni \widehat u_{k+1}^\alpha~ \bot~ P_{k+1}^\alpha \in {K}^\alpha \\
      \end{array} &
      \left.\begin{array}{l}
          \vphantom{{K}^{\alpha,*} \ni \widehat u_{k+1}^\alpha~ \bot~ P_{k+1}^\alpha \in {K}^\alpha} \\
        \end{array}\right\}
      &\alpha \in \mathcal I^\nu\\
  \end{array}
\end{cases}
\end{equation}

In this version, the new velocity $v_{k+1}$ can be computed explicitly, assuming that the inverse of $M$ is easily written, as

\begin{equation}
  \label{eq:Moreau--Jean-theta--explicit-v}
  v_{k+1}   =  v_k + M^{-1} h  F(t_{k}, q_{k},v_{k}) +  M^{-1} (H^\top(q_{k}) Q_{k+1}+  G^\top(q_{k}) P_{k+1})
\end{equation}


\subsection{Nearly implicit version Moreau--Jean scheme based on a  $\theta$-method implemented in siconos}

A first simplification is made considering a given value of $q_{k+1}$ in $T()$, $H()$ and $G()$ denoted by $\bar q_k$. This limits the computation of the Jacobians of this operators with respect to $q$. 
\begin{equation}
    \label{eq:Moreau--Jean-theta-nearly}
    \begin{cases}
      ~~\begin{array}{l}
        q_{k+1} = q_{k} + h T(\bar q_k) v_{k+\theta} \quad \\[1ex]
        M(v_{k+1}-v_k) - h  \theta F(t_{k+1}, q_{k+1},v_{k+1}) - h (1- \theta) F(t_{k}, q_{k},v_{k})  =  H^\top(\bar q_k) Q_{k+1} + G^\top(\bar q_k) P_{k+1},\quad\,\\[1ex]
      \end{array}\\
      ~~\begin{array}{lcl}
        \begin{array}{l}
          H^\alpha(\bar q_k) v_{k+1}  =  0\\
        \end{array} & \left. \begin{array}{l}
          \vphantom{H^\alpha(q_{k+1}) v_{k+1}  =  0}\\[1ex]
        \end{array}\right\}    &\alpha \in \mathcal E  \\[1ex]
      ~~P_{k+1}^\alpha= 0, &
      \left. \begin{array}{l}
          \vphantom{P_{k+1}^\alpha= 0,  \delta^\alpha_{k+1}=0}\\[1ex]
        \end{array}\right\}   & \alpha \not\in \mathcal I^\nu \\[1ex]
      % 
      % 
      \begin{array}{l}
          {K}^{\alpha,*} \ni \widehat u_{k+1}^\alpha~ \bot~ P_{k+1}^\alpha \in {K}^\alpha \\
      \end{array} &
      \left.\begin{array}{l}
          \vphantom{{K}^{\alpha,*} \ni \widehat u_{k+1}^\alpha~ \bot~ P_{k+1}^\alpha \in {K}^\alpha} \\
        \end{array}\right\}
      &\alpha \in \mathcal I^\nu\\
  \end{array}
\end{cases}
\end{equation}
The nonlinear residu is defined as
\begin{equation}
  \label{eq:Moreau--Jean-theta--nearly-residu}
  \mathcal R(v) =  M(v-v_k) - h  \theta F(t_{k+1}, q(v),v) - h (1- \theta) F(t_{k}, q_{k},v_{k}) - H^\top(\bar q_k) Q_{k+1} - G^\top(\bar q_k) P_{k+1}
\end{equation}
with
\begin{equation}
  \label{eq:Moreau--Jean-theta--nearly-residu1}
  q(v) = q_{k} + h T(\bar q_k)) ((1-\theta) v_k + \theta v).
\end{equation}
At each time step, we have to solve
\begin{equation}
  \label{eq:Moreau--Jean-theta--nearly-residu2}
  \mathcal R(v_{k+1}) =  0
\end{equation}
together with the constraints.

