File: usage.rst

package info (click to toggle)
sideretro 1.1.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,636 kB
  • sloc: ansic: 15,270; perl: 46; python: 44; makefile: 3
file content (605 lines) | stat: -rw-r--r-- 24,533 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
.. _chap_usage:

***************
Using sideRETRO
***************

General Syntax
==============

**sideRETRO** has a very straightforward syntax. Basically, there are three main
commands, each one with a plethora of available options:

* ``process-sample``
* ``merge-call``
* ``make-vcf``

So, in order to test the installation process and run a first example, user can
call it without any argument from the command line, like this::

  $ sider
  Usage: sider [-hv]
         sider <command> [options]

  A pipeline for detecting
  Somatic Insertion of DE novo RETROcopies

  Options:
     -h, --help            Show help options
     -v, --version         Show current version
     -c, --cite            Show citation in BibTeX

  Commands:
     ps,  process-sample   Extract alignments related
                           an event of retrocopy
     mc,  merge-call       Discover and annotate
                           retrocopies
     vcf, make-vcf         Generate VCF file with all
                           annotate retrocopies

In the above situation, if **sideRETRO** was correctly installed, it will give
that default *usage* help.

Another classical example is to print **sideRETRO**'s installed version using
the ``-v`` option::

  $ sider --version
  sideRETRO 1.0.0

And, if the user need further help, he can find it both at the **sideRETRO**'s
`readthedocs page <https://sideretro.readthedocs.io>`_ or in the already
installed software documentation, from command line::

  $ sider --help

Please, see :ref:`A Practical Workflow <pract_wf>` and :ref:`Running with Docker
<run_dck>` sections for more examples and tips for using with **Docker**.

Now, to get more familiar with **sideRETRO** main commands and results, let's
try some basic examples for each command.


Command ``process-sample``
==========================

The first one is ``process-sample`` or ``ps`` for short, and was intended to act
as the *"evidence's grounding faith"* for **sideRETRO**. Here, we're saying
"first" because of an order in which the user must run the commands. The file
resultant from this command will become the input to the next one,
``merge-call``.

As explained in the `Introduction <intro.rst>`_ section, the command
``process-sample`` creates a database of abnormal reads from a SAM/BAM file set.
To do this, there are some mandatory options the user must supply to do a
correct search. Calling the command ``process-sample`` without any argument
will give a specific help where user can know all the mandatory options for
this command::

  $ sider process-sample

Arguments:
   One or more alignment file in SAM/BAM format

Mandatory Options:
  -a, --annotation-file   Gene annotation on the reference genome
                          in GTF/GFF3 format. sider will look for 'exon'
                          with the attribute 'transcript_type=protein_coding'.
                          The attributes 'gene_name', 'gene_id' and 'exon_id'
                          are also required
  -i, --input-file        File containing a newline separated list of
                          alignment files in SAM/BAM/CRAM format.
                          This option is not mandatory if one or more
                          SAM/BAM/CRAM files are passed as argument.
                          If 'input-file' and arguments are set
                          concomitantly, then the union of all alignment
                          files is used

Input/Output Options:
  -h, --help              Show help options
  -q, --quiet             Decrease verbosity to error messages only
                          or suppress terminal outputs at all if
                          'log-file' is passed
  --silent                Same as '--quiet'
  -d, --debug             Increase verbosity to debug level
  -l, --log-file          Print log messages to a file
  -o, --output-dir        Output directory. Create the directory if it does
                          not exist [default:"."]
  -p, --prefix            Prefix output files [default:"out"]

SQLite3 Options:
  -c, --cache-size        Set SQLite3 cache size in KiB [default:"200000"]

Read Quality Options:
  -Q, --phred-quality     Minimum mapping quality of the reads required
                          [default:"8"]
  -M, --max-base-freq     Maximum base frequency fraction allowed
                          [default:"0.75"]
  -D, --deduplicate       Remove duplicated reads. Reads are considered
                          duplicates when they share the 5 prime positions
                          of both reads and read-pairs

Processing Options:
  -s, --sorted            Assume all reads are grouped by queryname, even if
                          there is no SAM/BAM/CRAM header tag 'SO:queryname'
  -t, --threads           Number of threads [default:"1"]
  -m, --max-distance      Maximum distance allowed between paired-end reads
                          [default:"10000"]
  -f, --exon-frac         Minimum overlap required as a fraction of exon
                          [default:"1e-09"; 1 base]
  -F, --alignment-frac    Minimum overlap required as a fraction of
                          alignment [default:"1e-09"; 1 base]
  -e, --either            The minimum fraction must be satisfied for at least
                          exon OR alignment. Without '-e', both fractions would
                          have to be satisfied
  -r, --reciprocal        The fraction overlap must be reciprocal for exon and
                          alignment. If '-f' is 0.5, then '-F' will be set to
                          0.5 as well

