1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
|
.. _chap_usage:
***************
Using sideRETRO
***************
General Syntax
==============
**sideRETRO** has a very straightforward syntax. Basically, there are three main
commands, each one with a plethora of available options:
* ``process-sample``
* ``merge-call``
* ``make-vcf``
So, in order to test the installation process and run a first example, user can
call it without any argument from the command line, like this::
$ sider
Usage: sider [-hv]
sider <command> [options]
A pipeline for detecting
Somatic Insertion of DE novo RETROcopies
Options:
-h, --help Show help options
-v, --version Show current version
-c, --cite Show citation in BibTeX
Commands:
ps, process-sample Extract alignments related
an event of retrocopy
mc, merge-call Discover and annotate
retrocopies
vcf, make-vcf Generate VCF file with all
annotate retrocopies
In the above situation, if **sideRETRO** was correctly installed, it will give
that default *usage* help.
Another classical example is to print **sideRETRO**'s installed version using
the ``-v`` option::
$ sider --version
sideRETRO 1.0.0
And, if the user need further help, he can find it both at the **sideRETRO**'s
`readthedocs page <https://sideretro.readthedocs.io>`_ or in the already
installed software documentation, from command line::
$ sider --help
Please, see :ref:`A Practical Workflow <pract_wf>` and :ref:`Running with Docker
<run_dck>` sections for more examples and tips for using with **Docker**.
Now, to get more familiar with **sideRETRO** main commands and results, let's
try some basic examples for each command.
Command ``process-sample``
==========================
The first one is ``process-sample`` or ``ps`` for short, and was intended to act
as the *"evidence's grounding faith"* for **sideRETRO**. Here, we're saying
"first" because of an order in which the user must run the commands. The file
resultant from this command will become the input to the next one,
``merge-call``.
As explained in the `Introduction <intro.rst>`_ section, the command
``process-sample`` creates a database of abnormal reads from a SAM/BAM file set.
To do this, there are some mandatory options the user must supply to do a
correct search. Calling the command ``process-sample`` without any argument
will give a specific help where user can know all the mandatory options for
this command::
$ sider process-sample
Arguments:
One or more alignment file in SAM/BAM format
Mandatory Options:
-a, --annotation-file Gene annotation on the reference genome
in GTF/GFF3 format. sider will look for 'exon'
with the attribute 'transcript_type=protein_coding'.
The attributes 'gene_name', 'gene_id' and 'exon_id'
are also required
-i, --input-file File containing a newline separated list of
alignment files in SAM/BAM/CRAM format.
This option is not mandatory if one or more
SAM/BAM/CRAM files are passed as argument.
If 'input-file' and arguments are set
concomitantly, then the union of all alignment
files is used
Input/Output Options:
-h, --help Show help options
-q, --quiet Decrease verbosity to error messages only
or suppress terminal outputs at all if
'log-file' is passed
--silent Same as '--quiet'
-d, --debug Increase verbosity to debug level
-l, --log-file Print log messages to a file
-o, --output-dir Output directory. Create the directory if it does
not exist [default:"."]
-p, --prefix Prefix output files [default:"out"]
SQLite3 Options:
-c, --cache-size Set SQLite3 cache size in KiB [default:"200000"]
Read Quality Options:
-Q, --phred-quality Minimum mapping quality of the reads required
[default:"8"]
-M, --max-base-freq Maximum base frequency fraction allowed
[default:"0.75"]
-D, --deduplicate Remove duplicated reads. Reads are considered
duplicates when they share the 5 prime positions
of both reads and read-pairs
Processing Options:
-s, --sorted Assume all reads are grouped by queryname, even if
there is no SAM/BAM/CRAM header tag 'SO:queryname'
-t, --threads Number of threads [default:"1"]
-m, --max-distance Maximum distance allowed between paired-end reads
[default:"10000"]
-f, --exon-frac Minimum overlap required as a fraction of exon
[default:"1e-09"; 1 base]
-F, --alignment-frac Minimum overlap required as a fraction of
alignment [default:"1e-09"; 1 base]
-e, --either The minimum fraction must be satisfied for at least
exon OR alignment. Without '-e', both fractions would
have to be satisfied
-r, --reciprocal The fraction overlap must be reciprocal for exon and
alignment. If '-f' is 0.5, then '-F' will be set to
0.5 as well
So, supposing that the user has three files: *f1.bam*, *f2.bam*, *f3.sam*, he
can type::
$ sider process-sample f2.bam f2.bam f3.sam \
-a annotation_file.gtf
Note the mandatory ``-a`` option specifying the annotation file. And, in this
unique exception, we suppressed the ``-i`` mandatory option cause all the files
were explicitly called.
Let's see another example that shows the convenient use of the ``-i`` option to
call a list of input files (e.g. *my_files_list.txt*) instead of them directly::
$ sider process-sample \
-i my_files_list.txt \
-a annotation_file.gtf
Both commands above will produce only one output database file *out.db*
containing all relevant reads for non-fixed retrocopies search, whose prefix
*out* can be easily changed with the ``-p`` option. The abnormal reads from
all input files will be merged in just one table. To produce one database for
each input file separately, user must run one distinct instance of
**sideRETRO** per file.
Some options' values can affect drastically the output. Let's play a little bit
with some of them while using the short version of the command ``ps``::
$ sider ps \
-i my_files_list.txt \
-a annotation_file.gtf \
-o output_dir \
-p my_reads_database \
-l my_log_file.log \
-c 2000000 \
-Q 20 \
-F 0.9 \
-t 3
Wow! The number of options can be overwhelming.
Here used ``-o`` option to specify the directory *output_dir* to write our
database as *my_reads_database.db* (``-p`` option). Also, we chose to save the
log messages in *my_log_file.log* file (``-l`` option), a cache size of 2Gb
(``-c`` option), a minimum phred score cutoff of 20 for alignments (``-Q``
option), a minimum overlap ratio of 0.9 for read alignments over exonic regions
(``-F`` option) and 3 threads to process those files in parallel (``-t`` option).
To see another example of the ``process-sample`` command chained in a real
workflow, please refer to the :ref:`A Practical Workflow <pract_wf>` section.
Command ``merge-call``
======================
The second step in the **sideRETRO**'s *"journey for the truth of retrocopies"*
is the command ``merge-call`` or ``mc`` for short. The aim of this command is to
take the database created by ``process-sample`` step as input and populate more
tables in it, with information risen from a clustering process over the abnormal
reads regions.
Like ``process-sample``, ``merge-call`` has some mandatory options, which can be
known by calling it without any argument::
$ sider merge-call
Arguments:
One or more SQLite3 databases generated in the `process-sample
<#command-process-sample>`_ step
Mandatory Options:
-i, --input-file File containing a newline separated list of
SQLite3 databases to be processed. This
option is not mandatory if one or more
SQLite3 databases are passed as argument.
If 'input-file' and arguments are set
concomitantly, then the union of all files
is used
Input/Output Options:
-h, --help Show help options
-q, --quiet Decrease verbosity to error messages only
or suppress terminal outputs at all if
'log-file' is passed
--silent Same as '--quiet'
-d, --debug Increase verbosity to debug level
-l, --log-file Print log messages to a file
-o, --output-dir Output directory. Create the directory if it does
not exist [default:"."]
-p, --prefix Prefix output files [default:"out"]
-I, --in-place Merge all databases with the first one of the list,
instead of creating a new file
SQLite3 Options:
-c, --cache-size Set SQLite3 cache size in KiB [default:"200000"]
Clustering Options:
-e, --epsilon DBSCAN: Maximum distance between two alignments
inside a cluster [default:"300"]
-m, --min-pts DBSCAN: Minimum number of points required to form a
dense region [default:"10"]
Filter & Annotation Options:
-b, --blacklist-chr Avoid clustering from and to this chromosome. This
option can be passed multiple times [default:"chrM"]
-B, --blacklist-region GTF/GFF3/BED blacklisted regions. If the file is in
GTF/GFF3 format, the user may indicate the 'feature'
(third column), the 'attribute' (ninth column) and
its values
-P, --blacklist-padding Increase the blacklisted regions ranges (left and right)
by N bases [default:"0"]
-T, --gff-feature The value of 'feature' (third column) for GTF/GFF3
file [default:"gene"]
-H, --gff-hard-attribute The 'attribute' (ninth column) for GTF/GFF3
file. It may be passed in the format key=value
(e.g. gene_type=pseudogene). Each value will match
as regex, so 'pseudogene' can capture IG_C_pseudogene,
IG_V_pseudogene etc. This option can be passed multiple
times and must be true in all of them
-S, --gff-soft-attribute Works as 'gff-hard-attribute'. The difference is
if this option is passed multiple times, it needs
to be true only once
[default:"gene_type=processed_pseudogene tag=retrogene"]
-x, --parental-distance Minimum distance allowed between a cluster and
its putative parental gene [default:"1000000"]
-g, --genotype-support Minimum number of reads coming from a given source
(SAM/BAM/CRAM) within a cluster [default:"3"]
-n, --near-gene-rank Minimum ranked distance between genes in order to
consider them close [default:"3"]
Genotyping Options:
-t, --threads Number of threads [default:"1"]
-Q, --phred-quality Minimum mapping quality used to define reference
allele reads [default:"8"]
And likewise, user can call a set of database files directly, or using a list of
files::
$ sider merge-call database1.db database2.db -I
or ::
$ sider merge-call -i my_databases_list.txt -I
.. note::
Again, note the ``-I`` option that is not mandatory but would lead the creation
of duplicated output databases if absent. This option do the clustering
"in place" over the input files, overwriting them (so be careful). If user do
not use the ``-p`` or ``-I`` options, the output files will be named *out.db*.
In a more sophisticated example, we will use the short version of the command
``mc``, with many other options::
$ sider mc \
-i my_databases_list.txt \
-o output_dir \
-p my_database \
-l my_log_file.log \
-I \
-c 2000000 \
-B my_black_list.bed \
-x 1000000 \
-g 5 \
-Q 20 \
-C 15 \
-t 3
Here, options ``-i``, ``-o``, ``-p``, ``-l``, ``-I``, ``-c``, ``-Q`` and ``-t``
keeps the same meaning as they have in the ``process-sample`` command.
The others need some explanation. All we've done here was to ask for a minimum
number of 5 reads of contribution from each input SAM/BAM file to consider a
clustering region as a retrocopy candidate (with ``-g`` option); a minimum
distance of 1000000 bp from the parental gene to resolve some doubtful overlaps
(``-x`` option), a minimum number of 15 crossing reads over the putative
insertion point to consider heterozygosis evidence (``-C``) and, importantly,
a BED file with a list of regions to be ignored at the clustering process called
*my_black_list.txt* (``-B`` option). This last option's file can describe
entire chromosomes (like chrM) and many chromosomal regions with poor insertion
evidences taken literature, like centromers. All specified regions won't be
targets for clustering.
To see another example of the ``merge-call`` command chained in a real workflow,
please refer to the :ref:`A Practical Workflow <pract_wf>` section.
Command ``make-vcf``
====================
The third and last step to the **sideRETRO**'s *"crusade to retrocopies"* is the
``make-vcf`` command or ``vcf`` for short. This command takes the already
clustered tables in the database files populated at the ``merge-call`` step and
creates one VCF file with all statistically significant retrocopy insertions
annotated in a convenient format.
This command has no mandatory options, but it is worth try to discover the
others::
$ sider make-vcf
Arguments:
SQLite3 database generated at `process-sample <#command-process-sample>`_
and `merge-call <#command-merge-call>`_ steps
Input/Output Options:
-h, --help Show help options
-q, --quiet Decrease verbosity to error messages only
or suppress terminal outputs at all if
'log-file' is passed
--silent Same as '--quiet'
-d, --debug Increase verbosity to debug level
-l, --log-file Print log messages to a file
-o, --output-dir Output directory. Create the directory if it does
not exist [default:"."]
-p, --prefix Prefix output files [default:"out"]
Filter & Annotation Options:
-n, --near-gene-dist Minimum distance between genes in order to
consider them close [default:"10000"]
-e, --orientation-error Maximum error allowed for orientation rho
[default:"0.05"]
-r, --reference-file FASTA file for the reference genome
So, in order to produce a VCF file from a database input file like
*my_database.db*, just type::
$ sider make-vcf my_database.db
This will produce a *out.vcf* output file.
Let's add more options to customize it to our needs (with the short version of
the command only for symmetry)::
$ sider vcf my_database.db \
-o output_dir \
-p my_retrocopies \
-l my_log_file.log \
-r my_reference_genome.fa \
-n 50000
Command ``make-vcf`` is very simple and don't allow the user to use threads.
The only new options are ``-r``, which must specify the reference genome in
FASTA format (like **gencode**'s *Hg38.fa*) and ``-n``, where user can establish
a distance threshold for genes surrounding insertion points for additional
information in the output VCF file.
.. _cram:
Dealing with CRAM format
========================
Working with CRAM files may be a little **tricky**, mainly if you have downloaded
the data from a public repository. Let's take a look at two possible cases:
* Local alignment
* External alignment
Local alignment
---------------
In order to generate an alignment file in the CRAM format, first we need to
index the reference genome:
.. code-block:: sh
# Inde for BWA: .fa.amb, .fa.ann, .fa.bwt, .fa.pac, .fa.sa files
bwa index hg38.fa
# Index reference genome for CRAM: .fa.fai file
samtools faidx hg38.fa
Then, we can align with :code:`bwa`:
.. code-block:: sh
# Align with BWA and generate a CRAM
bwa mem hg38.fa file_R1.fastq file_R2.fastq | \
samtools view -T hg38.fa -C -o file.cram -
The alignment :file:`file.cram` can be processed with :code:`sider`, as long as
we don't change the reference genome and its index (:file:`.fa.fai`) path. If so,
we need to set the environment variables :file:`REF_PATH` and :file:`REF_CACHE`,
see :ref:`External alignment <extern_cram>`.
.. _extern_cram:
External alignment
------------------
When we download public data already aligned in the CRAM format, we may be
concerned about the reference genome index. Probably, we won't have the
required genome index to read the :file:`.cram`, and the :file:`htslib`
library - used by :code:`sider` and :code:`samtools` - is able to download
the index from the `CRAM Reference Registry <http://www.ebi.ac.uk/ena/cram>`_.
However, in order to :file:`htslib` be able to accomplish this task, we need
to compile the library with the required flags and also we need to have the
reqeuired dependencies (as `libcurl <https://curl.haxx.se/libcurl/>`_).
Therefore to be able to read these files, without depending on these details,
we need to generate a new local index and set the environment variables -
:file:`REF_PATH` and :file:`REF_CACHE` - to the correct path:
.. code-block:: sh
# Create cache dir
mkdir -p /my/cache
# Construct the index
perl seq_cache_populate.pl -root /my/cache hg38.fa
# Now before running samtools or sider, we need to
# set the environment variables REF_PATH and REF_CACHE
export REF_PATH=/my/cache/%2s/%2s/%s:http://www.ebi.ac.uk/ena/cram
export REF_CACHE=/my/cache/%2s/%2s/%s
# So ...
sider ps -a annot.gff3.gz -o result file.cram
The script :file:`seq_cache_populate.pl` can be found in the :file:`samtools`,
or at `seq_cache_populate.pl
<https://github.com/deweylab/RSEM/blob/master/samtools-1.3/misc/seq_cache_populate.pl>`_.
For more information, see `Samtools Worflow <https://www.htslib.org/workflow/>`_.
.. _pract_wf:
A Practical Workflow
====================
Now, let's do an interesting exercise, with real experimental data from the
`1000 Genomes Project <https://www.internationalgenome.org/>`_. (Warning: This example requires 16GB of RAM)
In order to run **siderRETRO** searching for retrocopies, we will download 2
whole-genome sequenced CRAM files, both aligned on the **gencode**'s
`hg38 <ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_32/GRCh38.primary_assembly.genome.fa.gz>`_
genome:
`NA12878 <ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR323/ERR3239334/NA12878.final.cram>`_
and
`NA12778 <ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR323/ERR3239484/NA12778.final.cram>`_.
At the beginning of a run, the files listed below must be at the same directory where
the user is running **sideRETRO** or their correct paths must be supplied at the
correspondent option. Files are:
1. A GTF gene annotation file from gencode project
(here :file:`gencode.v32.annotation.gtf`).
2. A FASTA file with the gencode's Human reference genome, version 38
(here :file:`GRCh38_full_analysis_set_plus_decoy_hla.fa`).
3. A custom perl script, :code:`seq_cache_populate.pl`, to construct a new local index .
The :code:`seq_cache_populate.pl` script can be found in
`seq_cache_populate.pl <https://github.com/deweylab/RSEM/blob/master/samtools-1.3/misc/seq_cache_populate.pl>`_.
4. A custom perl script, :code:`analyser.pl`, to do the final analysis over the VCF file
and produce the TSV file in a tabular format. The :code:`analyser.pl` script can be
downloaded :download:`here <data/analyser.pl>`.
Also, we will set the environment variables :file:`REF_PATH` and :file:`REF_CACHE`, as
a requirement to work with CRAM files - more information at
:ref:`Dealing with CRAM format<extern_cram>`.
See the complete command sequence below for the whole analysis.
Tip: Copy and paste line by line in your terminal.
Tip 2: If you are running line by line in your terminal don't paste the "$" character. It is already in your terminal.
.. code-block:: sh
# Do things inside a clean directory.
# Average time: irrelevant
$ mkdir -p sider_test
$ cd sider_test
# Download annotation from gencode
wget ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_32/gencode.v32.annotation.gtf.gz
# Download the reference genome from 1000 genomes
wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/GRCh38_full_analysis_set_plus_decoy_hla.fa
# Make the CRAM index
# Create cache dir
mkdir -p cache
# create index
perl seq_cache_populate.pl -root cache GRCh38_full_analysis_set_plus_decoy_hla.fa
# Set environment variables
export REF_PATH=$PWD/cache/%2s/%2s/%s:http://www.ebi.ac.uk/ena/cram
export REF_CACHE=$PWD/cache/%2s/%2s/%s
# Create a download list (WGS.list) containing all files of interest.
# Average time: irrelevant
$ echo "ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR323/ERR3239334/NA12878.final.cram" > WGS_download.list
$ echo "ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR323/ERR3239484/NA12778.final.cram" >> WGS_download.list
# Download all files: NA12878 and NA12778.
# Average time: network dependent
$ wget -c -i WGS_download.list
# Create the list of BAM files.
# Average time: irrelevant
$ ls *.cram > WGS_genomes.list
# First sideRETRO step: process-sample
# Input file: WGS_genomes.list
# Output file: 1000_genomes.db
# Average time: 62m34.541
$ sider process-sample \
-i WGS_genomes.list \
-a gencode.v32.annotation.gtf.gz \
-p 1000_genomes \
-c 2000000 \
-Q 20 \
-F 0.9 \
-t 2
# Second sideRETRO step: merge-call
# Input file: 1000_genomes.db
# Output file: 1000_genomes.db (same file)
# Average time: 62m34.541
$ sider merge-call 1000_genomes.db \
-c 2000000 \
-x 1000000 \
-g 5 \
-I \
-t 2
# Second sideRETRO step: merge-call
# Input file: 1000_genomes.db
# Output file: 1000_genomes.vcf
# Average time: 62m34.541
$ sider make-vcf 1000_genomes.db \
-p 1000_genomes \
-r GRCh38_full_analysis_set_plus_decoy_hla.fa
# Some analysis over the final VCF file.
# Input file: 1000_genomes.vcf
# Output file: 1000_genomes.tsv
# Average time: 62m34.541
$ perl analyser.pl 1000_genomes.vcf > 1000_genomes.tsv
This was a simple but complete pipeline to obtain a final TSV file with all
the relevant results in a tabular format ready to import in a R or Python script
and plot some graphics.
.. _run_dck:
Running with Docker
===================
Notwithstanding **sideRETRO**'s native run, user can happily run it from a
**Docker** image just prepending **Docker**'s directives to any example shown.
That is, supposing the user has *Docker* installed and has pulled the image
*galantelab/sider:latest* from `DockerHub
<https://hub.docker.com/r/galantelab/sider>`_, he can just prepend
``docker --rm -ti -v $(pwd):/home/sider -w /home/sider galantelab/sider``
to the ordinary ``sider`` command, like::
$ docker --rm -ti -v $(pwd):/home/sider -w /home/sider galantelab/sider \
sider ps \
-i my_files_list.txt \
-a annotation_file.gtf \
-o output_dir \
-p my_reads_database \
-l my_log_file.log \
-c 2000000 \
-Q 20 \
-F 0.9 \
-t 3
|