File: friction_contact.rst

package info (click to toggle)
siconos 4.3.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 82,496 kB
  • sloc: cpp: 159,693; ansic: 108,665; fortran: 33,248; python: 20,709; xml: 1,244; sh: 385; makefile: 226
file content (767 lines) | stat: -rw-r--r-- 29,003 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
.. index::
   single: Friction-contact problems (2 or 3D)

.. contents::

.. _fc_problem:

Friction-contact problems (2 or 3D)
***********************************

Problem statement
=================


Given

* a symmetric positive semi definite matrix :math:`{M} \in {{\mathrm{I\!R}}}^{n \times n}`

* a vector :math:`{q} \in {{\mathrm{I\!R}}}^n`

* a vector of coefficients of friction :math:`\mu \in{{\mathrm{I\!R}}}^{n_c}`

the (reduced or dual) frictional contact problem is to find two vectors :math:`u\in{{\mathrm{I\!R}}}^n` , the relative local velocity and :math:`r\in {{\mathrm{I\!R}}}^n` , the contact forces denoted by :math:`\mathrm{FC}(M,q,\mu)` such that

.. math::

    \begin{eqnarray*} \begin{cases}
    u = M r + q \\
    \hat u = u +\left[ \left[\begin{array}{c} \mu^\alpha \|u^\alpha_{T}\|\\ 0 \\ 0 \end{array}\right]^T, \alpha = 1 \ldots n_c \right]^T \\ \ \ C^\star_{\mu} \ni {\hat u} \perp r \in C_{\mu}
    \end{cases} \end{eqnarray*}

where the Coulomb friction cone is defined by :math:`C_{\mu} = \prod\limits_{\alpha=1\ldots n_c} C^{\alpha}_{\mu^\alpha}`

with :math:`C^{\alpha}_{\mu^\alpha} =\{ r^\alpha, \|r_{t}\| \leq \mu_{\alpha} |r^\alpha_{n}|\}` , and the set :math:`C^{\alpha,\star}_{\mu^\alpha}` its dual.

The modified local velocity :math:`\widehat u ` is not considered as an unknown since it can be obtained uniquely from the local velocity :math:`u` . Coulomb's friction law with Signorini's condition for the unilateral contact written in terms of second order complementarity condition

.. math::

    \begin{eqnarray} C^\star_{\mu} \ni {\hat u} \perp r \in C_{\mu} \end{eqnarray}

can be interpreted in a more usual form

.. math::

    \begin{eqnarray} \begin{cases} 0 \leq u_{N} \perp r_N \geq 0 \quad\quad\text{ Signorini condition}\\ u_T = 0 \Rightarrow \|r_T\| \leq \mu |r_n| \quad\quad\text{ Sticking mode} \\ u_T \neq 0 \Rightarrow r_T = - \mu |r_n| \frac{u_T }{\|u_T\|} \quad\quad\text{ Sliding mode} \end{cases} \end{eqnarray}

This problem models any instance of discretized frictional contact problem obtained from

* the time-discretization of dynamics contact problems with event-capturing of event-tracking schemes,

* the time-discretization of quasi-static contact problems,

* the modeling of static contact problems. In this last case, :math:`u` plays the role of the relative displacement at contact

Implementation in numerics
==========================

Structure to define the problem: :class:`FrictionContactProblem`.

Solvers list  :enum:`FRICTION_SOLVER`

The generic drivers for friction-contact problems are:

* :func:`fc2d_driver` (id contains FRICTION_2D)
* :func:`fc3d_driver` (id contains FRICTION_3D)
* :func:`gfc3d_driver` (id contains GLOBAL_FRICTION)
* :func:`rolling_fc3d_driver` (id contains ROLLING_FRICTION_3D)


For details regarding global formulation and rolling-friction problems, see :ref:`gfc_problem` or :ref:`rfc_problem`.
  