So, supposing that the user has three files: *f1.bam*, *f2.bam*, *f3.sam*, he
can type::

  $ sider process-sample f2.bam f2.bam f3.sam \
      -a annotation_file.gtf

Note the mandatory ``-a`` option specifying the annotation file. And, in this
unique exception, we suppressed the ``-i`` mandatory option cause all the files
were explicitly called.

Let's see another example that shows the convenient use of the ``-i`` option to
call a list of input files (e.g. *my_files_list.txt*) instead of them directly::

  $ sider process-sample \
      -i my_files_list.txt \
      -a annotation_file.gtf

Both commands above will produce only one output database file *out.db*
containing all relevant reads for non-fixed retrocopies search, whose prefix
*out* can be easily changed with the ``-p`` option. The abnormal reads from
all input files will be merged in just one table. To produce one database for
each input file separately, user must run one distinct instance of
**sideRETRO** per file.

Some options' values can affect drastically the output. Let's play a little bit
with some of them while using the short version of the command ``ps``::

  $ sider ps \
      -i my_files_list.txt \
      -a annotation_file.gtf \
      -o output_dir \
      -p my_reads_database \
      -l my_log_file.log \
      -c 2000000 \
      -Q 20 \
      -F 0.9 \
      -t 3

Wow! The number of options can be overwhelming.

Here used ``-o`` option to specify the directory *output_dir* to write our
database as *my_reads_database.db* (``-p`` option). Also, we chose to save the
log messages in *my_log_file.log* file (``-l`` option), a cache size of 2Gb
(``-c`` option), a minimum phred score cutoff of 20 for alignments (``-Q``
option), a minimum overlap ratio of 0.9 for read alignments over exonic regions
(``-F`` option) and 3 threads to process those files in parallel (``-t`` option).

To see another example of the ``process-sample`` command chained in a real
workflow, please refer to the :ref:`A Practical Workflow <pract_wf>` section.

Command ``merge-call``
======================

The second step in the **sideRETRO**'s *"journey for the truth of retrocopies"*
is the command ``merge-call`` or ``mc`` for short. The aim of this command is to
take the database created by ``process-sample`` step as input and populate more
tables in it, with information risen from a clustering process over the abnormal
reads regions.

Like ``process-sample``, ``merge-call`` has some mandatory options, which can be
known by calling it without any argument::

  $ sider merge-call

Arguments:
   One or more SQLite3 databases generated in the `process-sample
   <#command-process-sample>`_ step

Mandatory Options:
   -i, --input-file           File containing a newline separated list of
                              SQLite3 databases to be processed. This
                              option is not mandatory if one or more
                              SQLite3 databases are passed as argument.
                              If 'input-file' and arguments are set
                              concomitantly, then the union of all files
                              is used

Input/Output Options:
   -h, --help                 Show help options
   -q, --quiet                Decrease verbosity to error messages only
                              or suppress terminal outputs at all if
                              'log-file' is passed
   --silent                   Same as '--quiet'
   -d, --debug                Increase verbosity to debug level
   -l, --log-file             Print log messages to a file
   -o, --output-dir           Output directory. Create the directory if it does
                              not exist [default:"."]
   -p, --prefix               Prefix output files [default:"out"]
   -I, --in-place             Merge all databases with the first one of the list,
                              instead of creating a new file

SQLite3 Options:
   -c, --cache-size           Set SQLite3 cache size in KiB [default:"200000"]

Clustering Options:
   -e, --epsilon              DBSCAN: Maximum distance between two alignments
                              inside a cluster [default:"300"]
   -m, --min-pts              DBSCAN: Minimum number of points required to form a
                              dense region [default:"10"]

