File: 6510_.cpp

package info (click to toggle)
sidplay 1.36.28-2
  • links: PTS
  • area: main
  • in suites: slink
  • size: 1,192 kB
  • ctags: 1,674
  • sloc: cpp: 12,514; sh: 1,716; makefile: 223
file content (1967 lines) | stat: -rw-r--r-- 41,293 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
//
// /home/ms/source/sidplay/libsidplay/emu/RCS/6510_.cpp,v
//
// --------------------------------------------------------------------------
// Copyright (c) 1994-1997 Michael Schwendt. All rights reserved.
//
// Redistribution and use  in source and  binary forms, either  unchanged or
// modified, are permitted provided that the following conditions are met:
//
// (1)  Redistributions  of  source  code  must  retain  the above copyright
// notice, this list of conditions and the following disclaimer.
//
// (2) Redistributions  in binary  form must  reproduce the  above copyright
// notice,  this  list  of  conditions  and  the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE  IS PROVIDED  BY THE  AUTHOR ``AS  IS'' AND  ANY EXPRESS OR
// IMPLIED  WARRANTIES,  INCLUDING,   BUT  NOT  LIMITED   TO,  THE   IMPLIED
// WARRANTIES OF MERCHANTABILITY  AND FITNESS FOR  A PARTICULAR PURPOSE  ARE
// DISCLAIMED.  IN NO EVENT SHALL  THE AUTHOR OR CONTRIBUTORS BE LIABLE  FOR
// ANY DIRECT,  INDIRECT, INCIDENTAL,  SPECIAL, EXEMPLARY,  OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT  LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS
// OR SERVICES;  LOSS OF  USE, DATA,  OR PROFITS;  OR BUSINESS INTERRUPTION)
// HOWEVER  CAUSED  AND  ON  ANY  THEORY  OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING  IN
// ANY  WAY  OUT  OF  THE  USE  OF  THIS  SOFTWARE,  EVEN  IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
// --------------------------------------------------------------------------
//
// MOS-6510 Interpreter. Known bugs, missing features, incompatibilities:
//
//  - No support for code execution in Basic-ROM/Kernal-ROM.
//    Only execution of code in RAM is allowed.
//  - Probably inconsistent emulation of illegal instructions part 3.
//  - No detection of deadlocks.
//  - Faked RTI (= RTS).
//  - Anybody knows, whether it is ``Kernel'' instead of ``Kernal'' ?
//    Perhaps it is a proper name invented by CBM ?
//    It is spelled ``Kernal'' in nearly every C64 documentation !
//

#include "6510_.h"
#include "myendian.h"
#include "emucfg.h"


ubyte* c64mem1 = 0;               // 64KB C64-RAM
ubyte* c64mem2 = 0;               // Basic-ROM, VIC, SID, I/O, Kernal-ROM
bool sidKeysOff[32];              // key_off detection
bool sidKeysOn[32];               // key_on detection
ubyte sidLastValue = 0;           // last value written to the SID
ubyte optr3readWave = 0;          // D41B
ubyte optr3readEnve = 0;          // D41C

// --------------------------------------------------------------------------

static ubyte AC, XR, YR;          // 6510 processor registers
static uword PC, SP;              // program-counter, stack-pointer
// PC is only used temporarily ! 
// The current program-counter is pPC-pPCbase

static ubyte* pPCbase;            // pointer to RAM/ROM buffer base
static ubyte* pPCend;             // pointer to RAM/ROM buffer end
static ubyte* pPC;                // pointer to PC location

// ---------------------------------------------------- Memory de-/allocation

static ubyte* c64ramBuf = 0;
static ubyte* c64romBuf = 0;

bool c64memFree()
{
	if ( c64romBuf != 0 )
	{
		delete[] c64romBuf;
		c64romBuf = (c64mem2 = 0);
	}
	if ( c64ramBuf != 0 )
	{
		delete[] c64ramBuf;
		c64ramBuf = (c64mem1 = 0);
	}
	return true;
}

bool c64memAlloc()
{
	c64memFree();
	bool wasSuccess = true;
	if (( c64ramBuf = new ubyte[65536+256] ) == 0 )
	{
		wasSuccess = false;
	}
	if (( c64romBuf = new ubyte[65536+256] ) == 0 )
	{
		wasSuccess = false;
	}
	if (!wasSuccess)
	{
		c64memFree();
	}
	else
	{
		// Make the memory buffers accessible to the whole emulator engine.
		c64mem1 = c64ramBuf;
		c64mem2 = c64romBuf;
	}
	return wasSuccess;
}

// ------------------------------------------------------ (S)tatus (R)egister
// MOS-6510 SR: NV-BDIZC
//              76543210
//

struct statusRegister
{
	unsigned Carry     : 1;
	unsigned Zero      : 1;
	unsigned Interrupt : 1;
	unsigned Decimal   : 1;
	unsigned Break     : 1;
	unsigned NotUsed   : 1;
	unsigned oVerflow  : 1;
	unsigned Negative  : 1;
};

static statusRegister SR;

// Some handy defines to ease SR access.
#define CF SR.Carry
#define ZF SR.Zero
#define IF SR.Interrupt
#define DF SR.Decimal
#define BF SR.Break
#define NU SR.NotUsed
#define VF SR.oVerflow
#define NF SR.Negative

inline void affectNZ(ubyte reg)
{
	ZF = (reg == 0);
	NF = ((reg & 0x80) != 0);
}

inline void resetSR()
{
	// Explicit paranthesis looks great.
	CF = (ZF = (IF = (DF = (BF = (VF = (NF = 0))))));
	NU = 1;
}

inline ubyte codeSR()
{
	register ubyte tempSR = CF;
	tempSR |= (ZF<<1);
	tempSR |= (IF<<2);
	tempSR |= (DF<<3);
	tempSR |= (BF<<4);
	tempSR |= (NU<<5);
	tempSR |= (VF<<6);
	tempSR |= (NF<<7);
	return tempSR;
}

inline void decodeSR(ubyte stackByte)
{
	CF = (stackByte & 1);               
	ZF = ((stackByte & 2) !=0 );
	IF = ((stackByte & 4) !=0 );
	DF = ((stackByte & 8) !=0 );
	BF = ((stackByte & 16) !=0 );
	NU = 1;  // if used or writable, ((stackByte & 32) !=0 );
	VF = ((stackByte & 64) !=0 );
	NF = ((stackByte & 128) !=0 );
}

// --------------------------------------------------------------------------
// Handling conditional branches.

inline void branchIfClear(ubyte flag)
{
	if (flag == 0)
	{
		PC = pPC-pPCbase;   // calculate 16-bit PC
		PC += (sbyte)*pPC;  // add offset, keep it 16-bit (uword)
		pPC = pPCbase+PC;   // calc new pointer-PC
	}
	pPC++;
}

inline void branchIfSet(ubyte flag)
{
	if (flag != 0)
	{
		PC = pPC-pPCbase;   // calculate 16-bit PC
		PC += (sbyte)*pPC;  // add offset, keep it 16-bit (uword)
		pPC = pPCbase+PC;   // calc new pointer-PC
	}
	pPC++;
}

// --------------------------------------------------------------------------
// Addressing modes:
// Calculating 8/16-bit effective addresses out of data operands.