.. _fc_error:

Error strategy
==============

To set internal solver tolerance (when it makes sense!) use one of the following functions :

:func:`fc3d_set_internalsolver_tolerance`, :func:`gfc3d_set_internalsolver_tolerance`, :func:`rolling_fc3d_set_internalsolver_tolerance`

The computation of the tolerance depends on the value of iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY].

It can be:

* SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_ADAPTIVE

  internal solver tolerance = error/dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO]
  
* SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_ADAPTIVE_N_CONTACT

  internal solver tolerance = error/dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] * number of contacts
  
* SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_GIVEN_VALUE
    
  internal solver tolerance = value provided during initialisation of the local solver.

Warning : iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY] and dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] must be set properly for all solvers that are using Xfc3d_set_internal_tolerance function.
  
  
.. _fc2d_solvers:

Friction 2D available solvers
=============================

Nonsmooth Gauss-Seidel (:enumerator:`SICONOS_FRICTION_2D_NSGS`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

direct solver for LCP based on pivoting method principle for degenerate problem: the choice of pivot variable is performed via lexicographic ordering.

**Driver:** :func:`fc2d_nsgs`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 1000
* iparam[SICONOS_IPARAM_NSGS_SHUFFLE] = 0
* iparam[SICONOS_FRICTION_3D_IPARAM_ERROR_EVALUATION] = SICONOS_FRICTION_3D_NSGS_ERROR_EVALUATION_LIGHT_WITH_FULL_FINAL;
* dparam[SICONOS_DPARAM_TOL] = 1e-4

Conjugated projected gradient (:enumerator:`SICONOS_FRICTION_2D_CPG`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc2d_cpg`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 1000
* dparam[SICONOS_DPARAM_TOL] = 1e-4

Lemke solver (:enumerator:`SICONOS_FRICTION_2D_LEMKE`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""

Convert friction problem into a LCP and solve it using Lemke solver.

**Driver:** :func:`fc2d_lemke`

**Parameters:** same as :enumerator:`SICONOS_LCP_LEMKE`, see :ref:`lcp_solvers`.


Enumerative solver (:enumerator:`SICONOS_FRICTION_2D_ENUM`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

Convert friction problem into a LCP and solve it using enumerative solver.

**Driver:** :func:`fc2d_enum`

**Parameters:** same as :enumerator:`SICONOS_LCP_ENUM`, see :ref:`lcp_solvers`.

.. _fc3d_solvers:

Friction 3D available solvers
=============================

Nonsmooth Gauss-Seidel (:enumerator:`SICONOS_FRICTION_3D_NSGS`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_nsgs`

**Parameters:**


* iparam[SICONOS_IPARAM_MAX_ITER] = 1000 : Maximum iteration number
* iparam[SICONOS_FRICTION_3D_IPARAM_ERROR_EVALUATION] : error computation method,
  
  * SICONOS_FRICTION_3D_NSGS_ERROR_EVALUATION_FULL : Full error computation with velocity computation
  * SICONOS_FRICTION_3D_NSGS_ERROR_EVALUATION_LIGHT_WITH_FULL_FINAL (DEFAULT): Light error computation with incremental values on reaction verification of absolute error at the end
  * SICONOS_FRICTION_3D_NSGS_ERROR_EVALUATION_LIGHT : only light error computation (velocity not computed)
  * SICONOS_FRICTION_3D_NSGS_ERROR_EVALUATION_ADAPTIVE :  we adapt the frequency of the full erro evaluation.

* iparam[SICONOS_FRICTION_3D_IPARAM_ERROR_EVALUATION_FREQUENCY] = 0,  error computation frequency

* iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY] = SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_GIVEN_VALUE

* iparam[SICONOS_FRICTION_3D_NSGS_SHUFFLE] : shuffle the contact indices in the loop
  
  * SICONOS_FRICTION_3D_NSGS_SHUFFLE_FALSE : no shuffle
  * SICONOS_FRICTION_3D_NSGS_SHUFFLE_TRUE : shuffle only at the beginning
  * SICONOS_FRICTION_3D_NSGS_SHUFFLE_TRUE_EACH_LOOP : shuffle in each iteration