Filter & Annotation Options:
   -b, --blacklist-chr        Avoid clustering from and to this chromosome. This
                              option can be passed multiple times [default:"chrM"]
   -B, --blacklist-region     GTF/GFF3/BED blacklisted regions. If the file is in
                              GTF/GFF3 format, the user may indicate the 'feature'
                              (third column), the 'attribute' (ninth column) and
                              its values
   -P, --blacklist-padding    Increase the blacklisted regions ranges (left and right)
                              by N bases [default:"0"]
   -T, --gff-feature          The value of 'feature' (third column) for GTF/GFF3
                              file [default:"gene"]
   -H, --gff-hard-attribute   The 'attribute' (ninth column) for GTF/GFF3
                              file. It may be passed in the format key=value
                              (e.g. gene_type=pseudogene). Each value will match
                              as regex, so 'pseudogene' can capture IG_C_pseudogene,
                              IG_V_pseudogene etc. This option can be passed multiple
                              times and must be true in all of them
   -S, --gff-soft-attribute   Works as 'gff-hard-attribute'. The difference is
                              if this option is passed multiple times, it needs
                              to be true only once
                              [default:"gene_type=processed_pseudogene tag=retrogene"]
   -x, --parental-distance    Minimum distance allowed between a cluster and
                              its putative parental gene [default:"1000000"]
   -g, --genotype-support     Minimum number of reads coming from a given source
                              (SAM/BAM/CRAM) within a cluster [default:"3"]
   -n, --near-gene-rank       Minimum ranked distance between genes in order to
                              consider them close [default:"3"]

Genotyping Options:
   -t, --threads              Number of threads [default:"1"]
   -Q, --phred-quality        Minimum mapping quality used to define reference
                              allele reads [default:"8"]


And likewise, user can call a set of database files directly, or using a list of
files::

  $ sider merge-call database1.db database2.db -I

or ::

  $ sider merge-call -i my_databases_list.txt -I

.. note::
   Again, note the ``-I`` option that is not mandatory but would lead the creation
   of duplicated output databases if absent. This option do the clustering
   "in place" over the input files, overwriting them (so be careful). If user do
   not use the ``-p`` or ``-I`` options, the output files will be named *out.db*.

In a more sophisticated example, we will use the short version of the command
``mc``, with many other options::

  $ sider mc \
      -i my_databases_list.txt \
      -o output_dir \
      -p my_database \
      -l my_log_file.log \
      -I \
      -c 2000000 \
      -B my_black_list.bed \
      -x 1000000 \
      -g 5 \
      -Q 20 \
      -C 15 \
      -t 3

Here, options ``-i``, ``-o``, ``-p``, ``-l``, ``-I``, ``-c``, ``-Q`` and ``-t``
keeps the same meaning as they have in the ``process-sample`` command.
The others need some explanation. All we've done here was to ask for a minimum
number of 5 reads of contribution from each input SAM/BAM file to consider a
clustering region as a retrocopy candidate (with ``-g`` option); a minimum
distance of 1000000 bp from the parental gene to resolve some doubtful overlaps
(``-x`` option), a minimum number of 15 crossing reads over the putative
insertion point to consider heterozygosis evidence (``-C``) and, importantly,
a BED file with a list of regions to be ignored at the clustering process called
*my_black_list.txt* (``-B`` option). This last option's file can describe
entire chromosomes (like chrM) and many chromosomal regions with poor insertion
evidences taken literature, like centromers. All specified regions won't be
targets for clustering.

To see another example of the ``merge-call`` command chained in a real workflow,
please refer to the :ref:`A Practical Workflow <pract_wf>` section.

Command ``make-vcf``
====================

The third and last step to the **sideRETRO**'s *"crusade to retrocopies"* is the
``make-vcf`` command or ``vcf`` for short. This command takes the already
clustered tables in the database files populated at the ``merge-call`` step and
creates one VCF file with all statistically significant retrocopy insertions
annotated in a convenient format.

This command has no mandatory options, but it is worth try to discover the
others::

  $ sider make-vcf

Arguments:
   SQLite3 database generated at `process-sample <#command-process-sample>`_
   and `merge-call <#command-merge-call>`_ steps

Input/Output Options:
   -h, --help                 Show help options
   -q, --quiet                Decrease verbosity to error messages only
                              or suppress terminal outputs at all if
                              'log-file' is passed
   --silent                   Same as '--quiet'
   -d, --debug                Increase verbosity to debug level
   -l, --log-file             Print log messages to a file
   -o, --output-dir           Output directory. Create the directory if it does
                              not exist [default:"."]
   -p, --prefix               Prefix output files [default:"out"]

Filter & Annotation Options:
   -n, --near-gene-dist       Minimum distance between genes in order to
                              consider them close [default:"10000"]
   -e, --orientation-error    Maximum error allowed for orientation rho
                              [default:"0.05"]
   -r, --reference-file       FASTA file for the reference genome

So, in order to produce a VCF file from a database input file like
*my_database.db*, just type::

  $ sider make-vcf my_database.db

This will produce a *out.vcf* output file.

