1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
.. index::
single: Global friction-contact problems (2 or 3D)
.. contents::
.. _gfc_problem:
Global-Friction-contact problems (2D or 3D)
*******************************************
Problem statement
=================
Given
* a symmetric positive semi definite matrix :math:`{M} \in {{\mathrm{I\!R}}}^{n \times n}`
* a matrix :math:`{H} \in {{\mathrm{I\!R}}}^{n \times {d\, n_c}}`
* a vector :math:`{q} \in {{\mathrm{I\!R}}}^n`
* a vector :math:`{b} \in {{\mathrm{I\!R}}}^{d\, n_c}`
* a vector of coefficients of friction :math:`\mu \in{{\mathrm{I\!R}}}^{n_c}`
the global frictional contact problem denoted by :math:`\mathrm{PFC}(M,H,q,b,\mu)` consists in finding three vectors,
* the global velocity :math:`v\in{{\mathrm{I\!R}}}^n`,
* the relative local velocity :math:`u\in{{\mathrm{I\!R}}}^{d\,n_c}`,
* the contact forces :math:`r\in {{\mathrm{I\!R}}}^{d,n_c}`,
such that :
.. math::
\begin{eqnarray*} \begin{cases} M v = q + H r \\ u = H^\top v + b \\ \hat u = u +\left[ \left[\begin{array}{c} \mu^\alpha \|u^\alpha_{T}\|\\ 0 \\ 0 \end{array}\right]^T, \alpha = 1 \ldots n_c \right]^T \\ \ \ C^\star_{\mu} \ni {\hat u} \perp r \in C_{\mu} \end{cases} \end{eqnarray*}
where the Coulomb friction cone is defined by :math:`C_{\mu} = \prod\limits_{\alpha=1\ldots n_c} C^{\alpha}_{\mu^\alpha}`
with :math:`C^{\alpha}_{\mu^\alpha} =\{ r^\alpha, \|r_{t}\| \leq \mu_{\alpha} |r^\alpha_{n}|\}` , and the set :math:`C^{\alpha,\star}_{\mu^\alpha}` its dual.
The modified local velocity :math:`\widehat u` is not considered as an unknown since it can be obtained uniquely from the local velocity :math:`u`.
Coulomb's friction law with Signorini's condition for the unilateral contact written in terms of second order complementarity condition
.. math::
\begin{eqnarray} C^\star_{\mu} \ni {\hat u} \perp r \in C_{\mu} \end{eqnarray}
can be interpreted in a more usual form
.. math::
\begin{eqnarray} \begin{cases} 0 \leq u_{N} \perp r_N \geq 0 \quad\quad\text{ Signorini condition}\\ u_T = 0 \Rightarrow \|r_T\| \leq \mu |r_n| \quad\quad\text{ Sticking mode} \\ u_T \neq 0 \Rightarrow r_T = - \mu |r_n| \frac{u_T }{\|u_T\|} \quad\quad\text{ Sliding mode} \end{cases} \end{eqnarray}
This problem models any instance of discretized frictional contact problem obtained from
* the time-discretization of dynamics contact problems with event-capturing of event-tracking schemes,
* the time-discretization of quasi-static contact problems,
* the modeling of static contact problems. In this last case, :math:`u` plays the role of the relative displacement at contact
Implementation in numerics
==========================
Structure to define the problem: :class:`GlobalFrictionContactProblem`.
Solvers list : :enum:`FRICTION_SOLVER`, id containing 'GLOBAL_FRICTION_3D'
The generic drivers for global friction-contact problems is :func:`gfc3d_driver`.
.. _gfc_error:
Error strategy
==============
To set internal solver tolerance (when it makes sense!) use :func:`gfc3d_set_internalsolver_tolerance`.
Check details in :ref:`fc_error`
.. _gfc3d_solvers:
Global Friction 3D available solvers
====================================
NSGS (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_NSGS`)
""""""""""""""""""""""""""""""""""""""""""""""""""""
Non-Smooth Gauss Seidel solver with reformulation.