* iparam[SICONOS_FRICTION_3D_NSGS_SHUFFLE_SEED] = 0 : seed for the random generator in shuffling  contacts

* iparam[SICONOS_FRICTION_3D_NSGS_FILTER_LOCAL_SOLUTION] : filter local solution if the local error is greater than 1.0

  * SICONOS_FRICTION_3D_NSGS_FILTER_LOCAL_SOLUTION_FALSE (default) the filter is not applied
  * SICONOS_FRICTION_3D_NSGS_FILTER_LOCAL_SOLUTION_TRUE  the filter is applied

* iparam[SICONOS_FRICTION_3D_NSGS_RELAXATION] : method uses overrelaxation

  * SICONOS_FRICTION_3D_NSGS_RELAXATION_FALSE (default) relaxation is not used,
  * SICONOS_FRICTION_3D_NSGS_RELAXATION_TRUE  relaxation is used with parameter dparam[8],

  
* dparam[SICONOS_DPARAM_TOL] = 1e-4, user tolerance on the loop
* dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] = 10.0
* dparam[SICONOS_FRICTION_3D_NSGS_RELAXATION_VALUE]  the relaxation parameter omega

out

*  iparam[SICONOS_IPARAM_ITER_DONE] = iter number of performed iterations
* dparam[SICONOS_DPARAM_RESIDU]  reached error

Default internal solver : :enumerator:`SICONOS_FRICTION_3D_ONECONTACT_NSN_GP_HYBRID`.
      


Nonsmooth Gauss-Seidel, velocity version (:enumerator:`SICONOS_FRICTION_3D_NSGSV`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc3d_nsgs_velocity`

**Parameters:**


* iparam[SICONOS_IPARAM_MAX_ITER] = 1000 : Maximum iteration number
* dparam[SICONOS_DPARAM_TOL] = 1e-4, user tolerance on the loop
out

*  iparam[7] as number of performed iterations

 dparam[SICONOS_DPARAM_RESIDU(1)]  reached error

Default internal solver : :enumerator:`SICONOS_FRICTION_3D_ONECONTACT_NSN`.
      

Proximal point solver (:enumerator:`SICONOS_FRICTION_3D_PROX`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc3d_proximal`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 1000 : Maximum iteration number
* iparam[SICONOS_FRICTION_3D_PROXIMAL_IPARAM_STRATEGY]

  * SICONOS_FRICTION_3D_PROXIMAL_REGULARIZATION) 
  * SICONOS_FRICTION_3D_PROXIMAL_PROX (default)
* iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY] = SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_GIVEN_VALUE
* dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] = 10.0
    
* dparam[SICONOS_DPARAM_TOL] = 1e-4, user tolerance on the loop
* dparam[SICONOS_FRICTION_3D_PROXIMAL_DPARAM_ALPHA] = 1e4
* dparam[SICONOS_FRICTION_3D_PROXIMAL_DPARAM_SIGMA] = 5.
* dparam[SICONOS_FRICTION_3D_PROXIMAL_DPARAM_NU] = 1.

out

iparam[SICONOS_FRICTION_3D_PROXIMAL_IPARAM_CUMULATIVE_ITER_DONE]

Default internal solver : :enumerator:`SICONOS_FRICTION_3D_NSN_AC`.

Fixed-point (Tresca) (:enumerator:`SICONOS_FRICTION_3D_TFP`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Fixed point solver for friction-contact 3D problem based on the Tresca
  problem with fixed friction threshold

**Driver:** :func:`fc3d_TrescaFixedPoint`

**Parameters:**


* iparam[SICONOS_IPARAM_MAX_ITER] = 1000
* iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY] =  SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_ADAPTIVE;
* dparam[SICONOS_DPARAM_TOL] = 1e-14
* dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] =10.0;


Default internal solver : :enumerator:`SICONOS_FRICTION_3D_NSGS` with
:enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnCylinderWithLocalIteration`
as internal solver.

