1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
.. index::
single: Mixed Linear Complementarity Problems (MLCP)
.. contents::
.. _lcp_problem:
Mixed Linear Complementarity Problems (MLCP)
********************************************
Problem statement
=================
Find :math:`(z,w)` such that:
.. math::
\left\{ \begin{array}{l}
M \ z + q = w \\ w_1=0 \\
0 \le w_{2} \perp v \ge 0
\end{array} \right. \text{ with } z= \left[ \begin{array}{c} u\\ v\\ \end{array} \right] \text{ and } w= \left[ \begin{array}{c} w_{1}\\ w_{2}\\ \end{array} \right]
:math:`u, w_{1}` are vectors of size n.
:math:`v, w_{2}` are vectors of size m.
Another storage is also possible for the MLCP problem:
Try :math:`(u,v,w)` such that:
:math:`\left\lbrace \begin{array}{l} A u + Cv +a =0\\ D u + Bv +b = w \\ 0 \le v \perp w \ge 0\\ \end{array} \right.`
where A is an ( :math:`n \times n` ) matrix, B is an ( :math:`m \times m` ) matrix, C is an ( :math:`n \times m` ) matrix,
D is an ( :math:`m \times n` ) matrix, a and u is an ( :math:`n` ) vectors b,v and w is an ( :math:`m` ) vectors.
Implementation in numerics
==========================
Structure to define the problem: :class:`MixedLinearComplementarityProblem`.
The generic driver for all MLCPs is :func:`mlcp_driver()`.
Solvers list :enum:`MLCP_SOLVER`
MLCP solvers must be initialized before any call of the driver. Here is the standard sequence of calls:
#. Initialize the solver with :func:`mlcp_driver_init()`.
#. Solve the problemt with :func:`mlcp_driver()`.
#. Reset the solver with :func:`mlcp_driver_reset()`.
.. _mlcp_error:
Error computation
=================
The criterion is based on :
.. math::
error = \frac{1}{\|q\| }\sum_{i} [ (z[i]*(Mz+q)[i])_{+} + (z[i])_{-} + (Mz+q)[i])_{-} ]
with :math:`x_{+} = max(0,x)` and :math:`x_{-} = max(0,-x)`.
* :func:`mlcp_compute_error` returns 0 if :math:`error \leq tolerance`, else 1.
* A call to this function updates the content of the input vector w with :math:`Mz + q`.
.. _mlcp_solvers:
MLCP available solvers
======================
Projected Gauss-Seidel (:enumerator:`SICONOS_MLCP_PGS`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""
Projected Gauss-Seidel, a basic Projected Gauss-Seidel solver for MLCP.
driver: :func:`mlcp_pgs()`
parameters:
* iparam[SICONOS_IPARAM_MAX_ITER] = 1000
* iparam[SICONOS_IPARAM_MLCP_PGS_EXPLICIT] = 0, 1 for implicit.
* dparam[SICONOS_DPARAM_TOL] = 1e-6
Projected Gauss-Seidel, SBM (:enumerator:`SICONOS_MLCP_PGS_SBM`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Gauss-Seidel with sparse-block storage.
driver: :func:`mlcp_pgs_sbm()`
parameters:
* iparam[SICONOS_IPARAM_MAX_ITER] = 1000
* dparam[SICONOS_DPARAM_TOL] = 1e-6
internal solver : :enumerate:`SICONOS_LCP_PGS`.
out
* iparam[SICONOS_IPARAM_MLCP_PGS_SUM_ITER], sum of local number of iterations (output from local_driver)
* dparam[SICONOS_DPARAM_MLCP_PGS_SUM_ERRORS] sum of local errors (output from local_driver)
Regularized Projected Gauss-Seidel (:enumerator:`SICONOS_MLCP_RPGS`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Regularized Projected Gauss-Seidel, solver for MLCP, able to handle with matrices with null diagonal terms
driver: :func:`mlcp_rpgs()`
parameters:
* iparam[SICONOS_IPARAM_MAX_ITER] = 10000
* dparam[SICONOS_DPARAM_TOL] = 1e-6
* dparam[SICONOS_DPARAM_MLCP_RHO] = 0.5
PSOR (:enumerator:`SICONOS_MLCP_PSOR`)
""""""""""""""""""""""""""""""""""""""
Projected Succesive over relaxation solver.