Let us write a linearization of the problem to design a Newton procedure:
\begin{equation}
  \label{eq:Moreau--Jean-theta--nearly-residu3}
  \nabla^\top_v \mathcal R(v^{\tau}_{k+1})(v^{\tau+1}_{k+1}-v^{\tau}_{k+1}) = -  \mathcal R(v^{\tau}_{k+1}).
\end{equation}
The computation of $ \nabla^\top_v \mathcal R(v^{\tau}_{k+1})$ is as follows
\begin{equation}
  \label{eq:102}
  \nabla^\top_v \mathcal R(v) = M - h \theta \nabla_v F(t_{k+1}, q(v),v)
\end{equation}
with
\begin{equation}
  \label{eq:103}
  \begin{array}{lcl}
    \nabla_v F(t_{k+1}, q(v),v) &=& D_2 F(t_{k+1}, q(v),v) \nabla_v q(v) + D_3 F(t_{k+1}, q(v),v) \\
                                &=& h \theta D_2 F(t_{k+1}, q(v),v) T(\bar q_k) + D_3 F(t_{k+1}, q(v),v) \\
  \end{array}
\end{equation}
where $D_i$ denotes the derivation with respect the $i^{th}$ variable. The complete Jacobian is then given by
\begin{equation}
  \label{eq:104}
  \nabla^\top_v \mathcal R(v) = M - h \theta D_3 F(t_{k+1}, q(v),v) - h^2 \theta^2 D_2 F(t_{k+1}, q(v),v) T(\bar q_k)
\end{equation}
In siconos, we ask the user to provide the functions $D_3 F(t_{k+1}, q ,v )$ and $D_2 F(t_{k+1}, q,v)$.

Let us denote by $W^{\tau}$ the inverse of  Jacobian of the residu,
\begin{equation}
  \label{eq:105}
  W^{\tau} = (M - h \theta D_3 F(t_{k+1}, q(v),v) - h^2 \theta^2 D_2 F(t_{k+1}, q(v),v) T(\bar q_k))^{-1}.
\end{equation}
and by $\mathcal R_{free}(v)$ the free residu,
\begin{equation}
  \label{eq:106}
  \mathcal R_{free}(v) =  M(v-v_k) - h  \theta F(t_{k+1}, q(v),v) - h (1- \theta) F(t_{k}, q_{k},v_{k}).
\end{equation}

The linear equation \ref{eq:Moreau--Jean-theta--nearly-residu3} that we have to solve is equivalent to
\begin{equation}
  \label{eq:107}
  \boxed{v^{\tau+1}_{k+1} = v^{\tau}_{k+1} - W  \mathcal R_{free}(v^\tau_{k+1}) + W   H^\top(\bar q_k) Q^{\tau+1}_{k+1} + W G^\top(\bar q_k) P^{\tau+1}_{k+1}}
\end{equation}
We define  $v_{free}$ as
\begin{equation}
  \label{eq:108}
  v_{free}  = v^{\tau}_{k+1} - W  \mathcal R_{free}(v^\tau_{k+1})
\end{equation}

The local velocity at contact can be written
\begin{equation}
  \label{eq:109}
  u^{\tau+1}_{\n,k+1} = G(\bar q_k) [  v_{free}^{\tau} + W   H^\top(\bar q_k) Q^{\tau+1}_{k+1} + W G^\top(\bar q_k) P^{\tau+1}_{k+1}]
\end{equation}
and for the equality constraints
\begin{equation}
  \label{eq:110}
  u^{\tau+1}_{k+1} = H(\bar q_k) [  v_{free}^{\tau} + W   H^\top(\bar q_k) Q^{\tau+1}_{k+1} + W G^\top(\bar q_k) P^{\tau+1}_{k+1}]
\end{equation}
Finally, we get a linear relation between $u^{\tau+1}_{\n,k+1}$ and the multiplier 
\begin{equation}
  \label{eq:111}
 \boxed{ u^{\tau+1}_{k+1} =
  \begin{bmatrix}
    H(\bar q_k) \\
    G(\bar q_k)
  \end{bmatrix} v_{free}^{\tau}
  +
  \begin{bmatrix}
    H(\bar q_k)W   H^\top(\bar q_k) & H(\bar q_k)W   G^\top(\bar q_k) \\
    G(\bar q_k)W   H^\top(\bar q_k) & G(\bar q_k)W   G^\top(\bar q_k) \\
  \end{bmatrix}
  \begin{bmatrix}
    Q^{\tau+1}_{k+1} \\
    P^{\tau+1}_{k+1}
  \end{bmatrix}}
\end{equation}






\paragraph{choices for $\bar q_k$} Two choices are possible for $\bar q_k$
\begin{enumerate}
\item $\bar q_k = q_k$
\item $\bar q_k = q^{\tau}_{k+1}$
\end{enumerate}

\begin{ndrva}

  todo list:
  
  \begin{itemize}


  \item add the projection step for the unit quaternion

  \item describe the computation of H and G that can be hybrid

    
\end{itemize}

\end{ndrva}


\subsection{Computation of the Jacobian in special case}

\paragraph{Moment of gyroscopic forces}
Let us denote by the basis vector $e_i$ given the $i^{th}$ column of the identity matrix $I_{3\times3}$. The Jacobian of $M_{gyr}$ is given by
\begin{equation}
  \label{eq:112}
  \nabla^\top_\Omega M_{gyr}(\Omega) = \nabla^\top_\Omega (\Omega \times I \Omega) =
  \begin{bmatrix}
    e_i \times I \Omega + \Omega \times I e_i, i =1,2,3
  \end{bmatrix}
\end{equation}