Nonsmooth Newton/ Alart-Curnier (:enumerator:`SICONOS_FRICTION_3D_NSN_AC`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc3d_nonsmooth_Newton_AlartCurnier`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 200;

* iparam[SICONOS_FRICTION_3D_NSN_FORMULATION]

  * SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_STD 
  * SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_STD
  * SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_GENERATED, (default)
  * SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_GENERATED
  * SICONOS_FRICTION_3D_NSN_FORMULATION_NULL

* iparam[SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY]

  * SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_NO (default)
  * SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_PLI_NSN_LOOP : Loop PLI-NSN strategy 
  * SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_NSN_AND_PLI_NSN_LOOP : NSN and after Loop PLI-NSN strategy for the hybrid solver 
  * SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_VI_EG_NSN : VI_EG preconditionning to NSN

* iparam[3] = 100000; /* nzmax*/
* iparam[5] = 1;

* iparam[SICONOS_FRICTION_3D_NSN_RHO_STRATEGY]

  * SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_CONSTANT : uses constant value (dparam[SICONOS_FRICTION_3D_NSN_RHO]) for rho
  * SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPECTRAL_NORM
  * SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPLIT_SPECTRAL_NORM_COND
  * SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPLIT_SPECTRAL_NORM
  * SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_ADAPTIVE

* iparam[SICONOS_FRICTION_3D_NSN_MPI_COM] = -1,  mpi com fortran 

* iparam[SICONOS_FRICTION_3D_NSN_LINEAR_SOLVER] Linear solver used at each Newton iteration
  * SICONOS_FRICTION_3D_NSN_USE_CSLUSOL
  * SICONOS_FRICTION_3D_NSN_USE_MUMPS

* iparam[SICONOS_FRICTION_3D_IPARAM_ERROR_EVALUATION_FREQUENCY] = 1; (must be > 0 !)

* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH]
  
  * SICONOS_FRICTION_3D_NSN_LINESEARCH_GOLDSTEINPRICE (default)
  * SICONOS_FRICTION_3D_NSN_LINESEARCH_ARMIJO
  * SICONOS_FRICTION_3D_NSN_LINESEARCH_NO

* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH_MAX_ITER] = 100  maximum number of iterations allowed for the line search.
 
* dparam[SICONOS_DPARAM_TOL] = 1e-3
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = 1


Nonsmooth Newton/ Alart-Curnier (test) (:enumerator:`SICONOS_FRICTION_3D_NSN_AC_TEST`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc3d_nonsmooth_Newton_AlartCurnier2`

* iparam[SICONOS_FRICTION_3D_NSN_FORMULATION]

  * SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_STD (default)
  * SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_STD
  * SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_GENERATED,
  * SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_GENERATED
  * SICONOS_FRICTION_3D_NSN_FORMULATION_NULL

* iparam[SICONOS_IPARAM_LSA_SEARCH_CRITERION] = SICONOS_LSA_GOLDSTEIN;
* iparam[SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY]
* optionsiparam[SICONOS_IPARAM_MAX_ITER] = 1000;
* optionsdparam[SICONOS_DPARAM_TOL] = 1e-10;

* iparam[SICONOS_IPARAM_LSA_NONMONOTONE_LS] = 0;
* iparam[SICONOS_IPARAM_LSA_NONMONOTONE_LS_M] = 0;
* dparam[SICONOS_DPARAM_LSA_ALPHA_MIN] = 1e-16;
* dparam[SICONOS_IPARAM_STOPPING_CRITERION] = SICONOS_STOPPING_CRITERION_RESIDU;

   
Fixed-Point (De Saxce formulation) (:enumerator:`SICONOS_FRICTION_3D_DSFP`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc3d_DeSaxceFixedPoint`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 20000;
* dparam[SICONOS_DPARAM_TOL] = 1e-3;
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = 1.;

  
Fixed-Point projection (VI reformulation) (:enumerator:`SICONOS_FRICTION_3D_VI_FPP`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc3d_VI_FixedPointProjection`

**Parameters:** same as :enumerator:`SICONOS_VI_FPP`, see :ref:`vi_solvers`.

Fixed-Point projection on cylinder (VI reformulation) (:enumerator:`SICONOS_FRICTION_3D_VI_FPP_Cylinder`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc3d_VI_FixedPointProjection_Cylinder`

**Parameters:** same as :enumerator:`SICONOS_VI_FPP`, see :ref:`vi_solvers`.

Extra Gradient (VI reformulation) (:enumerator:`SICONOS_FRICTION_3D_VI_EG`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc3d_VI_ExtraGradient`

**Parameters:** same as :enumerator:`SICONOS_VI_EG`, see :ref:`vi_solvers`.


Hyperplane Projection (:enumerator:`SICONOS_FRICTION_3D_HP`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc3d_HyperplaneProjection`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 20000;
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH_MAX_ITER] = 50.;

* dparam[SICONOS_DPARAM_TOL] = 1e-3;
* dparam[SICONOS_FRICTION_3D_PROXIMAL_DPARAM_SIGMA] = 0.99
  
Fixed-Point projection (:enumerator:`SICONOS_FRICTION_3D_FPP`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc3d_fixedPointProjection`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 20000;
* dparam[SICONOS_DPARAM_TOL] = 1e-3;
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = 1.;


Extra Gradient (:enumerator:`SICONOS_FRICTION_3D_EG`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc3d_ExtraGradient`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 20000;
* dparam[SICONOS_DPARAM_TOL] = 1e-3;
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = -1.;


Nonsmooth Newton (Fischer-Burmeister formulation) (:enumerator:`SICONOS_FRICTION_3D_NSN_FB`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc3d_nonsmooth_Newton_FischerBurmeister`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 200;

* iparam[SICONOS_FRICTION_3D_NSN_FORMULATION]

  * SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_STD (default)
  * SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_STD
  * SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_GENERATED,
  * SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_GENERATED
  * SICONOS_FRICTION_3D_NSN_FORMULATION_NULL
  
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH]
  
  * SICONOS_FRICTION_3D_NSN_LINESEARCH_GOLDSTEINPRICE (default)
  * SICONOS_FRICTION_3D_NSN_LINESEARCH_ARMIJO
  * SICONOS_FRICTION_3D_NSN_LINESEARCH_NO
    
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH_MAX_ITER] = 100;

* iparam[SICONOS_FRICTION_3D_IPARAM_ERROR_EVALUATION_FREQUENCY] = 1; (must be > 0 !)

* dparam[SICONOS_DPARAM_TOL] = 1e-3;
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = 1.;


PATH (via GAMS) + AVI reformulation (:enumerator:`SICONOS_FRICTION_3D_GAMS_PATH`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
solver using PATH (via GAMS) for friction-contact 3D problem based on an AVI reformulation

**Driver:** :func:`fc3d_AVI_gams_path`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 10000;
* dparam[SICONOS_DPARAM_TOL] = 1e-9;

out

* dparam[TOTAL_TIME_USED]
* iparam[TOTAL_ITER]
* iparam[LAST_MODEL_STATUS]
* iparam[LAST_SOLVE_STATUS]

PATHVI (via GAMS) + AVI reformulation :enumerator:`SICONOS_FRICTION_3D_GAMS_PATHVI`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
solver using PATHVI (via GAMS) for friction-contact 3D problem based on an AVI reformulation

**Driver:** :func:`fc3d_AVI_gams_pathvi`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 10000;
* dparam[SICONOS_DPARAM_TOL] = 1e-9;

out

* dparam[TOTAL_TIME_USED]
* iparam[TOTAL_ITER]
* iparam[LAST_MODEL_STATUS]
* iparam[LAST_SOLVE_STATUS]

 ACLM Fixed-Point (:enumerator:`SICONOS_FRICTION_3D_ACLMFP`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc3d_ACLMFixedPoint`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 1000;
* iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY] = SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_GIVEN_VALUE
* dparam[SICONOS_DPARAM_TOL] = 1e-4;
* dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] = 10.0

Internal solver: :enumerator:`SICONOS_SOCLCP_NSGS`, see :ref:`soclcp_solvers`.