Let's add more options to customize it to our needs (with the short version of
the command only for symmetry)::

  $ sider vcf my_database.db \
      -o output_dir \
      -p my_retrocopies \
      -l my_log_file.log \
      -r my_reference_genome.fa \
      -n 50000

Command ``make-vcf`` is very simple and don't allow the user to use threads.
The only new options are ``-r``, which must specify the reference genome in
FASTA format (like **gencode**'s *Hg38.fa*) and ``-n``, where user can establish
a distance threshold for genes surrounding insertion points for additional
information in the output VCF file.

.. _cram:

Dealing with CRAM format
========================

Working with CRAM files may be a little **tricky**, mainly if you have downloaded
the data from a public repository. Let's take a look at two possible cases:

* Local alignment
* External alignment

Local alignment
---------------

In order to generate an alignment file in the CRAM format, first we need to
index the reference genome:

.. code-block:: sh

   # Inde for BWA: .fa.amb, .fa.ann, .fa.bwt, .fa.pac, .fa.sa files
   bwa index hg38.fa

   # Index reference genome for CRAM: .fa.fai file
   samtools faidx hg38.fa

Then, we can align with :code:`bwa`:

.. code-block:: sh

   # Align with BWA and generate a CRAM
   bwa mem hg38.fa file_R1.fastq file_R2.fastq | \
      samtools view -T hg38.fa -C -o file.cram -

The alignment :file:`file.cram` can be processed with :code:`sider`, as long as
we don't change the reference genome and its index (:file:`.fa.fai`) path. If so,
we need to set the environment variables :file:`REF_PATH` and :file:`REF_CACHE`,
see :ref:`External alignment <extern_cram>`.

.. _extern_cram:

External alignment
------------------

When we download public data already aligned in the CRAM format, we may be
concerned about the reference genome index. Probably,  we won't have the
required genome index to read the :file:`.cram`, and the :file:`htslib`
library - used by :code:`sider` and :code:`samtools` - is able to download
the index from the `CRAM Reference Registry <http://www.ebi.ac.uk/ena/cram>`_.

However, in order to :file:`htslib` be able to accomplish this task, we need
to compile the library with the required flags and also we need to have the
reqeuired dependencies (as `libcurl <https://curl.haxx.se/libcurl/>`_).
Therefore to be able to read these files, without depending on these details,
we need to generate a new local index and set the environment variables -
:file:`REF_PATH` and :file:`REF_CACHE` - to the correct path:

.. code-block:: sh

   # Create cache dir
   mkdir -p /my/cache

   # Construct the index
   perl seq_cache_populate.pl -root /my/cache hg38.fa

   # Now before running samtools or sider, we need to
   # set the environment variables REF_PATH and REF_CACHE
   export REF_PATH=/my/cache/%2s/%2s/%s:http://www.ebi.ac.uk/ena/cram
   export REF_CACHE=/my/cache/%2s/%2s/%s

   # So ...
   sider ps -a annot.gff3.gz -o result file.cram

The script :file:`seq_cache_populate.pl` can be found in the :file:`samtools`,
or at `seq_cache_populate.pl
<https://github.com/deweylab/RSEM/blob/master/samtools-1.3/misc/seq_cache_populate.pl>`_.

For more information, see `Samtools Worflow <https://www.htslib.org/workflow/>`_.

.. _pract_wf:

A Practical Workflow
====================

Now, let's do an interesting exercise, with real experimental data from the
`1000 Genomes Project <https://www.internationalgenome.org/>`_. (Warning: This example requires 16GB of RAM)

In order to run **siderRETRO** searching for retrocopies, we will download 2
whole-genome sequenced CRAM files, both aligned on the **gencode**'s
`hg38 <ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_32/GRCh38.primary_assembly.genome.fa.gz>`_
genome:
`NA12878 <ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR323/ERR3239334/NA12878.final.cram>`_
and
`NA12778 <ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR323/ERR3239484/NA12778.final.cram>`_.

At the beginning of a run, the files listed below must be at the same directory where
the user is running **sideRETRO** or their correct paths must be supplied at the
correspondent option. Files are:

1. A GTF gene annotation file from gencode project
   (here :file:`gencode.v32.annotation.gtf`).

2. A FASTA file with the gencode's Human reference genome, version 38
   (here :file:`GRCh38_full_analysis_set_plus_decoy_hla.fa`).