driver: :func:`mlcp_psor()`
parameters:
* iparam[SICONOS_IPARAM_MAX_ITER] = 1000
* dparam[SICONOS_DPARAM_TOL] = 1e-6
* dparam[SICONOS_DPARAM_MLCP_OMEGA] = 2
RPSOR (:enumerator:`SICONOS_MLCP_RPSOR`)
""""""""""""""""""""""""""""""""""""""""
Regularized projected successive overrelaxation method.
driver: :func:`mlcp_rpsor()`
parameters:
* iparam[SICONOS_IPARAM_MAX_ITER] = 1000
* dparam[SICONOS_DPARAM_TOL] = 1e-6
* dparam[SICONOS_DPARAM_MLCP_OMEGA] = 2
* dparam[SICONOS_DPARAM_MLCP_RHO] = 0.5
PATH (Ferris) solver (:enumerator:`SICONOS_MLCP_PATH`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""
Path (Ferris) Solver.
*Works only if Siconos has been built with path support (if PathFerris or PathVI has been found, see :ref:`siconos_install_guide`)*
driver: :func:`mlcp_path()`
parameters
* dparam[SICONOS_DPARAM_TOL] = 1e-12
Enumerative solver (:enumerator:`SICONOS_MLCP_ENUM`)
""""""""""""""""""""""""""""""""""""""""""""""""""""
Brute-force method which tries every possible solution.
driver: :func:`mlcp_enum()`
parameters:
* iparam[SICONOS_IPARAM_MAX_ITER] = 10000
* iparam[SICONOS_IPARAM_MLCP_ENUM_USE_DGELS] = 0 (0 : use dgesv, 1: use dgels)
* dparam[SICONOS_DPARAM_TOL] = 1e-12
PATH + enum solver (:enumerator:`SICONOS_MLCP_PATH_ENUM`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
First try with Path (Ferris) Solver then use enum if the solver failed.
*Works only if Siconos has been built with path support (if PathFerris or PathVI has been found, see :ref:`siconos_install_guide`)*
driver: :func:`mlcp_path_enum()`
parameters : same as :enumerator:`SICONOS_MLCP_ENUM`.
Direct + enum solver (:enumerator:`SICONOS_MLCP_DIRECT_ENUM`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
First try direct method and then use enum if the solver failed.
driver: :func:`mlcp_direct_enum()`
parameters:
* iparam[SICONOS_IPARAM_MAX_ITER] = 10000
* dparam[SICONOS_DPARAM_TOL] = 1e-12
* dparam[SICONOS_IPARAM_MLCP_ENUM_USE_DGELS] = 0;
* dparam[SICONOS_DPARAM_MLCP_SIGN_TOL_POS] = 1e-12: A positive value, tolerance to consider that complementarity holds.
* dparam[SICONOS_DPARAM_MLCP_SIGN_TOL_NEG] = 1e-12: A positive value, tolerance to consider that a var is negative.
* iparam[SICONOS_IPARAM_MLCP_NUMBER_OF_CONFIGURATIONS] = 3 : Number of registered configurations.
* iparam[SICONOS_IPARAM_MLCP_UPDATE_REQUIRED] = 0;
* iparam[7] (out): Number of case the direct solved failed.
Simplex solver (:enumerator:`SICONOS_MLCP_SIMPLEX`)
"""""""""""""""""""""""""""""""""""""""""""""""""""
driver: :func:`mlcp_simplex()`
parameters:
* iparam[SICONOS_IPARAM_MAX_ITER] = 10000
* dparam[SICONOS_DPARAM_TOL] = 1e-12
Direct/Simplex solver (:enumerator:`SICONOS_MLCP_DIRECT_SIMPLEX`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Try direct method and switch to simplex if it fails.
driver: :func:`mlcp_direct_simplex()`
parameters:
* iparam[SICONOS_IPARAM_MAX_ITER] = 10000
* dparam[SICONOS_DPARAM_TOL] = 1e-12
* dparam[SICONOS_DPARAM_MLCP_SIGN_TOL_POS] = 1e-12: A positive value, tolerance to consider that complementarity holds.
* dparam[SICONOS_DPARAM_MLCP_SIGN_TOL_NEG] = 1e-12: A positive value, tolerance to consider that a var is negative.
* iparam[SICONOS_IPARAM_MLCP_NUMBER_OF_CONFIGURATIONS] = 3;
* iparam[SICONOS_IPARAM_MLCP_UPDATE_REQUIRED] = 0;
* iparam[7] (out): Number of case the direct solved failed.
Direct/Path solver (:enumerator:`SICONOS_MLCP_DIRECT_PATH`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Try direct method and switch to Path if it fails.
driver: :func:`mlcp_direct_path()`
parameters:
* iparam[SICONOS_IPARAM_MAX_ITER] = 10000
* dparam[SICONOS_DPARAM_TOL] = 1e-12
* dparam[SICONOS_DPARAM_MLCP_SIGN_TOL_POS] = 1e-12: A positive value, tolerance to consider that complementarity holds.
* dparam[SICONOS_DPARAM_MLCP_SIGN_TOL_NEG] = 1e-12: A positive value, tolerance to consider that a var is negative.
* iparam[SICONOS_IPARAM_MLCP_NUMBER_OF_CONFIGURATIONS] = 3;
* iparam[SICONOS_IPARAM_MLCP_UPDATE_REQUIRED] = 0;
* iparam[7] (out): Number of case the direct solved failed.
Direct/Path/enum solver (:enumerator:`SICONOS_MLCP_DIRECT_PATH_ENUM`)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Try direct then switch to PATH and finish with enum.
driver: :func:`mlcp_direct_path_enum()`
parameters:
* iparam[SICONOS_IPARAM_MAX_ITER] = 10000
* dparam[SICONOS_DPARAM_TOL] = 1e-12
* dparam[SICONOS_DPARAM_MLCP_SIGN_TOL_POS] = 1e-12: A positive value, tolerance to consider that complementarity holds.
* dparam[SICONOS_DPARAM_MLCP_SIGN_TOL_NEG] = 1e-12: A positive value, tolerance to consider that a var is negative.
* iparam[SICONOS_IPARAM_MLCP_NUMBER_OF_CONFIGURATIONS] = 3;
* iparam[SICONOS_IPARAM_MLCP_UPDATE_REQUIRED] = 0;
* iparam[SICONOS_IPARAM_MLCP_ENUM_USE_DGELS] = 0 (0 : use dgesv, 1: use dgels)
* iparam[7] (out): Number of case the direct solved failed.
Nonsmooth Newton solver, Fisher-Burmeister (:enumerator:`SICONOS_MLCP_FB`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
driver: :func:`mlcp_FB()`
parameters:
* iparam[SICONOS_IPARAM_MAX_ITER] = 10000
* dparam[SICONOS_DPARAM_TOL] = 1e-12
Direct + Nonsmooth Newton solver, Fisher-Burmeister (:enumerator:`SICONOS_MLCP_DIRECT_FB`)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Try direct solver then switch to Fisher-Burmeister.
driver: :func:`mlcp_direct_FB()`
parameters:
* iparam[SICONOS_IPARAM_MAX_ITER] = 10000
* dparam[SICONOS_DPARAM_TOL] = 1e-12
* iparam[SICONOS_IPARAM_MLCP_NUMBER_OF_CONFIGURATIONS]
* dparam[SICONOS_DPARAM_MLCP_SIGN_TOL_NEG];
* dparam[SICONOS_DPARAM_MLCP_SIGN_TOL_POS];
* iparam[SICONOS_IPARAM_MLCP_UPDATE_REQUIRED]
return iparam[7] for iters
|