inline uword abso()
{
	return readLEword(pPC);
}

inline uword absx()
{
	return readLEword(pPC)+XR;
}

inline uword absy()
{
	return readLEword(pPC)+YR;
}

inline ubyte imm()
{
	return *pPC;
}

inline uword indx()
{
	return readEndian(c64mem1[(*pPC+1+XR)&0xFF],c64mem1[(*pPC+XR)&0xFF]);
}

inline uword indy()
{
	return YR+readEndian(c64mem1[(*pPC+1)&0xFF],c64mem1[*pPC]);
}

inline ubyte zp()
{
	return *pPC;
}

inline ubyte zpx()
{
	return *pPC+XR;
}

inline ubyte zpy()
{
	return *pPC+YR;
}

// --------------------------------------------------------------------------
// LIFO-Stack:
//
// |xxxxxx|
// |xxxxxx|
// |______|<- SP <= (hi)-return-address
// |______|      <= (lo)
// |______|
//

static bool stackIsOkay = true;

inline void resetSP()
{
	SP = 0x1ff;          // SP to top of stack
	stackIsOkay = true;
}

inline void checkSP()
{
	stackIsOkay = ((SP>0xff)&&(SP<=0x1ff));  // check boundaries
}

inline void RTS_()
{ 
    SP++;
    PC =readEndian( c64mem1[SP +1], c64mem1[SP] ) +1;
    pPC = pPCbase+PC;
    SP++;
    checkSP();
}

// --------------------------------------------------------------------------
// Relevant configurable memory banks:
//
//  $A000 to $BFFF = RAM, Basic-ROM
//  $C000 to $CFFF = RAM
//  $D000 to $DFFF = RAM, I/O, Char-ROM 
//  $E000 to $FFFF = RAM, Kernal-ROM
//
// Bank-Select Register $01:
// 
//   Bits
//   210    $A000-$BFFF   $D000-$DFFF   $E000-$FFFF
//  ------------------------------------------------
//   000       RAM           RAM            RAM
//   001       RAM        Char-ROM          RAM
//   010       RAM        Char-ROM      Kernal-ROM
//   011    Basic-ROM     Char-ROM      Kernal-ROM
//   100       RAM           RAM            RAM
//   101       RAM           I/O            RAM
//   110       RAM           I/O        Kernal-ROM
//   111    Basic-ROM        I/O        Kernal-ROM
//
// "Transparent ROM" mode:
//
// Basic-ROM and Kernal-ROM are considered transparent to read/write access.
// Basic-ROM is also considered transparent to branches (JMP, BCC, ...).
// I/O and Kernal-ROM are togglable via bank-select register $01.

static bool isBasic;   // these flags are used to not have to repeatedly
static bool isIO;      // evaluate the bank-select register for each
static bool isKernal;  // address operand

static ubyte* bankSelReg;  // pointer to RAM[1], bank-select register

static ubyte fakeReadTimer;


inline void evalBankSelect()
{
	// Determine new memory configuration.
	isBasic = ((*bankSelReg & 3) == 3);
	isIO = ((*bankSelReg & 7) > 4);
	isKernal = ((*bankSelReg & 2) != 0);
}


// Upon JMP/JSR prevent code execution in Basic-ROM/Kernal-ROM.
inline void evalBankJump()
{
	if (PC < 0xA000)
	{
		;
	}
	else
	{
		// Get high-nibble of address.
		switch (PC >> 12)
		{
		 case 0xa:
		 case 0xb:
			{
				if (isBasic)
				{
					RTS_();
				}
				break;
			}
		 case 0xc:
			{
				break;
			}
		 case 0xd:
			{
				if (isIO)
				{
					RTS_();
				}
				break;
			}
		 case 0xe:
		 case 0xf:
		 default:  // <-- just to please the compiler
			{
				if (isKernal)
				{
					RTS_();
				}
				break;
			}
		}
	}
}


// Functions to retrieve data.

static ubyte readData_bs(uword addr)
{
	if (addr < 0xA000)
	{
		return c64mem1[addr];
	}
	else
	{
		// Get high-nibble of address.
		switch (addr >> 12)
		{
		 case 0xa:
		 case 0xb:
			{
				if (isBasic)
					return c64mem2[addr];
				else
					return c64mem1[addr];
			}
		 case 0xc:
			{
				return c64mem1[addr];
			}
		 case 0xd:
			{
				if (isIO)
				{
					uword tempAddr = (addr & 0xfc1f);
					// Not SID ?
					if (( tempAddr & 0xff00 ) != 0xd400 )
					{
						switch (addr)
						{
						 case 0xd011:
						 case 0xd012:
						 case 0xdc04:
						 case 0xdc05:
							{
								return (fakeReadTimer = c64mem2[addr]+fakeReadTimer*13+1);
							}
						 default:
							{
								return c64mem2[addr];
							}
						}
					}
					else
					{
						// $D41D/1E/1F, $D43D/, ... SID not mirrored
						if (( tempAddr & 0x00ff ) >= 0x001d )
							return(c64mem2[addr]); 
						// (Mirrored) SID.
						else
						{
							switch (tempAddr)
							{
							 case 0xd41b:
								{
									return optr3readWave;
								}
							 case 0xd41c:
								{
									return optr3readEnve;
								}
							 default:
								{
									return sidLastValue;
								}
							}
						}
					}
				}
				else
					return c64mem1[addr];
			}
		 case 0xe:
		 case 0xf:
		 default:  // <-- just to please the compiler
			{
				if (isKernal)
					return c64mem2[addr];
				else
					return c64mem1[addr];
			}
		}
	}
}

static ubyte readData_transp(uword addr)
{
	if (addr < 0xD000)
	{
		return c64mem1[addr];
	}
	else
	{
		// Get high-nibble of address.
		switch (addr >> 12)
		{
		 case 0xd:
			{
				if (isIO)
				{
					uword tempAddr = (addr & 0xfc1f);
					// Not SID ?
					if (( tempAddr & 0xff00 ) != 0xd400 )
					{
						switch (addr)
						{
						 case 0xd011:
						 case 0xd012:
						 case 0xdc04:
						 case 0xdc05:
							{
								return (fakeReadTimer = c64mem2[addr]+fakeReadTimer*13+1);
							}
						 default:
							{
								return c64mem2[addr];
							}
						}
					}
					else
					{
						// $D41D/1E/1F, $D43D/, ... SID not mirrored
						if (( tempAddr & 0x00ff ) >= 0x001d )
							return(c64mem2[addr]); 
						// (Mirrored) SID.
						else
						{
							switch (tempAddr)
							{
							 case 0xd41b:
								{
									return optr3readWave;
								}
							 case 0xd41c:
								{
									return optr3readEnve;
								}
							 default:
								{
									return sidLastValue;
								}
							}
						}
					}
				}
				else
					return c64mem1[addr];
			}
		 case 0xe:
		 case 0xf:
		 default:  // <-- just to please the compiler
			{
				return c64mem1[addr];
			}
		}
	}
}

static ubyte readData_plain(uword addr)
{
	return c64mem1[addr];
}

inline ubyte readData_zp(uword addr)
{
	return c64mem1[addr];
}


// Functions to store data.