3. A custom perl script, :code:`seq_cache_populate.pl`, to construct a new local index . 
   The :code:`seq_cache_populate.pl` script can be found in 
   `seq_cache_populate.pl <https://github.com/deweylab/RSEM/blob/master/samtools-1.3/misc/seq_cache_populate.pl>`_.

4. A custom perl script, :code:`analyser.pl`, to do the final analysis over the VCF file
   and produce the TSV file in a tabular format. The :code:`analyser.pl` script can be
   downloaded :download:`here <data/analyser.pl>`.

Also, we will set the environment variables :file:`REF_PATH` and :file:`REF_CACHE`, as
a requirement to work with CRAM files - more information at
:ref:`Dealing with CRAM format<extern_cram>`.

See the complete command sequence below for the whole analysis.

Tip: Copy and paste line by line in your terminal.

Tip 2: If you are running line by line in your terminal don't paste the "$" character. It is already in your terminal.

.. code-block:: sh

  # Do things inside a clean directory.
  # Average time: irrelevant
  $ mkdir -p sider_test
  $ cd sider_test

  # Download annotation from gencode
  wget ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_32/gencode.v32.annotation.gtf.gz

  # Download the reference genome from 1000 genomes
  wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/GRCh38_full_analysis_set_plus_decoy_hla.fa

  # Make the CRAM index
  # Create cache dir
  mkdir -p cache

  # create index
  perl seq_cache_populate.pl -root cache GRCh38_full_analysis_set_plus_decoy_hla.fa

  # Set environment variables
  export REF_PATH=$PWD/cache/%2s/%2s/%s:http://www.ebi.ac.uk/ena/cram
  export REF_CACHE=$PWD/cache/%2s/%2s/%s

  # Create a download list (WGS.list) containing all files of interest.
  # Average time: irrelevant
  $ echo "ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR323/ERR3239334/NA12878.final.cram" > WGS_download.list
  $ echo "ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR323/ERR3239484/NA12778.final.cram" >> WGS_download.list

  # Download all files: NA12878 and NA12778.
  # Average time: network dependent
  $ wget -c -i WGS_download.list

  # Create the list of BAM files.
  # Average time: irrelevant
  $ ls *.cram > WGS_genomes.list

  # First sideRETRO step: process-sample
  # Input file: WGS_genomes.list
  # Output file: 1000_genomes.db
  # Average time: 62m34.541
  $ sider process-sample \
      -i WGS_genomes.list \
      -a gencode.v32.annotation.gtf.gz \
      -p 1000_genomes \
      -c 2000000 \
      -Q 20 \
      -F 0.9 \
      -t 2

  # Second sideRETRO step: merge-call
  # Input file: 1000_genomes.db
  # Output file: 1000_genomes.db (same file)
  # Average time: 62m34.541
  $ sider merge-call 1000_genomes.db \
      -c 2000000 \
      -x 1000000 \
      -g 5 \
      -I \
      -t 2

  # Second sideRETRO step: merge-call
  # Input file: 1000_genomes.db
  # Output file: 1000_genomes.vcf
  # Average time: 62m34.541
  $ sider make-vcf 1000_genomes.db \
      -p 1000_genomes \
      -r GRCh38_full_analysis_set_plus_decoy_hla.fa

  # Some analysis over the final VCF file.
  # Input file: 1000_genomes.vcf
  # Output file: 1000_genomes.tsv
  # Average time: 62m34.541
  $ perl analyser.pl 1000_genomes.vcf > 1000_genomes.tsv

This was a simple but complete pipeline to obtain a final TSV file with all
the relevant results in a tabular format ready to import in a R or Python script
and plot some graphics.

.. _run_dck:

Running with Docker
===================

Notwithstanding **sideRETRO**'s native run, user can happily run it from a
**Docker** image just prepending **Docker**'s directives to any example shown.
That is, supposing the user has *Docker* installed and has pulled the image
*galantelab/sider:latest* from `DockerHub
<https://hub.docker.com/r/galantelab/sider>`_, he can just prepend
``docker --rm -ti -v $(pwd):/home/sider -w /home/sider galantelab/sider``
to the ordinary ``sider`` command, like::

  $ docker --rm -ti -v $(pwd):/home/sider -w /home/sider galantelab/sider \
    sider ps \
        -i my_files_list.txt \
        -a annotation_file.gtf \
        -o output_dir \
        -p my_reads_database \
        -l my_log_file.log \
        -c 2000000 \
        -Q 20 \
        -F 0.9 \
        -t 3