**Driver:** :func:`gfc3d_nsgs`
**Parameters:** same as :enumerate:`SICONOS_FRICTION_3D_NSGS`.
Warning : default iparam[SICONOS_FRICTION_3D_IPARAM_ERROR_EVALUATION_FREQUENCY] is 0, which may lead to
very expensive computation for error checking. Increase this value to improve performances.
Nonsmooth Newton, Alart-Curnier, (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_NSN_AC`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`gfc3d_nonsmooth_Newton_AlartCurnier_wr`
**Parameters:** same as :enumerate:`SICONOS_FRICTION_3D_NSN_AC`.
* iparam[SICONOS_IPARAM_MAX_ITER] = 200;
* iparam[SICONOS_FRICTION_3D_NSN_FORMULATION]
* SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_STD (default)
* SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_STD
* SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_GENERATED,
* SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_GENERATED
* SICONOS_FRICTION_3D_NSN_FORMULATION_NULL
* iparam[SICONOS_FRICTION_3D_NSN_MEMORY_ALLOCATED] = 0, 0 if memory for internal work arrays must be allocated, else 1.
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH]
* SICONOS_FRICTION_3D_NSN_LINESEARCH_GOLDSTEINPRICE (default)
* SICONOS_FRICTION_3D_NSN_LINESEARCH_ARMIJO
* SICONOS_FRICTION_3D_NSN_LINESEARCH_NO
* iparam[SICONOS_FRICTION_3D_NSN_LINESEARCH_MAX_ITER] = 100 maximum number of iterations allowed for the line search.
* iparam[SICONOS_FRICTION_3D_NSN_MPI_COM] = -1
* dparam[SICONOS_DPARAM_TOL] = 1e-10
* dparam[SICONOS_FRICTION_3D_NSN_RHO] = 1.
* iparam[SICONOS_FRICTION_3D_IPARAM_ERROR_EVALUATION_FREQUENCY] = 1
PATH (GAMS) (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_GAMS_PATH`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`gfc3d_AVI_gams_path`
**Parameters:** same as :enumerate:`SICONOS_FRICTION_3D_GAMS_PATH`.
PATHVI (GAMS) (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_GAMS_PATHVI`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`gfc3d_AVI_gams_pathvi`
**Parameters:** same as :enumerate:`SICONOS_FRICTION_3D_GAMS_PATHVI`.
Fixed-Point projection (VI reformulation) (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_VI_FPP`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`gfc3d_VI_FixedPointProjection`
**Parameters:** same as :enumerate:`SICONOS_FRICTION_3D_VI_FPP`.
Extra-Gradient (VI reformulation) (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_VI_EG`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`gfc3d_VI_ExtraGradient`
**Parameters:** same as :enumerate:`SICONOS_FRICTION_3D_VI_EG`.
ACLM Fixed point (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_ACLMFP`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`gfc3d_ACLMFixedPoint`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 1000;
* iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY] = SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_ADAPTIVE
* dparam[SICONOS_DPARAM_TOL] = 1e-4;
* dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] = 2.0
Internal solver: :enumerator:`SICONOS_CONVEXQP_ADMM`, see :ref:`convex_qp_solvers`.
ADMM (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_ADMM`)
""""""""""""""""""""""""""""""""""""""""""""""""""""
Solver based on `ADMM method <https://stanford.edu/~boyd/admm.html>`_.