static void writeData_bs(uword addr, ubyte data)
{
	if ((addr < 0xd000) || (addr >= 0xe000))
	{
		c64mem1[addr] = data;
		if (addr == 0x01)  // write to Bank-Select Register ?
		{
			evalBankSelect();
		}
	}
	else
	{
		if (isIO)
		{
			// Check whether real SID or mirrored SID.
			uword tempAddr = (addr & 0xfc1f);
			// Not SID ?
			if (( tempAddr & 0xff00 ) != 0xd400 )
			{
				c64mem2[addr] = data;
			}
			// $D41D/1E/1F, $D43D/3E/3F, ...
			// Map to real address to support PlaySID
			// Extended SID Chip Registers.
			else if (( tempAddr & 0x00ff ) >= 0x001d )
			{
				// Mirrored SID.
				c64mem2[addr] = (sidLastValue = data);
			}
			else
			{
				// SID.
				c64mem2[tempAddr] = (sidLastValue = data);
				// Handle key_ons.
				sidKeysOn[tempAddr&0x001f] = sidKeysOn[tempAddr&0x001f] || ((data&1)!=0); 
				// Handle key_offs.
				sidKeysOff[tempAddr&0x001f] = sidKeysOff[tempAddr&0x001f] || ((data&1)==0); 
			}
		}
		else
		{
			c64mem1[addr] = data;
		}
	}
}

static void writeData_plain(uword addr, ubyte data)
{
	// Check whether real SID or mirrored SID.
	uword tempAddr = (addr & 0xfc1f);
	// Not SID ?
	if (( tempAddr & 0xff00 ) != 0xd400 )
	{
		c64mem1[addr] = data; 
	}
	// $D41D/1E/1F, $D43D/3E/3F, ...
	// Map to real address to support PlaySID
	// Extended SID Chip Registers.
	else if (( tempAddr & 0x00ff ) >= 0x001d )
	{
		// Mirrored SID.
		c64mem1[addr] = (sidLastValue = data);
	}
	else
	{
		// SID.
		c64mem2[tempAddr] = (sidLastValue = data);
		// Handle key_ons.
		sidKeysOn[tempAddr&0x001f] = sidKeysOn[tempAddr&0x001f] || ((data&1)!=0); 
		// Handle key_offs.
		sidKeysOff[tempAddr&0x001f] = sidKeysOff[tempAddr&0x001f] || ((data&1)==0); 
	}
}

inline void writeData_zp(uword addr, ubyte data)
{
	c64mem1[addr] = data;
	if (addr == 0x01)  // write to Bank-Select Register ?
	{
		evalBankSelect();
	}
}


// Use pointers to allow plain-memory modifications.
static ubyte (*readData)(uword) = &readData_bs;
static void (*writeData)(uword,ubyte) = &writeData_bs;

// --------------------------------------------------------------------------
// Legal instructions in alphabetical order.
//

inline void ADC_m(ubyte x)
{
	if ( DF == 1 )
	{
		uword AC2 = AC +x +CF;                
		ZF = ( AC2 == 0 );
		if ((( AC & 15 ) + ( x & 15 ) + CF ) > 9 )
		{
			AC2 += 6;
		}
		VF = ((( AC ^ x ^ AC2 ) & 0x80 ) != 0 ) ^ CF;
		NF = (( AC2 & 128 ) != 0 );
		if ( AC2 > 0x99 )
		{
			AC2 += 96;
		}
		CF = ( AC2 > 0x99 );
		AC = ( AC2 & 255 );
	}
	else
	{
		uword AC2 = AC +x +CF;                
		CF = ( AC2 > 255 );
		VF = ((( AC ^ x ^ AC2 ) & 0x80 ) != 0 ) ^ CF;
		affectNZ( AC = ( AC2 & 255 ));
	}
}
static void ADC_imm()  { ADC_m(imm()); pPC++; }
static void ADC_abso()  { ADC_m( readData(abso()) ); pPC += 2; }
static void ADC_absx()  { ADC_m( readData(absx()) ); pPC += 2; }
static void ADC_absy()  { ADC_m( readData(absy()) ); pPC += 2; }
static void ADC_indx()  { ADC_m( readData(indx()) ); pPC++; }
static void ADC_indy()  { ADC_m( readData(indy()) ); pPC++; }
static void ADC_zp()  { ADC_m( readData_zp(zp()) ); pPC++; }
static void ADC_zpx()  { ADC_m( readData_zp(zpx()) ); pPC++; }


inline void AND_m(ubyte x)
{
	affectNZ( AC &= x );
}
static void AND_imm()  { AND_m(imm()); pPC++; }
static void AND_abso()  { AND_m( readData(abso()) ); pPC += 2; }
static void AND_absx()  { AND_m( readData(absx()) ); pPC += 2; }
static void AND_absy()  { AND_m( readData(absy()) ); pPC += 2; }
static void AND_indx()  { AND_m( readData(indx()) ); pPC++; }
static void AND_indy()  { AND_m( readData(indy()) ); pPC++; }
static void AND_zp()  { AND_m( readData_zp(zp()) ); pPC++; }
static void AND_zpx()  { AND_m( readData_zp(zpx()) ); pPC++; }


inline ubyte ASL_m(ubyte x)
{ 
	CF = (( x & 128 ) != 0 );
	affectNZ( x <<= 1);
	return x;
}
static void ASL_AC()
{ 
	AC = ASL_m(AC);                         
}
static void ASL_abso()
{ 
	uword tempAddr = abso();
	pPC += 2;
	writeData( tempAddr, ASL_m( readData(tempAddr)) );
}
static void ASL_absx()
{ 
	uword tempAddr = absx();
	pPC += 2;
	writeData( tempAddr, ASL_m( readData(tempAddr)) );
}
static void ASL_zp()
{ 
	uword tempAddr = zp();
	pPC++;
	writeData_zp( tempAddr, ASL_m( readData_zp(tempAddr)) );
}
static void ASL_zpx()
{ 
	uword tempAddr = zpx();
	pPC++;
	writeData_zp( tempAddr, ASL_m( readData_zp(tempAddr)) );
}


static void BCC_()  { branchIfClear(CF); }

static void BCS_()  { branchIfSet(CF); }

static void BEQ_()  { branchIfSet(ZF); }


inline void BIT_m(ubyte x)
{ 
	ZF = (( AC & x ) == 0 );                  
	VF = (( x & 64 ) != 0 );
	NF = (( x & 128 ) != 0 );
}
static void BIT_abso()  { BIT_m( readData(abso()) ); pPC += 2; }
static void BIT_zp()  {	BIT_m( readData_zp(zp()) );	pPC++; }


static void BMI_()  { branchIfSet(NF); }

static void BNE_()  { branchIfClear(ZF); }

static void BPL_()  { branchIfClear(NF); }


static void BRK_()
{ 
	BF = (IF = 1);
#if !defined(NO_RTS_UPON_BRK)
	RTS_();
#endif
}


static void BVC_()  { branchIfClear(VF); }

static void BVS_()  { branchIfSet(VF); }


static void CLC_()  { CF = 0; }

static void CLD_()  { DF = 0; }

static void CLI_()  { IF = 0; }

static void CLV_()  { VF = 0; }


inline void CMP_m(ubyte x)
{ 
	ZF = ( AC == x );                     
	CF = ( AC >= x );                         
	NF = ( (sbyte)( AC - x ) < 0 );
}
static void CMP_abso()  { CMP_m( readData(abso()) ); pPC += 2; }
static void CMP_absx()  { CMP_m( readData(absx()) ); pPC += 2; }
static void CMP_absy()  { CMP_m( readData(absy()) ); pPC += 2; }
static void CMP_imm()  { CMP_m(imm()); pPC++; }
static void CMP_indx()  { CMP_m( readData(indx()) ); pPC++; }
static void CMP_indy()  { CMP_m( readData(indy()) ); pPC++; }
static void CMP_zp()  { CMP_m( readData_zp(zp()) ); pPC++; }
static void CMP_zpx()  { CMP_m( readData_zp(zpx()) ); pPC++; }


inline void CPX_m(ubyte x)
{ 
	ZF = ( XR == x );                         
	CF = ( XR >= x );                         
	NF = ( (sbyte)( XR - x ) < 0 );      
}
static void CPX_abso()  { CPX_m( readData(abso()) ); pPC += 2; }
static void CPX_imm()  { CPX_m(imm()); pPC++; }
static void CPX_zp()  { CPX_m( readData_zp(zp()) ); pPC++; }


inline void CPY_m(ubyte x)
{ 
	ZF = ( YR == x );                         
	CF = ( YR >= x );                         
	NF = ( (sbyte)( YR - x ) < 0 );      
}
static void CPY_abso()  { CPY_m( readData(abso()) ); pPC += 2; }
static void CPY_imm()  { CPY_m(imm()); pPC++; }
static void CPY_zp()  { CPY_m( readData_zp(zp()) ); pPC++; }


inline void DEC_m(uword addr)
{ 
	ubyte x = readData(addr);                   
	affectNZ(--x);
	writeData(addr, x);
}
inline void DEC_m_zp(uword addr)
{ 
	ubyte x = readData_zp(addr);
	affectNZ(--x);
	writeData_zp(addr, x);
}
static void DEC_abso()  { DEC_m( abso() ); pPC += 2; }
static void DEC_absx()  { DEC_m( absx() ); pPC += 2; }
static void DEC_zp()  { DEC_m_zp( zp() ); pPC++; }
static void DEC_zpx()  { DEC_m_zp( zpx() ); pPC++; }


static void DEX_()  { affectNZ(--XR); }

static void DEY_()  { affectNZ(--YR); }


inline void EOR_m(ubyte x)
{ 
	AC ^= x;                          
	affectNZ(AC);                         
}
static void EOR_abso()  { EOR_m( readData(abso()) ); pPC += 2; }
static void EOR_absx()  { EOR_m( readData(absx()) ); pPC += 2; }
static void EOR_absy()  { EOR_m( readData(absy()) ); pPC += 2; }
static void EOR_imm()  { EOR_m(imm()); pPC++; }
static void EOR_indx()  { EOR_m( readData(indx()) ); pPC++; }
static void EOR_indy()  { EOR_m( readData(indy()) ); pPC++; }
static void EOR_zp()  { EOR_m( readData_zp(zp()) ); pPC++; }
static void EOR_zpx()  { EOR_m( readData_zp(zpx()) ); pPC++; }


inline void INC_m(uword addr)
{
	ubyte x = readData(addr);                   
	affectNZ(++x);
	writeData(addr, x);
}
inline void INC_m_zp(uword addr)
{
	ubyte x = readData_zp(addr);                   
	affectNZ(++x);
	writeData_zp(addr, x);
}
static void INC_abso()  { INC_m( abso() ); pPC += 2; }
static void INC_absx()  { INC_m( absx() ); pPC += 2; }
static void INC_zp()  { INC_m_zp( zp() ); pPC++; }
static void INC_zpx()  { INC_m_zp( zpx() ); pPC++; }


static void INX_()  { affectNZ(++XR); }

static void INY_()  { affectNZ(++YR); }



static void JMP_()
{ 
	PC = abso();
	pPC = pPCbase+PC;
	evalBankJump();
}

static void JMP_transp()
{ 
	PC = abso();
	if ( (PC>=0xd000) && isKernal )
	{
		RTS_();  // will set pPC
	}
	else
	{
		pPC = pPCbase+PC;
	}
}

static void JMP_plain()
{ 
	PC = abso();
	pPC = pPCbase+PC;
}


static void JMP_vec()
{ 
	uword tempAddrLo = abso();
	uword tempAddrHi = (tempAddrLo&0xFF00) | ((tempAddrLo+1)&0x00FF);
	PC = readEndian(readData(tempAddrHi),readData(tempAddrLo));
	pPC = pPCbase+PC;
	evalBankJump();
}

static void JMP_vec_transp()
{ 
	uword tempAddrLo = abso();
	uword tempAddrHi = (tempAddrLo&0xFF00) | ((tempAddrLo+1)&0x00FF);
	PC = readEndian(readData(tempAddrHi),readData(tempAddrLo));
	if ( (PC>=0xd000) && isKernal )
	{
		RTS_();  // will set pPC
	}
	else
	{
		pPC = pPCbase+PC;
	}
}

static void JMP_vec_plain()
{ 
	uword tempAddrLo = abso();
	uword tempAddrHi = (tempAddrLo&0xFF00) | ((tempAddrLo+1)&0x00FF);
	PC = readEndian(readData(tempAddrHi),readData(tempAddrLo));
	pPC = pPCbase+PC;
}


inline void JSR_main()
{
	uword tempPC = abso();
	pPC += 2;
	PC = pPC-pPCbase;
	PC--;
	SP--;
	writeLEword(c64mem1+SP,PC);
	SP--;
	checkSP();
	PC = tempPC;
}

static void JSR_()
{ 
	JSR_main();
	pPC = pPCbase+PC;
	evalBankJump();
}

static void JSR_transp()
{ 
	JSR_main();
	if ( (PC>=0xd000) && isKernal )
	{
		RTS_();  // will set pPC
	}
	else
	{
		pPC = pPCbase+PC;
	}
}

static void JSR_plain()
{ 
	JSR_main();
	pPC = pPCbase+PC;
}


static void LDA_abso()  { affectNZ( AC = readData(abso()) ); pPC += 2; }
static void LDA_absx()  { affectNZ( AC = readData( absx() )); pPC += 2; }
static void LDA_absy()  { affectNZ( AC = readData( absy() ) ); pPC += 2; }
static void LDA_imm()  { affectNZ( AC = imm() ); pPC++; }
static void LDA_indx()  { affectNZ( AC = readData( indx() ) ); pPC++; }
static void LDA_indy()  { affectNZ( AC = readData( indy() ) ); pPC++; }
static void LDA_zp()  { affectNZ( AC = readData_zp( zp() ) ); pPC++; }
static void LDA_zpx()  { affectNZ( AC = readData_zp( zpx() ) ); pPC++; }


static void LDX_abso()  { affectNZ(XR=readData(abso())); pPC += 2; }
static void LDX_absy()  { affectNZ(XR=readData(absy())); pPC += 2; }
static void LDX_imm()  { affectNZ(XR=imm()); pPC++; }
static void LDX_zp()  { affectNZ(XR=readData_zp(zp())); pPC++; }
static void LDX_zpy()  { affectNZ(XR=readData_zp(zpy())); pPC++; }


static void LDY_abso()  { affectNZ(YR=readData(abso())); pPC += 2; }
static void LDY_absx()  { affectNZ(YR=readData(absx())); pPC += 2; }
static void LDY_imm()  { affectNZ(YR=imm()); pPC++; }
static void LDY_zp()  { affectNZ(YR=readData_zp(zp())); pPC++; }
static void LDY_zpx()  { affectNZ(YR=readData_zp(zpx())); pPC++; }


inline ubyte LSR_m(ubyte x)
{ 
	CF = x & 1;
	x >>= 1;
	NF = 0;
	ZF = (x == 0);
	return x;
}
static void LSR_AC()
{ 
	AC = LSR_m(AC);
}
static void LSR_abso()
{ 
	uword tempAddr = abso();
	pPC += 2; 
	writeData( tempAddr, (LSR_m( readData(tempAddr))) );
}
static void LSR_absx()
{ 
	uword tempAddr = absx();
	pPC += 2; 
	writeData( tempAddr, (LSR_m( readData(tempAddr))) );
}
static void LSR_zp()
{ 
	uword tempAddr = zp();
	pPC++; 
	writeData_zp( tempAddr, (LSR_m( readData_zp(tempAddr))) );
}
static void LSR_zpx()
{ 
	uword tempAddr = zpx();
	pPC++; 
	writeData_zp( tempAddr, (LSR_m( readData_zp(tempAddr))) );
}


inline void ORA_m(ubyte x)
{
	affectNZ( AC |= x );
}
static void ORA_abso()  { ORA_m( readData(abso()) ); pPC += 2; }
static void ORA_absx()  { ORA_m( readData(absx()) ); pPC += 2; }
static void ORA_absy()  { ORA_m( readData(absy()) ); pPC += 2; }
static void ORA_imm()  { ORA_m(imm()); pPC++; }
static void ORA_indx()  { ORA_m( readData(indx()) ); pPC++; }
static void ORA_indy()  { ORA_m( readData(indy()) ); pPC++; }
static void ORA_zp()  { ORA_m( readData_zp(zp()) ); pPC++; }
static void ORA_zpx()  { ORA_m( readData_zp(zpx()) ); pPC++; }


static void NOP_()  { }

static void PHA_()  { c64mem1[SP--] = AC; }


static void PHP_()
{ 
	c64mem1[SP--] = codeSR();
}


static void PLA_()
{ 
	affectNZ(AC=c64mem1[++SP]);
}


static void PLP_()
{ 
	decodeSR(c64mem1[++SP]);
}

inline ubyte ROL_m(ubyte x)
{ 
	ubyte y = ( x << 1 ) + CF;
	CF = (( x & 0x80 ) != 0 );
	affectNZ(y);
	return y;
}
static void ROL_AC()  { AC=ROL_m(AC); }
static void ROL_abso()
{ 
	uword tempAddr = abso();
	pPC += 2; 
	writeData( tempAddr, ROL_m( readData(tempAddr)) );
}
static void ROL_absx()
{ 
	uword tempAddr = absx();
	pPC += 2; 
	writeData( tempAddr, ROL_m( readData(tempAddr)) );
}
static void ROL_zp()
{ 
	uword tempAddr = zp();
	pPC++; 
	writeData_zp( tempAddr, ROL_m( readData_zp(tempAddr)) );
}
static void ROL_zpx()
{ 
	uword tempAddr = zpx();
	pPC++; 
	writeData_zp( tempAddr, ROL_m( readData_zp(tempAddr)) );
}

inline ubyte ROR_m(ubyte x)
{ 
	ubyte y = ( x >> 1 ) | ( CF << 7 );
	CF = ( x & 1 );
	affectNZ(y);
	return y;
}
static void ROR_AC()
{ 
	AC = ROR_m(AC);
}
static void ROR_abso()
{ 
	uword tempAddr = abso();
	pPC += 2; 
	writeData( tempAddr, ROR_m( readData(tempAddr)) );
}
static void ROR_absx()
{ 
	uword tempAddr = absx();
	pPC += 2; 
	writeData( tempAddr, ROR_m( readData(tempAddr)) );
}
static void ROR_zp()
{ 
	uword tempAddr = zp();
	pPC++; 
	writeData_zp( tempAddr, ROR_m( readData_zp(tempAddr)) );
}
static void ROR_zpx()
{ 
	uword tempAddr = zpx();
	pPC++; 
	writeData_zp( tempAddr, ROR_m( readData_zp(tempAddr)) );
}


static void RTI_()	
{
	// equal to RTS_();
	SP++;
	PC =readEndian( c64mem1[SP +1], c64mem1[SP] ) +1;
	pPC = pPCbase+PC;
	SP++;
	checkSP();
}


// RTS_() is inline.


inline void SBC_m(ubyte s)
{ 
	s = (~s) & 255;
	if ( DF == 1 )
	{
		uword AC2 = AC +s +CF;                
		ZF = ( AC2 == 0 );
		if ((( AC & 15 ) + ( s & 15 ) + CF ) > 9 )
		{
			AC2 += 6;
		}
		VF = ((( AC ^ s ^ AC2 ) & 0x80 ) != 0 ) ^ CF;
		NF = (( AC2 & 128 ) != 0 );
		if ( AC2 > 0x99 )
		{
			AC2 += 96;
		}
		CF = ( AC2 > 0x99 );
		AC = ( AC2 & 255 );
	}
	else
	{
		uword AC2 = AC + s + CF;
		CF = ( AC2 > 255 );
		VF = ((( AC ^ s ^ AC2 ) & 0x80 ) != 0 ) ^ CF;
		affectNZ( AC = ( AC2 & 255 ));
	}
}
static void SBC_abso()  { SBC_m( readData(abso()) ); pPC += 2; }
static void SBC_absx()  { SBC_m( readData(absx()) ); pPC += 2; }
static void SBC_absy()  { SBC_m( readData(absy()) ); pPC += 2; }
static void SBC_imm()  { SBC_m(imm()); pPC++; }
static void SBC_indx()  { SBC_m( readData( indx()) ); pPC++; }
static void SBC_indy()  { SBC_m( readData(indy()) ); pPC++; }
static void SBC_zp()  { SBC_m( readData_zp(zp()) ); pPC++; }
static void SBC_zpx()  { SBC_m( readData_zp(zpx()) ); pPC++; }


static void SEC_()  { CF=1; }

static void SED_()  { DF=1; }

static void SEI_()  { IF=1; }


static void STA_abso()  { writeData( abso(), AC ); pPC += 2; }
static void STA_absx()  { writeData( absx(), AC ); pPC += 2; }
static void STA_absy()  { writeData( absy(), AC ); pPC += 2; }
static void STA_indx()  { writeData( indx(), AC ); pPC++; }
static void STA_indy()  { writeData( indy(), AC ); pPC++; }
static void STA_zp()  { writeData_zp( zp(), AC ); pPC++; }
static void STA_zpx() { writeData_zp( zpx(), AC ); pPC++; }


static void STX_abso()  { writeData( abso(), XR ); pPC += 2; }
static void STX_zp()  { writeData_zp( zp(), XR ); pPC++; }
static void STX_zpy()  { writeData_zp( zpy(), XR ); pPC++; }


static void STY_abso()  { writeData( abso(), YR ); pPC += 2; }
static void STY_zp()  { writeData_zp( zp(), YR ); pPC++; }
static void STY_zpx()  { writeData_zp( zpx(), YR ); pPC++; }


static void TAX_()  { affectNZ(XR=AC); }

static void TAY_()  { affectNZ(YR=AC); }


static void TSX_()
{ 
	XR = SP & 255;													
	affectNZ(XR);
}

static void TXA_()  { affectNZ(AC=XR); }

static void TXS_()  { SP = XR | 0x100; checkSP(); }

static void TYA_()  { affectNZ(AC=YR); }


// --------------------------------------------------------------------------
// Illegal codes/instructions part (1).

static void ILL_TILT()  { }

static void ILL_1NOP()  { }

static void ILL_2NOP()  { pPC++; }

static void ILL_3NOP()  { pPC += 2; }


// --------------------------------------------------------------------------
// Illegal codes/instructions part (2).

inline void ASLORA_m(uword addr)
{
	ubyte x = ASL_m(readData(addr));
	writeData(addr,x);
	ORA_m(x);
}
inline void ASLORA_m_zp(uword addr)
{
	ubyte x = ASL_m(readData_zp(addr));
	writeData_zp(addr,x);
	ORA_m(x);
}
static void ASLORA_abso()
{
	ASLORA_m(abso());
	pPC += 2; 
}
static void ASLORA_absx()
{
	ASLORA_m(absx());
	pPC += 2; 
}
static void ASLORA_absy()
{
	ASLORA_m(absy());
	pPC += 2; 
}
static void ASLORA_indx()
{
	ASLORA_m(indx());
	pPC++; 
}
static void ASLORA_indy()
{
	ASLORA_m(indy());
	pPC++; 
}
static void ASLORA_zp()
{
	ASLORA_m_zp(zp());
	pPC++; 
} 
static void ASLORA_zpx()
{
	ASLORA_m_zp(zpx());
	pPC++; 
}


inline void ROLAND_m(uword addr)
{
	uword x = ROL_m(readData(addr));
	writeData(addr,x);
	AND_m(x);
}
inline void ROLAND_m_zp(uword addr)
{
	uword x = ROL_m(readData_zp(addr));
	writeData_zp(addr,x);
	AND_m(x);
}
static void ROLAND_abso()
{
	ROLAND_m(abso());
	pPC += 2; 
}
static void ROLAND_absx()
{
	ROLAND_m(absx());
	pPC += 2; 
}
static void ROLAND_absy()
{
	ROLAND_m(absy());
	pPC += 2; 
}  
static void ROLAND_indx()
{
	ROLAND_m(indx());
	pPC++; 
}  
static void ROLAND_indy()
{
	ROLAND_m(indy());
	pPC++; 
} 
static void ROLAND_zp()
{
	ROLAND_m_zp(zp());
	pPC++; 
} 
static void ROLAND_zpx()
{
	ROLAND_m_zp(zpx());
	pPC++; 
} 


inline void LSREOR_m(uword addr)
{
	uword x = LSR_m(readData(addr));
	writeData(addr,x);
	EOR_m(x);
}
inline void LSREOR_m_zp(uword addr)
{
	uword x = LSR_m(readData_zp(addr));
	writeData_zp(addr,x);
	EOR_m(x);
}
static void LSREOR_abso()
{
	LSREOR_m(abso());
	pPC += 2; 
}
static void LSREOR_absx()
{
	LSREOR_m(absx());
	pPC += 2; 
}  
static void LSREOR_absy()
{
	LSREOR_m(absy());
	pPC += 2; 
}  
static void LSREOR_indx()
{
	LSREOR_m(indx());
	pPC++; 
} 
static void LSREOR_indy()
{
	LSREOR_m(indy());
	pPC++; 
}  
static void LSREOR_zp()
{
	LSREOR_m_zp(zp());
	pPC++; 
}  
static void LSREOR_zpx()
{
	LSREOR_m_zp(zpx());
	pPC++; 
}  


inline void RORADC_m(uword addr)
{
	ubyte x = ROR_m(readData(addr));
	writeData(addr,x);
	ADC_m(x);
}
inline void RORADC_m_zp(uword addr)
{
	ubyte x = ROR_m(readData_zp(addr));
	writeData_zp(addr,x);
	ADC_m(x);
}
static void RORADC_abso()
{
	RORADC_m(abso());
	pPC += 2; 
} 
static void RORADC_absx()
{
	RORADC_m(absx());
	pPC += 2; 
} 
static void RORADC_absy()
{
	RORADC_m(absy());
	pPC += 2; 
}  
static void RORADC_indx()
{
	RORADC_m(indx());
	pPC++; 
}  
static void RORADC_indy()
{
	RORADC_m(indy());
	pPC++; 
} 
static void RORADC_zp()
{
	RORADC_m_zp(zp());
	pPC++; 
}  
static void RORADC_zpx()
{
	RORADC_m_zp(zpx());
	pPC++; 
}


inline void DECCMP_m(uword addr)
{
	ubyte x = readData(addr);
	writeData(addr,(--x));
	CMP_m(x);
}
inline void DECCMP_m_zp(uword addr)
{
	ubyte x = readData_zp(addr);
	writeData_zp(addr,(--x));
	CMP_m(x);
}
static void DECCMP_abso()
{
	DECCMP_m(abso());
	pPC += 2; 
}  
static void DECCMP_absx()
{
	DECCMP_m(absx());
	pPC += 2; 
}  
static void DECCMP_absy()
{
	DECCMP_m(absy());
	pPC += 2; 
}  
static void DECCMP_indx()
{
	DECCMP_m(indx());
	pPC++; 
}  
static void DECCMP_indy()
{
	DECCMP_m(indy());
	pPC++; 
} 
static void DECCMP_zp()
{
	DECCMP_m_zp(zp());
	pPC++; 
} 
static void DECCMP_zpx()
{
	DECCMP_m_zp(zpx());
	pPC++; 
} 


inline void INCSBC_m(uword addr)
{
	ubyte x = readData(addr);
	writeData(addr,(++x));
	SBC_m(x);
}
inline void INCSBC_m_zp(uword addr)
{
	ubyte x = readData_zp(addr);
	writeData_zp(addr,(++x));
	SBC_m(x);
}
static void INCSBC_abso()
{
	INCSBC_m(abso());
	pPC += 2; 
} 
static void INCSBC_absx()
{
	INCSBC_m(absx());
	pPC += 2; 
}  
static void INCSBC_absy()
{
	INCSBC_m(absy());
	pPC += 2; 
}  
static void INCSBC_indx()
{
	INCSBC_m(indx());
	pPC++; 
}  
static void INCSBC_indy()
{
	INCSBC_m(indy());
	pPC++; 
} 
static void INCSBC_zp()
{
	INCSBC_m_zp(zp());
	pPC++; 
} 
static void INCSBC_zpx()
{
	INCSBC_m_zp(zpx());
	pPC++; 
}  


// --------------------------------------------------------------------------
// Illegal codes/instructions part (3). This implementation is considered to
// be only partially working due to inconsistencies in the available
// documentation.
// Note: In some of the functions emulated, defined instructions are used and
// already increment the PC ! Take care, and do not increment further !
// Double-setting of processor flags can occur, too.

static void ILL_0B() // equal to 2B
{ 
	AND_imm();
	CF = NF;
}
	
static void ILL_4B()
{ 
	AND_imm();
	LSR_AC();
}
	
static void ILL_6B()
{ 
	if (DF == 0)
	{
		AND_imm();
		ROR_AC();
		CF = (AC & 1);
		VF = (AC >> 5) ^ (AC >> 6);
	}
}
	
static void ILL_83()
{
	writeData(indx(),AC & XR);
	pPC++; 
}

static void ILL_87()
{
	writeData_zp(zp(),AC & XR);
	pPC++; 
}

static void ILL_8B()
{ 
	TXA_();
	AND_imm();
}
	
static void ILL_8F()
{
	writeData(abso(),AC & XR);
	pPC += 2; 
}

static void ILL_93()
{
	writeData(indy(), AC & XR & (1+(readData((*pPC)+1) & 0xFF)));
	pPC++; 
}

static void ILL_97()
{ 
	writeData_zp(zpx(),AC & XR);
	pPC++; 
}

static void ILL_9B()
{
	SP = 0x100 | (AC & XR);
	writeData(absy(),(SP & ((*pPC+1)+1)));
	pPC += 2;
	checkSP();
}

static void ILL_9C()
{
	writeData(absx(),(YR & ((*pPC+1)+1)));
	pPC += 2;
}

static void ILL_9E()
{ 
	writeData(absy(),(XR & ((*pPC+1)+1)));
	pPC += 2;
}

static void ILL_9F()
{
	writeData(absy(),(AC & XR & ((*pPC+1)+1)));
	pPC += 2;
}

static void ILL_A3()
{
	LDA_indx();
	TAX_();
}

static void ILL_A7()
{
	LDA_zp();
	TAX_();
}

static void ILL_AF()
{
	LDA_abso();
	TAX_();
}

static void ILL_B3()
{
	LDA_indy();
	TAX_();
}

static void ILL_B7()
{
	affectNZ(AC = readData_zp(zpy()));  // would be LDA_zpy()
	TAX_();
	pPC++; 
}

static void ILL_BB()
{
	XR = (SP & absy());
	pPC += 2;
	TXS_();
	TXA_();
}

static void ILL_BF()
{
	LDA_absy();
	TAX_();
}

static void ILL_CB()
{ 
	uword tmp = XR & AC;
	tmp -= imm();
	CF = (tmp > 255);
	affectNZ(XR=(tmp&255));
}

static void ILL_EB()
{ 
	SBC_imm();
}

// --------------------------------------------------------------------------

static ptr2func instrList[] =
{
	&BRK_, &ORA_indx, &ILL_TILT, &ASLORA_indx, &ILL_2NOP, &ORA_zp, &ASL_zp, &ASLORA_zp,
	&PHP_, &ORA_imm, &ASL_AC, &ILL_0B, &ILL_3NOP, &ORA_abso, &ASL_abso, &ASLORA_abso,
	&BPL_, &ORA_indy, &ILL_TILT, &ASLORA_indy, &ILL_2NOP, &ORA_zpx, &ASL_zpx, &ASLORA_zpx,
	&CLC_, &ORA_absy, &ILL_1NOP, &ASLORA_absy, &ILL_3NOP, &ORA_absx, &ASL_absx, &ASLORA_absx,
	&JSR_, &AND_indx, &ILL_TILT, &ROLAND_indx, &BIT_zp, &AND_zp, &ROL_zp, &ROLAND_zp,
	&PLP_, &AND_imm, &ROL_AC, &ILL_0B, &BIT_abso, &AND_abso, &ROL_abso, &ROLAND_abso,
	&BMI_, &AND_indy, &ILL_TILT, &ROLAND_indy, &ILL_2NOP, &AND_zpx, &ROL_zpx, &ROLAND_zpx,
	&SEC_, &AND_absy, &ILL_1NOP, &ROLAND_absy, &ILL_3NOP, &AND_absx, &ROL_absx, &ROLAND_absx,
	// 0x40
	&RTI_, &EOR_indx, &ILL_TILT, &LSREOR_indx, &ILL_2NOP, &EOR_zp, &LSR_zp, &LSREOR_zp,
	&PHA_, &EOR_imm, &LSR_AC, &ILL_4B, &JMP_, &EOR_abso, &LSR_abso, &LSREOR_abso,
	&BVC_, &EOR_indy, &ILL_TILT, &LSREOR_indy, &ILL_2NOP, &EOR_zpx, &LSR_zpx, &LSREOR_zpx,
	&CLI_, &EOR_absy, &ILL_1NOP, &LSREOR_absy, &ILL_3NOP, &EOR_absx, &LSR_absx, &LSREOR_absx,
	&RTS_, &ADC_indx, &ILL_TILT, &RORADC_indx, &ILL_2NOP, &ADC_zp, &ROR_zp, &RORADC_zp,
	&PLA_, &ADC_imm, &ROR_AC, &ILL_6B, &JMP_vec, &ADC_abso, &ROR_abso, &RORADC_abso,
	&BVS_, &ADC_indy, &ILL_TILT, &RORADC_indy, &ILL_2NOP, &ADC_zpx, &ROR_zpx, &RORADC_zpx,
	&SEI_, &ADC_absy, &ILL_1NOP, &RORADC_absy, &ILL_3NOP, &ADC_absx, &ROR_absx, &RORADC_absx,
	// 0x80
	&ILL_2NOP, &STA_indx, &ILL_2NOP, &ILL_83, &STY_zp, &STA_zp, &STX_zp, &ILL_87,
	&DEY_, &ILL_2NOP, &TXA_, &ILL_8B, &STY_abso, &STA_abso, &STX_abso, &ILL_8F,
	&BCC_, &STA_indy, &ILL_TILT, &ILL_93, &STY_zpx, &STA_zpx, &STX_zpy, &ILL_97,
	&TYA_, &STA_absy, &TXS_, &ILL_9B, &ILL_9C, &STA_absx, &ILL_9E, &ILL_9F,
	&LDY_imm, &LDA_indx, &LDX_imm, &ILL_A3, &LDY_zp, &LDA_zp, &LDX_zp, &ILL_A7,
	&TAY_, &LDA_imm, &TAX_, &ILL_1NOP, &LDY_abso, &LDA_abso, &LDX_abso, &ILL_AF,
	&BCS_, &LDA_indy, &ILL_TILT, &ILL_B3, &LDY_zpx, &LDA_zpx, &LDX_zpy, &ILL_B7,
	&CLV_, &LDA_absy, &TSX_, &ILL_BB, &LDY_absx, &LDA_absx, &LDX_absy, &ILL_BF,
	// 0xC0
	&CPY_imm, &CMP_indx, &ILL_2NOP, &DECCMP_indx, &CPY_zp, &CMP_zp, &DEC_zp, &DECCMP_zp,
	&INY_, &CMP_imm, &DEX_, &ILL_CB, &CPY_abso, &CMP_abso, &DEC_abso, &DECCMP_abso,
	&BNE_, &CMP_indy, &ILL_TILT, &DECCMP_indy, &ILL_2NOP, &CMP_zpx, &DEC_zpx, &DECCMP_zpx,
	&CLD_, &CMP_absy, &ILL_1NOP, &DECCMP_absy, &ILL_3NOP, &CMP_absx, &DEC_absx, &DECCMP_absx,
	&CPX_imm, &SBC_indx, &ILL_2NOP, &INCSBC_indx, &CPX_zp, &SBC_zp, &INC_zp, &INCSBC_zp,
	&INX_, &SBC_imm,  &NOP_, &ILL_EB, &CPX_abso, &SBC_abso, &INC_abso, &INCSBC_abso,
	&BEQ_, &SBC_indy, &ILL_TILT, &INCSBC_indy, &ILL_2NOP, &SBC_zpx, &INC_zpx, &INCSBC_zpx,
	&SED_, &SBC_absy, &ILL_1NOP, &INCSBC_absy, &ILL_3NOP, &SBC_absx, &INC_absx, &INCSBC_absx
};


static int memoryMode = MPU_TRANSPARENT_ROM;  // the default


void initInterpreter(int inMemoryMode)
{
	memoryMode = inMemoryMode;
	if (memoryMode == MPU_TRANSPARENT_ROM)
	{
		readData = &readData_transp;
		writeData = &writeData_bs;
		instrList[0x20] = &JSR_transp;
		instrList[0x4C] = &JMP_transp;
		instrList[0x6C] = &JMP_vec_transp;
		// Make the memory buffers accessible to the whole emulator engine.
		// Use two distinct 64KB memory areas.
		c64mem1 = c64ramBuf;
		c64mem2 = c64romBuf;
	}
	else if (memoryMode == MPU_PLAYSID_ENVIRONMENT)
	{
		readData = &readData_plain;
		writeData = &writeData_plain;
		instrList[0x20] = &JSR_plain;
		instrList[0x4C] = &JMP_plain;
		instrList[0x6C] = &JMP_vec_plain;
		// Make the memory buffers accessible to the whole emulator engine.
		// Use a single 64KB memory area.
		c64mem2 = (c64mem1 = c64ramBuf);
	}
	else  // if (memoryMode == MPU_BANK_SWITCHING)
	{
		readData = &readData_bs;
		writeData = &writeData_bs;
		instrList[0x20] = &JSR_;
		instrList[0x4C] = &JMP_;
		instrList[0x6C] = &JMP_vec;
		// Make the memory buffers accessible to the whole emulator engine.
		// Use two distinct 64KB memory areas.
		c64mem1 = c64ramBuf;
		c64mem2 = c64romBuf;
	}
	bankSelReg = c64ramBuf+1;  // extra pointer
	// Set code execution segment to RAM.
	pPCbase = c64ramBuf;
	pPCend = c64ramBuf+65536;
}


bool interpreter(uword p, ubyte ramrom, ubyte a, ubyte x, ubyte y)
{  
	if (memoryMode == MPU_PLAYSID_ENVIRONMENT)
	{
		AC = a;
		XR = 0;
		YR = 0;
	}
	else
	{
		*bankSelReg = ramrom;
		evalBankSelect();
		AC = a;
		XR = x;
		YR = y;
	}

	// Set program-counter (pointer instead of raw PC).
	pPC = pPCbase+p;
	
	resetSP();
	resetSR();            
	sidKeysOff[4] = (sidKeysOff[4+7] = (sidKeysOff[4+14] = false));
	sidKeysOn[4] = (sidKeysOn[4+7] = (sidKeysOn[4+14] = false));
	
	do
	{ 
		(*instrList[*(pPC++)])();
	}
	while (stackIsOkay&&(pPC<pPCend));
	
	return true;
}


void c64memReset(int clockSpeed, ubyte randomSeed)
{
	static ubyte fakeRndSeed = fakeRndSeed*13+randomSeed;
	fakeReadTimer = fakeRndSeed;
	
	if ((c64mem1 != 0) && (c64mem2 != 0))
	{
		c64mem1[0] = 0x2F;
		// defaults: Basic-ROM on, Kernal-ROM on, I/O on
		c64mem1[1] = 0x07;
		evalBankSelect();
		
		// CIA-Timer A $DC04/5 = $4025 PAL, $4295 NTSC
		if (clockSpeed == SIDTUNE_CLOCK_NTSC)
		{
			c64mem1[0x02a6] = 0;     // NTSC
			c64mem2[0xdc04] = 0x95;
			c64mem2[0xdc05] = 0x42;
		}
		else  // if (clockSpeed == SIDTUNE_CLOCK_PAL)
		{
			c64mem1[0x02a6] = 1;     // PAL
			c64mem2[0xdc04] = 0x25;
			c64mem2[0xdc05] = 0x40;
		}
		
		// fake VBI-interrupts that do $D019, BMI ...
		c64mem2[0xd019] = 0xff;
		
		// software vectors
		// IRQ to $EA31
		c64mem1[0x0314] = 0x31;
		c64mem1[0x0315] = 0xea;
		// BRK to $FE66
		c64mem1[0x0316] = 0x66;
		c64mem1[0x0317] = 0xfe;
		// NMI to $FE47
		c64mem1[0x0318] = 0x47;
		c64mem1[0x0319] = 0xfe;
		
		// hardware vectors 
		if (memoryMode == MPU_PLAYSID_ENVIRONMENT)
		{
			c64mem1[0xff48] = 0x6c;
			c64mem1[0xff49] = 0x14;
			c64mem1[0xff4a] = 0x03;
			c64mem1[0xfffa] = 0xf8;
			c64mem1[0xfffb] = 0xff;
			c64mem1[0xfffe] = 0x48;
			c64mem1[0xffff] = 0xff;
		}
		else
		{
			// NMI to $FE43
			c64mem1[0xfffa] = 0x43;
			c64mem1[0xfffb] = 0xfe;
			// RESET to $FCE2
			c64mem1[0xfffc] = 0xe2;
			c64mem1[0xfffd] = 0xfc;
			// IRQ to $FF48
			c64mem1[0xfffe] = 0x48;
			c64mem1[0xffff] = 0xff;
		}
		
		// clear SID
		for ( int i = 0; i < 0x1d; i++ )
		{
			c64mem2[0xd400 +i] = 0;
		}
		// default Mastervolume, no filter
		c64mem2[0xd418] = (sidLastValue = 0x0f);
	}
}


void c64memClear()
{ 
	// Clear entire RAM and ROM.
	for ( udword i = 0; i < 0x10000; i++ )
	{
		c64mem1[i] = 0; 
		if (memoryMode != MPU_PLAYSID_ENVIRONMENT)
		{
			c64mem2[i] = 0; 
		}
		sidLastValue = 0;
	}
	if (memoryMode == MPU_PLAYSID_ENVIRONMENT)
	{
		// Fill Kernal-ROM address space with RTI instructions.
		for ( udword j = 0xE000; j < 0x10000; j++ )
		{
			c64mem1[j] = 0x40;
		}
	}
	else
	{
		// Fill Basic-ROM address space with RTS instructions.
		for ( udword j1 = 0xA000; j1 < 0xC000; j1++ )
		{
			c64mem2[j1] = 0x60;
		}
		// Fill Kernal-ROM address space with RTI instructions.
		for ( udword j2 = 0xE000; j2 < 0x10000; j2++ )
		{
			c64mem2[j2] = 0x40;
		}
	}
}


//  Input: A 16-bit effective address
// Output: A default bank-select value for $01.
ubyte c64memRamRom( uword address )
{ 
	if (memoryMode == MPU_PLAYSID_ENVIRONMENT)
	{
		return 4;  // RAM only, but special I/O mode
	}
	else
	{
		if ( address < 0xa000 )
		{
			return 7;  // Basic-ROM, Kernal-ROM, I/O
		}
		else if ( address < 0xd000 )
		{
			return 6;  // Kernal-ROM, I/O
		}
		else if ( address >= 0xe000 )
		{
			return 5;  // I/O only
		}
		else
		{
			return 4;  // RAM only
		}
	}
}