Nonsmooth Gauss-Seidel (:enumerator:`SICONOS_FRICTION_3D_SOCLCP`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_SOCLCP`

**Parameters:** same as :enumerator:`SICONOS_SOCLCP_NSGS`, see : ref:`soclcp_solvers`.


PATH (via GAMS) + LCP reformulation (:enumerator:`SICONOS_FRICTION_3D_GAMS_LCP_PATH`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
solver using PATH (via GAMS) for friction-contact 3D problem based on an LCP reformulation

**Driver:** :func:`fc3d_lcp_gams_path`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 10000;
* dparam[SICONOS_DPARAM_TOL] = 1e-9;

PATHVI (via GAMS) + LCP reformulation :enumerator:`SICONOS_FRICTION_3D_GAMS_LCP_PATHVI`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
solver using PATHVI (via GAMS) for friction-contact 3D problem based on an LCP reformulation

**Driver:** :func:`fc3d_lcp_gams_pathvi`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 10000;
* dparam[SICONOS_DPARAM_TOL] = 1e-9;

Nonsmooth Newton, Natural Map (:enumerator:`SICONOS_FRICTION_3D_NSN_NM`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

Nonsmooth Newton solver based on the Natural--Map function for
the local (reduced) frictional contact problem in the dense form.

**Driver:** :func:`fc3d_nonsmooth_Newton_NaturalMap`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 200;

* iparam[SICONOS_FRICTION_3D_NSN_FORMULATION]

  * SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_STD (default)
  * SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_STD
  * SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_GENERATED,
  * SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_GENERATED
  * SICONOS_FRICTION_3D_NSN_FORMULATION_NULL

* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH]
  
  * SICONOS_FRICTION_3D_NSN_LINESEARCH_GOLDSTEINPRICE (default)
  * SICONOS_FRICTION_3D_NSN_LINESEARCH_ARMIJO
  * SICONOS_FRICTION_3D_NSN_LINESEARCH_NO
    
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH_MAX_ITER] = 100;
* iparam[SICONOS_FRICTION_3D_IPARAM_ERROR_EVALUATION_FREQUENCY] = 1;

* dparam[SICONOS_DPARAM_TOL] = 1e-3;
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = 1.;


Fixed point, Panagiotopoulos (:enumerator:`SICONOS_FRICTION_3D_PFP`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

Fixed point solver for friction-contact 3D problem based on the Panagiotopoulos
method based on an alternative technique between the normal problem and the tangential one.

**Driver:** :func:`fc3d_Panagiotopoulos_FixedPoint`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 200;
* iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY] =  SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_ADAPTIVE;

* dparam[SICONOS_DPARAM_TOL] = 1e-4;
* dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] =10.0;

Two internal solvers: :enumerator:`SICONOS_LCP_PGS` and :enumerator:`SICONOS_CONVEXQP_VI_FPP`.

ADMM (:enumerator:`SICONOS_FRICTION_3D_ADMM`)
"""""""""""""""""""""""""""""""""""""""""""""

Solver based on `ADMM method <https://stanford.edu/~boyd/admm.html>`_.

**Driver:** :func:`fc3d_admm`

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 20000;

* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_SYMMETRY]
  
  * SICONOS_FRICTION_3D_ADMM_FORCED_SYMMETRY (default)
  * SICONOS_FRICTION_3D_ADMM_FORCED_ASYMMETRY
  * SICONOS_FRICTION_3D_ADMM_CHECK_SYMMETRY

* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_ACCELERATION]

  * SICONOS_FRICTION_3D_ADMM_ACCELERATION
  * SICONOS_FRICTION_3D_ADMM_ACCELERATION_AND_RESTART (default)
  * SICONOS_FRICTION_3D_ADMM_NO_ACCELERATION

* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_SPARSE_STORAGE]

  * SICONOS_FRICTION_3D_ADMM_FORCED_SPARSE_STORAGE
  * SICONOS_FRICTION_3D_ADMM_KEEP_STORAGE (default)

* dparam[SICONOS_FRICTION_3D_ADMM_INITIAL_RHO] =

  * SICONOS_FRICTION_3D_ADMM_INITIAL_RHO_GIVEN (default)
  * SICONOS_FRICTION_3D_ADMM_INITIAL_RHO_NORM_INF
  * SICONOS_FRICTION_3D_ADMM_INITIAL_RHO_EIGENVALUES

* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_RHO_STRATEGY]

  * SICONOS_FRICTION_3D_ADMM_RHO_STRATEGY_RESIDUAL_BALANCING
  * SICONOS_FRICTION_3D_ADMM_RHO_STRATEGY_SCALED_RESIDUAL_BALANCING
  * SICONOS_FRICTION_3D_ADMM_RHO_STRATEGY_CONSTANT (default)

* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_GET_PROBLEM_INFO]

  * SICONOS_FRICTION_3D_ADMM_GET_PROBLEM_INFO_NO (default)
  * SICONOS_FRICTION_3D_ADMM_GET_PROBLEM_INFO_YES
    
* iparam[SICONOS_FRICTION_3D_IPARAM_RESCALING]

  * SICONOS_FRICTION_3D_RESCALING_NO (default)
  * SICONOS_FRICTION_3D_RESCALING_SCALAR,
  * SICONOS_FRICTION_3D_RESCALING_BALANCING_M,
  * SICONOS_FRICTION_3D_RESCALING_BALANCING_MH

* dparam[SICONOS_DPARAM_TOL] = 1e-6;
* dparam[SICONOS_FRICTION_3D_ADMM_RHO] = 1.
* dparam[SICONOS_FRICTION_3D_ADMM_RESTART_ETA] = 0.999;
* dparam[SICONOS_FRICTION_3D_ADMM_BALANCING_RESIDUAL_TAU] = 2.
* dparam[SICONOS_FRICTION_3D_ADMM_BALANCING_RESIDUAL_PHI] = 2.;


"One contact" solvers
^^^^^^^^^^^^^^^^^^^^^

Newton(:enumerator:`SICONOS_FRICTION_3D_ONECONTACT_NSN`, ...)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

**Driver:** :func:`fc3d_onecontact_nonsmooth_Newton_solvers_solve`

which switches to one of the local drivers below:

.. csv-table:: Projection on cone solvers
   :header: "Solver id", "Driver"
   :widths: 15, 30

   ":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_NSN`",":func:`fc3d_onecontact_nonsmooth_Newton_solvers_solve_direc`"
   ":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_NSN_GP`",":func:`fc3d_onecontact_nonsmooth_Newton_solvers_solve_dampe`"
   ":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_NSN_GP_HYBRID`",":func:`fc3d_onecontact_nonsmooth_Newton_solvers_solve_hybrid`"

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 10
* iparam[SICONOS_FRICTION_3D_CURRENT_CONTACT_NUMBER]

* iparam[SICONOS_FRICTION_3D_NSN_FORMULATION]

  * SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_STD (default)
  * SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_STD
  * SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_GENERATED,
  * SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_GENERATED
  * SICONOS_FRICTION_3D_NSN_FORMULATION_NULL

* iparam[SICONOS_FRICTION_3D_NSN_RHO_STRATEGY]

  * SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_CONSTANT : uses constant value (dparam[SICONOS_FRICTION_3D_NSN_RHO]) for rho
  * SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPECTRAL_NORM
  * SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPLIT_SPECTRAL_NORM_COND (default for NSN)
  * SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPLIT_SPECTRAL_NORM (default for NSN_GP and NSN_GP_HYBRID)
  * SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_ADAPTIVE

* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH]
  
  * SICONOS_FRICTION_3D_NSN_LINESEARCH_GOLDSTEINPRICE (default for NSN_GP and NSN_GP_HYBRID)
  * SICONOS_FRICTION_3D_NSN_LINESEARCH_ARMIJO
  * SICONOS_FRICTION_3D_NSN_LINESEARCH_NO (default for NSN)

* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH_MAX_ITER] = 10;

* iparam[SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY]

  * SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_NO
  * SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_PLI_NSN_LOOP (default for NSN)
  * SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_NSN_AND_PLI_NSN_LOOP (default for NSN_GP and NSP_GP_HYBRID)
  * SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_VI_EG_NSN

* iparam[SICONOS_FRICTION_3D_NSN_HYBRID_MAX_LOOP] = 1;
* iparam[SICONOS_FRICTION_3D_NSN_HYBRID_MAX_ITER] = 10 (for NSN), 100 (for NSN_GP and NSN_GP_HYBRID);

    
* dparam[SICONOS_DPARAM_TOL] =1e-14;
* dparam[SICONOS_FRICTION_3D_NSN_RHO] =1.0;
 

Projection on cone or cylinder (:enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnCone`, ...)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

.. csv-table:: Projection on cone solvers
   :header: "Solver id", "Driver"
   :widths: 15, 30

   ":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnCone`",":func:`fc3d_projectionOnCone_solve`"
   ":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnConeWithRegularization`",":func:`fc3d_projectionOnCone_solve`"
   ":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnConeWithLocalIteration`",":func:`fc3d_projectionOnConeWithLocalIteration_solve`"
   ":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnConeWithDiagonalization`",":func:`fc3d_projectionOnConeWithDiagonalization_solve`"
   ":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnCone_velocity`",":func:`fc3d_projectionOnCone_velocity_solve`"
   ":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnCylinder`",":func:`fc3d_projectionOnCylinder_solve`"
   ":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnProjectionOnCylinderWithLocalIteration`",":func:`fc3d_projectionOnCylinderWithLocalIteration_solve`"
  
**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 1000
* iparam[SICONOS_FRICTION_3D_CURRENT_CONTACT_NUMBER]
* dparam[SICONOS_DPARAM_TOL] =1e-14
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = 1., used only in the 'with regularization' case


NCP Fixed Point solver (:enumerator:`SICONOS_FRICTION_3D_NCPGlockerFBFixedPoint`, ...)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""


.. csv-table:: NCP Fixed-point solvers
   :header: "Solver id", "Driver", "Update"
   :widths: 15, 30, 30

   ":enumerator:`SICONOS_FRICTION_3D_NCPGlockerFBFixedPoint`",":func:`fc3d_FixedP_solve`",                                ":func:`NCPGlocker_update`"
   ":enumerator:`SICONOS_FRICTION_3D_NCPGlockerFBNewton`",    ":func:`fc3d_onecontact_nonsmooth_Newton_solvers_solve`",   ":func:`NCPGlocker_update`"
   ":enumerator:`SICONOS_FRICTION_3D_NCPGlockerFBPATH`",      ":func:`fc3d_Path_solve`",                                  ":func:`NCPGlocker_update`"

**Parameters:**

* iparam[SICONOS_IPARAM_MAX_ITER] = 1000
* dparam[SICONOS_DPARAM_TOL] =1e-12


Quartic (:enumerator:`SICONOS_FRICTION_3D_ONECONTACT_QUARTIC`, ...)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

ids : :enumerator:`SICONOS_FRICTION_3D_ONECONTACT_QUARTIC`, :enumerator:`SICONOS_FRICTION_3D_ONECONTACT_QUARTIC_NU`

**Driver:** :func:`fc3d_unitary_enumerative`

**Parameters:**

* dparam[SICONOS_DPARAM_TOL] =1e-12





As Convex QP (:enumerator:`SICONOS_FRICTION_3D_CONVEXQP_CYLINDER`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

Reformulate the problem as a convex QP and solve using :enumerator:`SICONOS_CONVEXQP_PG`.


**Driver:** :func:`fc3d_ConvexQP_ProjectedGradient_Cylinder`

**Parameters:** same as :enumerator:`SICONOS_CONVEXQP_PG, see :ref:`convex_qp_solvers`.