**Driver:** :func:`gfc3d_ADMM`
**Parameters:**
* iparam[SICONOS_IPARAM_MAX_ITER] = 20000;
* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_ACCELERATION]
* SICONOS_FRICTION_3D_ADMM_ACCELERATION
* SICONOS_FRICTION_3D_ADMM_ACCELERATION_AND_RESTART (default)
* SICONOS_FRICTION_3D_ADMM_NO_ACCELERATION
* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_SPARSE_STORAGE]
* SICONOS_FRICTION_3D_ADMM_FORCED_SPARSE_STORAGE
* SICONOS_FRICTION_3D_ADMM_KEEP_STORAGE (default)
* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_INITIAL_RHO] =
* SICONOS_FRICTION_3D_ADMM_INITIAL_RHO_GIVEN (default)
* SICONOS_FRICTION_3D_ADMM_INITIAL_RHO_NORM_INF
* SICONOS_FRICTION_3D_ADMM_INITIAL_RHO_EIGENVALUES;
* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_RHO_STRATEGY]
* SICONOS_FRICTION_3D_ADMM_RHO_STRATEGY_RESIDUAL_BALANCING
* SICONOS_FRICTION_3D_ADMM_RHO_STRATEGY_SCALED_RESIDUAL_BALANCING
* SICONOS_FRICTION_3D_ADMM_RHO_STRATEGY_CONSTANT (default)
* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_GET_PROBLEM_INFO]
* SICONOS_FRICTION_3D_ADMM_GET_PROBLEM_INFO_NO (default)
* SICONOS_FRICTION_3D_ADMM_GET_PROBLEM_INFO_YES
* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_FULL_H] = SICONOS_FRICTION_3D_ADMM_FULL_H_NO;
* iparam[SICONOS_FRICTION_3D_ADMM_IPARAM_UPDATE_S] = SICONOS_FRICTION_3D_ADMM_UPDATE_S_YES;
* iparam[SICONOS_FRICTION_3D_IPARAM_RESCALING]
* SICONOS_FRICTION_3D_RESCALING_NO (default)
* SICONOS_FRICTION_3D_RESCALING_SCALAR,
* SICONOS_FRICTION_3D_RESCALING_BALANCING_M,
* SICONOS_FRICTION_3D_RESCALING_BALANCING_MH
* iparam[SICONOS_FRICTION_3D_IPARAM_RESCALING_CONE]=SICONOS_FRICTION_3D_RESCALING_CONE_NO;
* dparam[SICONOS_DPARAM_TOL] = 1e-6;
* dparam[SICONOS_FRICTION_3D_ADMM_RHO] = 0.1;
* dparam[SICONOS_FRICTION_3D_ADMM_RESTART_ETA] = 0.999;
* dparam[SICONOS_FRICTION_3D_ADMM_BALANCING_RESIDUAL_TAU] = 2.
* dparam[SICONOS_FRICTION_3D_ADMM_BALANCING_RESIDUAL_PHI] = 10.;
Solvers with reformulation
--------------------------
All solvers with id ending with '_WR' (which stands for With Reformulation)
starts with a reformulation of the global problem into a local one, which is solved
with one of the fc3d solvers.
NSGS, with reformulation (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_NSGS_WR`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Non-Smooth Gauss Seidel solver with reformulation.
**Driver:** :func:`gfc3d_nsgs_wr`
**Parameters:** same as :enumerate:`SICONOS_FRICTION_3D_NSGS`.
NSGS, velocity, with reformulation (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_NSGS_WR`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Non-Smooth Gauss Seidel solver with reformulation.
**Driver:** :func:`gfc3d_nsgs_velocity_wr`
**Parameters:** same as :enumerate:`SICONOS_FRICTION_3D_NSGSV`.
Proximal point, with reformulation (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_PROX_WR`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`gfc3d_proximal_wr`
**Parameters:** same as :enumerate:`SICONOS_FRICTION_3D_PROX`.
DeSaxce FixedPoint, with reformulation (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_DSFP_WR`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`gfc3d_DeSaxceFixedPoint_wr`
**Parameters:** same as :enumerate:`SICONOS_FRICTION_3D_DSFP`.
Tresca FixedPoint, with reformulation (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_TFP_WR`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`gfc3d_TrescaFixedPoint_wr`
**Parameters:** same as :enumerate:`SICONOS_FRICTION_3D_TFP`.
Nonsmooth Newton, Alart-Curnier, with reformulation (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_NSN_AC_WR`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`gfc3d_nonsmooth_Newton_AlartCurnier_wr`
**Parameters:** same as :enumerate:`SICONOS_FRICTION_3D_NSN_AC`.
ADMM, with reformulation (:enumerator:`SICONOS_GLOBAL_FRICTION_3D_ADMM_WR`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
**Driver:** :func:`gfc3d_admm_wr`
**Parameters:** same as :enumerate:`SICONOS_FRICTION_3D_ADMM`.
|