\paragraph{Linear internal wrench}
If the internal wrench  is given by
\begin{equation}
  \label{eq:113}
  F_{int}(t,q,v) =
  \begin{bmatrix}
    f_{int}(t,q,v)\\
    M_{int}(t,q,v)
  \end{bmatrix}
  = C v + K q, \quad C \in \RR^{6\times 6}, \quad K \in \RR^{6\times 7 }
\end{equation}
we get
\begin{equation}
  \label{eq:114}
  \begin{array}{lcl}
    \nabla_v F(t_{k+1}, q(v),v)  &=& h \theta K T(\bar q_k) + C \\
    \nabla^\top_v \mathcal R(v) &=& M - h \theta C - h^2 \theta^2 K T(\bar q_k)
  \end{array}
\end{equation}

\paragraph{External moment given in the inertial frame}

If the external moment denoted by $m_{ext} (t)$ is expressed in inertial frame, we have
\begin{equation}
  \label{eq:115}
  M_{ext}(q,t) = R^T m_{ext}(t)= \Phi(p) m_{ext}(t)
\end{equation}
In that case, $  M_{ext}(q,t)$ appears as a function $q$ and we need to compute its Jacobian w.r.t $q$. This computation needs the computation of
\begin{equation}
  \label{eq:116}
  \nabla_{p} M_{ext}(q,t) = \nabla_{p} \Phi(p) m_{ext}(t) 
\end{equation}
Let us compute first
\begin{equation}
  \label{eq:117}
  \Phi(p) m_{ext}(t)  =
  \begin{bmatrix}
    (1-2 p_2^2- 2 p_3^2)m_{ext,1} + 2(p_1p_2-p_3p_0)m_{ext,2} + 2(p_1p_3+p_2p_0)m_{ext,3}\\
    2(p_1p_2+p_3p_0)m_{ext,1}  +(1-2 p_1^2- 2 p_3^2)m_{ext,2} + 2(p_2p_3-p_1p_0)m_{ext,3}\\
    2(p_1p_3-p_2p_0)m_{ext,1}  + 2(p_2p_3+p_1p_0)m_{ext,2}  + (1-2 p_1^2- 2 p_2^2)m_{ext,3}\\
  \end{bmatrix}
\end{equation}
Then we get
\begin{equation}
  \label{eq:118}
  \begin{array}{l}
  \nabla_{p} \Phi(p) m_{ext}(t)  =\\
  \begin{bmatrix}
    -2 p_3 m_{ext,2} + 2 p_2 m_{ext,3} & 2p_2 m_{ext,2}+2 p_3 m_{ext,3}  & -4 p_2 m_{ext,1} +2p_1 m_{ext,2}+2 p_0 m_{ext,3} & -3 p_3 m_{ext,1} -2p_0 m_{ext,2} +2 p_1m_{ext,3}  \\
    2p_3 m_{ext,1} -2p_1m_{ext,3}  & 2p_2m_{ext,1} -4p_1 m_{ext,2} -2p_1 m_{ext,3} & & &  \\
  \end{bmatrix}
  \end{array}
\end{equation}





\subsection{Siconos implementation}

The expression:~$\mathcal R_{free}(v^\tau_{k+1}) = M(v-v_k) - h  \theta F(t_{k+1}, q(v^\tau_{k+1}),v^\tau_{k+1}) - h (1- \theta) F(t_{k}, q_{k},v_{k})$ is computed in {\tt MoreauJeanOSI::computeResidu()} and saved in {\tt ds->workspace(DynamicalSystem::freeresidu)}


The expression:~$\mathcal R(v^\tau_{k+1}) =\mathcal R_{free}(v^\tau_{k+1}) - h (1- \theta) F(t_{k}, q_{k},v_{k}) - H^\top(\bar q_k) Q_{k+1} - G^\top(\bar q_k) P_{k+1}  $ is computed in {\tt MoreauJeanOSI::computeResidu()} and saved in {\tt ds->workspace(DynamicalSystem::free)}.
\begin{ndrva}
  really a bad name for the buffer {\tt ds->workspace(DynamicalSystem::free)}. Why we are chosing this name ? to save some memory ?
\end{ndrva}


The expression:~$v_{free}  = v^{\tau}_{k+1} - W  \mathcal R_{free}(v^\tau_{k+1})$ is compute in {\tt MoreauJeanOSI::computeFreeState()} and saved in {\tt d->workspace(DynamicalSystem::free)}. 



The computation:~ $v^{\tau+1}_{k+1} = v_{free} + W   H^\top(\bar q_k) Q^{\tau+1}_{k+1} + W G^\top(\bar q_k) P^{\tau+1}_{k+1}$ is done in {\tt MoreauJeanOSI::updateState} and stored in {\tt d->twist()}.\\


%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "DevNotes"
%%% End: