1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
|
.. index::
single: Friction-contact problems (2 or 3D)
.. contents::
.. _fc_problem:
Friction-contact problems (2 or 3D)
***********************************
Problem statement
=================
Given
* a symmetric positive semi definite matrix :math:`{M} \in {{\mathrm{I\!R}}}^{n \times n}`
* a vector :math:`{q} \in {{\mathrm{I\!R}}}^n`
* a vector of coefficients of friction :math:`\mu \in{{\mathrm{I\!R}}}^{n_c}`
the (reduced or dual) frictional contact problem is to find two vectors :math:`u\in{{\mathrm{I\!R}}}^n` , the relative local velocity and :math:`r\in {{\mathrm{I\!R}}}^n` , the contact forces denoted by :math:`\mathrm{FC}(M,q,\mu)` such that
.. math::
\begin{eqnarray*} \begin{cases}
u = M r + q \\
\hat u = u +\left[ \left[\begin{array}{c} \mu^\alpha \|u^\alpha_{T}\|\\ 0 \\ 0 \end{array}\right]^T, \alpha = 1 \ldots n_c \right]^T \\ \ \ C^\star_{\mu} \ni {\hat u} \perp r \in C_{\mu}
\end{cases} \end{eqnarray*}
where the Coulomb friction cone is defined by :math:`C_{\mu} = \prod\limits_{\alpha=1\ldots n_c} C^{\alpha}_{\mu^\alpha}`
with :math:`C^{\alpha}_{\mu^\alpha} =\{ r^\alpha, \|r_{t}\| \leq \mu_{\alpha} |r^\alpha_{n}|\}` , and the set :math:`C^{\alpha,\star}_{\mu^\alpha}` its dual.
The modified local velocity :math:`\widehat u ` is not considered as an unknown since it can be obtained uniquely from the local velocity :math:`u` . Coulomb's friction law with Signorini's condition for the unilateral contact written in terms of second order complementarity condition
.. math::
\begin{eqnarray} C^\star_{\mu} \ni {\hat u} \perp r \in C_{\mu} \end{eqnarray}
can be interpreted in a more usual form
.. math::
\begin{eqnarray} \begin{cases} 0 \leq u_{N} \perp r_N \geq 0 \quad\quad\text{ Signorini condition}\\ u_T = 0 \Rightarrow \|r_T\| \leq \mu |r_n| \quad\quad\text{ Sticking mode} \\ u_T \neq 0 \Rightarrow r_T = - \mu |r_n| \frac{u_T }{\|u_T\|} \quad\quad\text{ Sliding mode} \end{cases} \end{eqnarray}
This problem models any instance of discretized frictional contact problem obtained from
* the time-discretization of dynamics contact problems with event-capturing of event-tracking schemes,
* the time-discretization of quasi-static contact problems,
* the modeling of static contact problems. In this last case, :math:`u` plays the role of the relative displacement at contact
Implementation in numerics
==========================
Structure to define the problem: :class:`FrictionContactProblem`.
Solvers list :enum:`FRICTION_SOLVER`
The generic drivers for friction-contact problems are:
* :func:`fc2d_driver` (id contains FRICTION_2D)
* :func:`fc3d_driver` (id contains FRICTION_3D)
* :func:`gfc3d_driver` (id contains GLOBAL_FRICTION)
* :func:`rolling_fc3d_driver` (id contains ROLLING_FRICTION_3D)
For details regarding global formulation and rolling-friction problems, see :ref:`gfc_problem` or :ref:`rfc_problem`.
.. _fc_error:
Error strategy
==============
To set internal solver tolerance (when it makes sense!) use one of the following functions :
:func:`fc3d_set_internalsolver_tolerance`, :func:`gfc3d_set_internalsolver_tolerance`, :func:`rolling_fc3d_set_internalsolver_tolerance`
The computation of the tolerance depends on the value of iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY].
It can be:
* SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_ADAPTIVE
internal solver tolerance = error/dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO]
* SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_ADAPTIVE_N_CONTACT
internal solver tolerance = error/dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] * number of contacts
* SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_GIVEN_VALUE
internal solver tolerance = value provided during initialisation of the local solver.
Warning : iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY] and dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] must be set properly for all solvers that are using Xfc3d_set_internal_tolerance function.
.. _fc2d_solvers:
Friction 2D available solvers
=============================
Nonsmooth Gauss-Seidel (:enumerator:`SICONOS_FRICTION_2D_NSGS`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
direct solver for LCP based on pivoting method principle for degenerate problem: the choice of pivot variable is performed via lexicographic ordering.
**Driver:** :func:`fc2d_nsgs`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 1000
* iparam[SICONOS_IPARAM_NSGS_SHUFFLE] = 0
* iparam[SICONOS_FRICTION_3D_IPARAM_ERROR_EVALUATION] = SICONOS_FRICTION_3D_NSGS_ERROR_EVALUATION_LIGHT_WITH_FULL_FINAL;
* dparam[SICONOS_DPARAM_TOL] = 1e-4
Conjugated projected gradient (:enumerator:`SICONOS_FRICTION_2D_CPG`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc2d_cpg`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 1000
* dparam[SICONOS_DPARAM_TOL] = 1e-4
Lemke solver (:enumerator:`SICONOS_FRICTION_2D_LEMKE`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""
Convert friction problem into a LCP and solve it using Lemke solver.
**Driver:** :func:`fc2d_lemke`
**Parameters:** same as :enumerator:`SICONOS_LCP_LEMKE`, see :ref:`lcp_solvers`.
Enumerative solver (:enumerator:`SICONOS_FRICTION_2D_ENUM`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Convert friction problem into a LCP and solve it using enumerative solver.
**Driver:** :func:`fc2d_enum`
**Parameters:** same as :enumerator:`SICONOS_LCP_ENUM`, see :ref:`lcp_solvers`.
.. _fc3d_solvers:
Friction 3D available solvers
=============================
Nonsmooth Gauss-Seidel (:enumerator:`SICONOS_FRICTION_3D_NSGS`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_nsgs`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 1000 : Maximum iteration number
* iparam[SICONOS_FRICTION_3D_IPARAM_ERROR_EVALUATION] : error computation method,
* SICONOS_FRICTION_3D_NSGS_ERROR_EVALUATION_FULL : Full error computation with velocity computation
* SICONOS_FRICTION_3D_NSGS_ERROR_EVALUATION_LIGHT_WITH_FULL_FINAL (DEFAULT): Light error computation with incremental values on reaction verification of absolute error at the end
* SICONOS_FRICTION_3D_NSGS_ERROR_EVALUATION_LIGHT : only light error computation (velocity not computed)
* SICONOS_FRICTION_3D_NSGS_ERROR_EVALUATION_ADAPTIVE : we adapt the frequency of the full erro evaluation.
* iparam[SICONOS_FRICTION_3D_IPARAM_ERROR_EVALUATION_FREQUENCY] = 0, error computation frequency
* iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY] = SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_GIVEN_VALUE
* iparam[SICONOS_FRICTION_3D_NSGS_SHUFFLE] : shuffle the contact indices in the loop
* SICONOS_FRICTION_3D_NSGS_SHUFFLE_FALSE : no shuffle
* SICONOS_FRICTION_3D_NSGS_SHUFFLE_TRUE : shuffle only at the beginning
* SICONOS_FRICTION_3D_NSGS_SHUFFLE_TRUE_EACH_LOOP : shuffle in each iteration
* iparam[SICONOS_FRICTION_3D_NSGS_SHUFFLE_SEED] = 0 : seed for the random generator in shuffling contacts
* iparam[SICONOS_FRICTION_3D_NSGS_FILTER_LOCAL_SOLUTION] : filter local solution if the local error is greater than 1.0
* SICONOS_FRICTION_3D_NSGS_FILTER_LOCAL_SOLUTION_FALSE (default) the filter is not applied
* SICONOS_FRICTION_3D_NSGS_FILTER_LOCAL_SOLUTION_TRUE the filter is applied
* iparam[SICONOS_FRICTION_3D_NSGS_RELAXATION] : method uses overrelaxation
* SICONOS_FRICTION_3D_NSGS_RELAXATION_FALSE (default) relaxation is not used,
* SICONOS_FRICTION_3D_NSGS_RELAXATION_TRUE relaxation is used with parameter dparam[8],
* dparam[SICONOS_DPARAM_TOL] = 1e-4, user tolerance on the loop
* dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] = 10.0
* dparam[SICONOS_FRICTION_3D_NSGS_RELAXATION_VALUE] the relaxation parameter omega
out
* iparam[SICONOS_IPARAM_ITER_DONE] = iter number of performed iterations
* dparam[SICONOS_DPARAM_RESIDU] reached error
Default internal solver : :enumerator:`SICONOS_FRICTION_3D_ONECONTACT_NSN_GP_HYBRID`.
Nonsmooth Gauss-Seidel, velocity version (:enumerator:`SICONOS_FRICTION_3D_NSGSV`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_nsgs_velocity`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 1000 : Maximum iteration number
* dparam[SICONOS_DPARAM_TOL] = 1e-4, user tolerance on the loop
out
* iparam[7] as number of performed iterations
dparam[SICONOS_DPARAM_RESIDU(1)] reached error
Default internal solver : :enumerator:`SICONOS_FRICTION_3D_ONECONTACT_NSN`.
Proximal point solver (:enumerator:`SICONOS_FRICTION_3D_PROX`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_proximal`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 1000 : Maximum iteration number
* iparam[SICONOS_FRICTION_3D_PROXIMAL_IPARAM_STRATEGY]
* SICONOS_FRICTION_3D_PROXIMAL_REGULARIZATION)
* SICONOS_FRICTION_3D_PROXIMAL_PROX (default)
* iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY] = SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_GIVEN_VALUE
* dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] = 10.0
* dparam[SICONOS_DPARAM_TOL] = 1e-4, user tolerance on the loop
* dparam[SICONOS_FRICTION_3D_PROXIMAL_DPARAM_ALPHA] = 1e4
* dparam[SICONOS_FRICTION_3D_PROXIMAL_DPARAM_SIGMA] = 5.
* dparam[SICONOS_FRICTION_3D_PROXIMAL_DPARAM_NU] = 1.
out
iparam[SICONOS_FRICTION_3D_PROXIMAL_IPARAM_CUMULATIVE_ITER_DONE]
Default internal solver : :enumerator:`SICONOS_FRICTION_3D_NSN_AC`.
Fixed-point (Tresca) (:enumerator:`SICONOS_FRICTION_3D_TFP`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Fixed point solver for friction-contact 3D problem based on the Tresca
problem with fixed friction threshold
**Driver:** :func:`fc3d_TrescaFixedPoint`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 1000
* iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY] = SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_ADAPTIVE;
* dparam[SICONOS_DPARAM_TOL] = 1e-14
* dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] =10.0;
Default internal solver : :enumerator:`SICONOS_FRICTION_3D_NSGS` with
:enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnCylinderWithLocalIteration`
as internal solver.
Nonsmooth Newton/ Alart-Curnier (:enumerator:`SICONOS_FRICTION_3D_NSN_AC`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_nonsmooth_Newton_AlartCurnier`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 200;
* iparam[SICONOS_FRICTION_3D_NSN_FORMULATION]
* SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_STD
* SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_STD
* SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_GENERATED, (default)
* SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_GENERATED
* SICONOS_FRICTION_3D_NSN_FORMULATION_NULL
* iparam[SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY]
* SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_NO (default)
* SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_PLI_NSN_LOOP : Loop PLI-NSN strategy
* SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_NSN_AND_PLI_NSN_LOOP : NSN and after Loop PLI-NSN strategy for the hybrid solver
* SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_VI_EG_NSN : VI_EG preconditionning to NSN
* iparam[3] = 100000; /* nzmax*/
* iparam[5] = 1;
* iparam[SICONOS_FRICTION_3D_NSN_RHO_STRATEGY]
* SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_CONSTANT : uses constant value (dparam[SICONOS_FRICTION_3D_NSN_RHO]) for rho
* SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPECTRAL_NORM
* SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPLIT_SPECTRAL_NORM_COND
* SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPLIT_SPECTRAL_NORM
* SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_ADAPTIVE
* iparam[SICONOS_FRICTION_3D_NSN_MPI_COM] = -1, mpi com fortran
* iparam[SICONOS_FRICTION_3D_NSN_LINEAR_SOLVER] Linear solver used at each Newton iteration
* SICONOS_FRICTION_3D_NSN_USE_CSLUSOL
* SICONOS_FRICTION_3D_NSN_USE_MUMPS
* iparam[SICONOS_FRICTION_3D_IPARAM_ERROR_EVALUATION_FREQUENCY] = 1; (must be > 0 !)
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH]
* SICONOS_FRICTION_3D_NSN_LINESEARCH_GOLDSTEINPRICE (default)
* SICONOS_FRICTION_3D_NSN_LINESEARCH_ARMIJO
* SICONOS_FRICTION_3D_NSN_LINESEARCH_NO
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH_MAX_ITER] = 100 maximum number of iterations allowed for the line search.
* dparam[SICONOS_DPARAM_TOL] = 1e-3
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = 1
Nonsmooth Newton/ Alart-Curnier (test) (:enumerator:`SICONOS_FRICTION_3D_NSN_AC_TEST`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_nonsmooth_Newton_AlartCurnier2`
* iparam[SICONOS_FRICTION_3D_NSN_FORMULATION]
* SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_STD (default)
* SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_STD
* SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_GENERATED,
* SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_GENERATED
* SICONOS_FRICTION_3D_NSN_FORMULATION_NULL
* iparam[SICONOS_IPARAM_LSA_SEARCH_CRITERION] = SICONOS_LSA_GOLDSTEIN;
* iparam[SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY]
* optionsiparam[SICONOS_IPARAM_MAX_ITER] = 1000;
* optionsdparam[SICONOS_DPARAM_TOL] = 1e-10;
* iparam[SICONOS_IPARAM_LSA_NONMONOTONE_LS] = 0;
* iparam[SICONOS_IPARAM_LSA_NONMONOTONE_LS_M] = 0;
* dparam[SICONOS_DPARAM_LSA_ALPHA_MIN] = 1e-16;
* dparam[SICONOS_IPARAM_STOPPING_CRITERION] = SICONOS_STOPPING_CRITERION_RESIDU;
Fixed-Point (De Saxce formulation) (:enumerator:`SICONOS_FRICTION_3D_DSFP`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_DeSaxceFixedPoint`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 20000;
* dparam[SICONOS_DPARAM_TOL] = 1e-3;
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = 1.;
Fixed-Point projection (VI reformulation) (:enumerator:`SICONOS_FRICTION_3D_VI_FPP`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_VI_FixedPointProjection`
**Parameters:** same as :enumerator:`SICONOS_VI_FPP`, see :ref:`vi_solvers`.
Fixed-Point projection on cylinder (VI reformulation) (:enumerator:`SICONOS_FRICTION_3D_VI_FPP_Cylinder`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_VI_FixedPointProjection_Cylinder`
**Parameters:** same as :enumerator:`SICONOS_VI_FPP`, see :ref:`vi_solvers`.
Extra Gradient (VI reformulation) (:enumerator:`SICONOS_FRICTION_3D_VI_EG`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_VI_ExtraGradient`
**Parameters:** same as :enumerator:`SICONOS_VI_EG`, see :ref:`vi_solvers`.
Hyperplane Projection (:enumerator:`SICONOS_FRICTION_3D_HP`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_HyperplaneProjection`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 20000;
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH_MAX_ITER] = 50.;
* dparam[SICONOS_DPARAM_TOL] = 1e-3;
* dparam[SICONOS_FRICTION_3D_PROXIMAL_DPARAM_SIGMA] = 0.99
Fixed-Point projection (:enumerator:`SICONOS_FRICTION_3D_FPP`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_fixedPointProjection`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 20000;
* dparam[SICONOS_DPARAM_TOL] = 1e-3;
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = 1.;
Extra Gradient (:enumerator:`SICONOS_FRICTION_3D_EG`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_ExtraGradient`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 20000;
* dparam[SICONOS_DPARAM_TOL] = 1e-3;
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = -1.;
Nonsmooth Newton (Fischer-Burmeister formulation) (:enumerator:`SICONOS_FRICTION_3D_NSN_FB`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_nonsmooth_Newton_FischerBurmeister`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 200;
* iparam[SICONOS_FRICTION_3D_NSN_FORMULATION]
* SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_STD (default)
* SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_STD
* SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_GENERATED,
* SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_GENERATED
* SICONOS_FRICTION_3D_NSN_FORMULATION_NULL
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH]
* SICONOS_FRICTION_3D_NSN_LINESEARCH_GOLDSTEINPRICE (default)
* SICONOS_FRICTION_3D_NSN_LINESEARCH_ARMIJO
* SICONOS_FRICTION_3D_NSN_LINESEARCH_NO
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH_MAX_ITER] = 100;
* iparam[SICONOS_FRICTION_3D_IPARAM_ERROR_EVALUATION_FREQUENCY] = 1; (must be > 0 !)
* dparam[SICONOS_DPARAM_TOL] = 1e-3;
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = 1.;
PATH (via GAMS) + AVI reformulation (:enumerator:`SICONOS_FRICTION_3D_GAMS_PATH`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
solver using PATH (via GAMS) for friction-contact 3D problem based on an AVI reformulation
**Driver:** :func:`fc3d_AVI_gams_path`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 10000;
* dparam[SICONOS_DPARAM_TOL] = 1e-9;
out
* dparam[TOTAL_TIME_USED]
* iparam[TOTAL_ITER]
* iparam[LAST_MODEL_STATUS]
* iparam[LAST_SOLVE_STATUS]
PATHVI (via GAMS) + AVI reformulation :enumerator:`SICONOS_FRICTION_3D_GAMS_PATHVI`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
solver using PATHVI (via GAMS) for friction-contact 3D problem based on an AVI reformulation
**Driver:** :func:`fc3d_AVI_gams_pathvi`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 10000;
* dparam[SICONOS_DPARAM_TOL] = 1e-9;
out
* dparam[TOTAL_TIME_USED]
* iparam[TOTAL_ITER]
* iparam[LAST_MODEL_STATUS]
* iparam[LAST_SOLVE_STATUS]
ACLM Fixed-Point (:enumerator:`SICONOS_FRICTION_3D_ACLMFP`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_ACLMFixedPoint`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 1000;
* iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY] = SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_GIVEN_VALUE
* dparam[SICONOS_DPARAM_TOL] = 1e-4;
* dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] = 10.0
Internal solver: :enumerator:`SICONOS_SOCLCP_NSGS`, see :ref:`soclcp_solvers`.
Nonsmooth Gauss-Seidel (:enumerator:`SICONOS_FRICTION_3D_SOCLCP`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_SOCLCP`
**Parameters:** same as :enumerator:`SICONOS_SOCLCP_NSGS`, see : ref:`soclcp_solvers`.
PATH (via GAMS) + LCP reformulation (:enumerator:`SICONOS_FRICTION_3D_GAMS_LCP_PATH`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
solver using PATH (via GAMS) for friction-contact 3D problem based on an LCP reformulation
**Driver:** :func:`fc3d_lcp_gams_path`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 10000;
* dparam[SICONOS_DPARAM_TOL] = 1e-9;
PATHVI (via GAMS) + LCP reformulation :enumerator:`SICONOS_FRICTION_3D_GAMS_LCP_PATHVI`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
solver using PATHVI (via GAMS) for friction-contact 3D problem based on an LCP reformulation
**Driver:** :func:`fc3d_lcp_gams_pathvi`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 10000;
* dparam[SICONOS_DPARAM_TOL] = 1e-9;
Nonsmooth Newton, Natural Map (:enumerator:`SICONOS_FRICTION_3D_NSN_NM`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Nonsmooth Newton solver based on the Natural--Map function for
the local (reduced) frictional contact problem in the dense form.
**Driver:** :func:`fc3d_nonsmooth_Newton_NaturalMap`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 200;
* iparam[SICONOS_FRICTION_3D_NSN_FORMULATION]
* SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_STD (default)
* SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_STD
* SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_GENERATED,
* SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_GENERATED
* SICONOS_FRICTION_3D_NSN_FORMULATION_NULL
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH]
* SICONOS_FRICTION_3D_NSN_LINESEARCH_GOLDSTEINPRICE (default)
* SICONOS_FRICTION_3D_NSN_LINESEARCH_ARMIJO
* SICONOS_FRICTION_3D_NSN_LINESEARCH_NO
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH_MAX_ITER] = 100;
* iparam[SICONOS_FRICTION_3D_IPARAM_ERROR_EVALUATION_FREQUENCY] = 1;
* dparam[SICONOS_DPARAM_TOL] = 1e-3;
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = 1.;
Fixed point, Panagiotopoulos (:enumerator:`SICONOS_FRICTION_3D_PFP`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Fixed point solver for friction-contact 3D problem based on the Panagiotopoulos
method based on an alternative technique between the normal problem and the tangential one.
**Driver:** :func:`fc3d_Panagiotopoulos_FixedPoint`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 200;
* iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY] = SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_ADAPTIVE;
* dparam[SICONOS_DPARAM_TOL] = 1e-4;
* dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] =10.0;
Two internal solvers: :enumerator:`SICONOS_LCP_PGS` and :enumerator:`SICONOS_CONVEXQP_VI_FPP`.
ADMM (:enumerator:`SICONOS_FRICTION_3D_ADMM`)
"""""""""""""""""""""""""""""""""""""""""""""
Solver based on `ADMM method <https://stanford.edu/~boyd/admm.html>`_.
**Driver:** :func:`fc3d_admm`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 20000;
* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_SYMMETRY]
* SICONOS_FRICTION_3D_ADMM_FORCED_SYMMETRY (default)
* SICONOS_FRICTION_3D_ADMM_FORCED_ASYMMETRY
* SICONOS_FRICTION_3D_ADMM_CHECK_SYMMETRY
* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_ACCELERATION]
* SICONOS_FRICTION_3D_ADMM_ACCELERATION
* SICONOS_FRICTION_3D_ADMM_ACCELERATION_AND_RESTART (default)
* SICONOS_FRICTION_3D_ADMM_NO_ACCELERATION
* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_SPARSE_STORAGE]
* SICONOS_FRICTION_3D_ADMM_FORCED_SPARSE_STORAGE
* SICONOS_FRICTION_3D_ADMM_KEEP_STORAGE (default)
* dparam[SICONOS_FRICTION_3D_ADMM_INITIAL_RHO] =
* SICONOS_FRICTION_3D_ADMM_INITIAL_RHO_GIVEN (default)
* SICONOS_FRICTION_3D_ADMM_INITIAL_RHO_NORM_INF
* SICONOS_FRICTION_3D_ADMM_INITIAL_RHO_EIGENVALUES
* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_RHO_STRATEGY]
* SICONOS_FRICTION_3D_ADMM_RHO_STRATEGY_RESIDUAL_BALANCING
* SICONOS_FRICTION_3D_ADMM_RHO_STRATEGY_SCALED_RESIDUAL_BALANCING
* SICONOS_FRICTION_3D_ADMM_RHO_STRATEGY_CONSTANT (default)
* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_GET_PROBLEM_INFO]
* SICONOS_FRICTION_3D_ADMM_GET_PROBLEM_INFO_NO (default)
* SICONOS_FRICTION_3D_ADMM_GET_PROBLEM_INFO_YES
* iparam[SICONOS_FRICTION_3D_IPARAM_RESCALING]
* SICONOS_FRICTION_3D_RESCALING_NO (default)
* SICONOS_FRICTION_3D_RESCALING_SCALAR,
* SICONOS_FRICTION_3D_RESCALING_BALANCING_M,
* SICONOS_FRICTION_3D_RESCALING_BALANCING_MH
* dparam[SICONOS_DPARAM_TOL] = 1e-6;
* dparam[SICONOS_FRICTION_3D_ADMM_RHO] = 1.
* dparam[SICONOS_FRICTION_3D_ADMM_RESTART_ETA] = 0.999;
* dparam[SICONOS_FRICTION_3D_ADMM_BALANCING_RESIDUAL_TAU] = 2.
* dparam[SICONOS_FRICTION_3D_ADMM_BALANCING_RESIDUAL_PHI] = 2.;
"One contact" solvers
^^^^^^^^^^^^^^^^^^^^^
Newton(:enumerator:`SICONOS_FRICTION_3D_ONECONTACT_NSN`, ...)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`fc3d_onecontact_nonsmooth_Newton_solvers_solve`
which switches to one of the local drivers below:
.. csv-table:: Projection on cone solvers
:header: "Solver id", "Driver"
:widths: 15, 30
":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_NSN`",":func:`fc3d_onecontact_nonsmooth_Newton_solvers_solve_direc`"
":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_NSN_GP`",":func:`fc3d_onecontact_nonsmooth_Newton_solvers_solve_dampe`"
":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_NSN_GP_HYBRID`",":func:`fc3d_onecontact_nonsmooth_Newton_solvers_solve_hybrid`"
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 10
* iparam[SICONOS_FRICTION_3D_CURRENT_CONTACT_NUMBER]
* iparam[SICONOS_FRICTION_3D_NSN_FORMULATION]
* SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_STD (default)
* SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_STD
* SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_GENERATED,
* SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_GENERATED
* SICONOS_FRICTION_3D_NSN_FORMULATION_NULL
* iparam[SICONOS_FRICTION_3D_NSN_RHO_STRATEGY]
* SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_CONSTANT : uses constant value (dparam[SICONOS_FRICTION_3D_NSN_RHO]) for rho
* SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPECTRAL_NORM
* SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPLIT_SPECTRAL_NORM_COND (default for NSN)
* SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPLIT_SPECTRAL_NORM (default for NSN_GP and NSN_GP_HYBRID)
* SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_ADAPTIVE
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH]
* SICONOS_FRICTION_3D_NSN_LINESEARCH_GOLDSTEINPRICE (default for NSN_GP and NSN_GP_HYBRID)
* SICONOS_FRICTION_3D_NSN_LINESEARCH_ARMIJO
* SICONOS_FRICTION_3D_NSN_LINESEARCH_NO (default for NSN)
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH_MAX_ITER] = 10;
* iparam[SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY]
* SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_NO
* SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_PLI_NSN_LOOP (default for NSN)
* SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_NSN_AND_PLI_NSN_LOOP (default for NSN_GP and NSP_GP_HYBRID)
* SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_VI_EG_NSN
* iparam[SICONOS_FRICTION_3D_NSN_HYBRID_MAX_LOOP] = 1;
* iparam[SICONOS_FRICTION_3D_NSN_HYBRID_MAX_ITER] = 10 (for NSN), 100 (for NSN_GP and NSN_GP_HYBRID);
* dparam[SICONOS_DPARAM_TOL] =1e-14;
* dparam[SICONOS_FRICTION_3D_NSN_RHO] =1.0;
Projection on cone or cylinder (:enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnCone`, ...)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
.. csv-table:: Projection on cone solvers
:header: "Solver id", "Driver"
:widths: 15, 30
":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnCone`",":func:`fc3d_projectionOnCone_solve`"
":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnConeWithRegularization`",":func:`fc3d_projectionOnCone_solve`"
":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnConeWithLocalIteration`",":func:`fc3d_projectionOnConeWithLocalIteration_solve`"
":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnConeWithDiagonalization`",":func:`fc3d_projectionOnConeWithDiagonalization_solve`"
":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnCone_velocity`",":func:`fc3d_projectionOnCone_velocity_solve`"
":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnCylinder`",":func:`fc3d_projectionOnCylinder_solve`"
":enumerator:`SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnProjectionOnCylinderWithLocalIteration`",":func:`fc3d_projectionOnCylinderWithLocalIteration_solve`"
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 1000
* iparam[SICONOS_FRICTION_3D_CURRENT_CONTACT_NUMBER]
* dparam[SICONOS_DPARAM_TOL] =1e-14
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = 1., used only in the 'with regularization' case
NCP Fixed Point solver (:enumerator:`SICONOS_FRICTION_3D_NCPGlockerFBFixedPoint`, ...)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
.. csv-table:: NCP Fixed-point solvers
:header: "Solver id", "Driver", "Update"
:widths: 15, 30, 30
":enumerator:`SICONOS_FRICTION_3D_NCPGlockerFBFixedPoint`",":func:`fc3d_FixedP_solve`", ":func:`NCPGlocker_update`"
":enumerator:`SICONOS_FRICTION_3D_NCPGlockerFBNewton`", ":func:`fc3d_onecontact_nonsmooth_Newton_solvers_solve`", ":func:`NCPGlocker_update`"
":enumerator:`SICONOS_FRICTION_3D_NCPGlockerFBPATH`", ":func:`fc3d_Path_solve`", ":func:`NCPGlocker_update`"
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 1000
* dparam[SICONOS_DPARAM_TOL] =1e-12
Quartic (:enumerator:`SICONOS_FRICTION_3D_ONECONTACT_QUARTIC`, ...)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
ids : :enumerator:`SICONOS_FRICTION_3D_ONECONTACT_QUARTIC`, :enumerator:`SICONOS_FRICTION_3D_ONECONTACT_QUARTIC_NU`
**Driver:** :func:`fc3d_unitary_enumerative`
**Parameters:**
* dparam[SICONOS_DPARAM_TOL] =1e-12
As Convex QP (:enumerator:`SICONOS_FRICTION_3D_CONVEXQP_CYLINDER`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Reformulate the problem as a convex QP and solve using :enumerator:`SICONOS_CONVEXQP_PG`.
**Driver:** :func:`fc3d_ConvexQP_ProjectedGradient_Cylinder`
**Parameters:** same as :enumerator:`SICONOS_CONVEXQP_PG, see :ref:`convex_qp_solvers`.
|