File: envelope.cpp

package info (click to toggle)
sidplay 1.36.28-2
  • links: PTS
  • area: main
  • in suites: slink
  • size: 1,192 kB
  • ctags: 1,674
  • sloc: cpp: 12,514; sh: 1,716; makefile: 223
file content (674 lines) | stat: -rw-r--r-- 18,116 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
//
// /home/ms/source/sidplay/libsidplay/emu/RCS/envelope.cpp,v
//
//=========================================================================
// This source implements the ADSR volume envelope of the SID-chip.
// Two different envelope shapes are implemented, an exponential
// approximation and the linear shape, which can easily be determined
// by reading the registers of the third SID operator.
//
// Accurate volume envelope times as of November 1994 are used
// courtesy of George W. Taylor <aa601@cfn.cs.dal.ca>, <yurik@io.org>
// They are slightly modified.
//
// To use the rounded envelope times from the C64 Programmers Reference
// Book define SID_REFTIMES at the Makefile level.
//
// To perform realtime calculations with floating point precision define
// SID_FPUENVE at the Makefile level. On high-end FPUs (not Pentium !),
// this can result in speed improvement. Default is integer fixpoint.
//
// Global Makefile definables:
//
//   DIRECT_FIXPOINT - use a union to access integer fixpoint operands
//                     in memory. This makes an assumption about the
//                     hardware and software architecture and therefore
//                     is considered a hack !
//
// Local (or Makefile) definables:
//
//   SID_LINENVE  - use linear envelope attack shape (default)
//   SID_EXPENVE  - use exponential envelope shape
//   SID_REFTIMES - use rounded envelope times
//   SID_FPUENVE  - use floating point precision for calculations
//                  (will override the global DIRECT_FIXPOINT setting !)
//
//=========================================================================

#include <math.h>

#include "compconf.h"
#include "envelope.h"
#include "myendian.h"
#include "opstruct.h"

#if defined(SID_EXPENVE) && defined(SID_LINENVE)
  #error Select either SID_LINENVE or SID_EXPENVE!
#elif !defined(SID_EXPENVE) && !defined(SID_LINENVE)
  #define SID_LINENVE 1
#endif

#if defined(SID_EXPENVE)
  #include "enve_ac.h"
  #include "enve_dc.h"
#elif defined(SID_LINENVE)
  #include "enve_dl.h"
#endif

extern const ubyte masterVolumeLevels[16] =
{
    0,  17,  34,  51,  68,  85, 102, 119,
  136, 153, 170, 187, 204, 221, 238, 255
};
ubyte masterVolume;
uword masterVolumeAmplIndex;
static uword masterAmplModTable[16*256];

static float attackTimes[16] =
{
  // milliseconds
#if defined(SID_REFTIMES)
  2,8,16,24,38,56,68,80,
  100,250,500,800,1000,3000,5000,8000
#else
  2.2528606, 8.0099577, 15.7696042, 23.7795619, 37.2963655, 55.0684591,
  66.8330845, 78.3473987,
  98.1219818, 244.554021, 489.108042, 782.472742, 977.715461, 2933.64701,
  4889.07793, 7822.72493
#endif
};

static float decayReleaseTimes[16] =
{
  // milliseconds
#if defined(SID_REFTIMES)
  8,24,48,72,114,168,204,240,
  300,750,1500,2400,3000,9000,15000,24000
#else
  8.91777693, 24.594051, 48.4185907, 73.0116639, 114.512475, 169.078356,
  205.199432, 240.551975,
  301.266125, 750.858245, 1501.71551, 2402.43682, 3001.89298, 9007.21405,
  15010.998, 24018.2111
#endif
};

#ifdef SID_FPUENVE
  static float attackRates[16];
  static float decayReleaseRates[16];
#elif defined(DIRECT_FIXPOINT)
  static udword attackRates[16];
  static udword decayReleaseRates[16];
#else
  static udword attackRates[16];
  static udword attackRatesP[16];
  static udword decayReleaseRates[16];
  static udword decayReleaseRatesP[16];
#endif

#if defined(SID_LINENVE)
  const udword attackTabLen = 255;
#else
  static udword attackTabLen;
  static udword attackPos[256];
#endif
static udword releaseTabLen;
static udword releasePos[256];


void enveEmuInit( udword updateFreq, bool measuredValues )
{
	udword i, j, k;

#if !defined(SID_LINENVE) && defined(SID_EXPENVE)
	attackTabLen = sizeof(attackTab);
	for ( i = 0; i < 256; i++ )
	{
		j = 0;
		while (( j < attackTabLen ) && (attackTab[j] < i) )
		{
			j++;
		}
		attackPos[i]=j;
	}
#endif

	releaseTabLen = sizeof(releaseTab);
	for ( i = 0; i < 256; i++ )
	{
		j = 0;
		while (( j < releaseTabLen ) && (releaseTab[j] > i) )
		{
			j++;
		}
		if ( j < releaseTabLen )
		{
			releasePos[i] = j;
		}
		else
		{
			releasePos[i] = releaseTabLen -1;
		}
	}

	k = 0;
	for ( i = 0; i < 16; i++ )
	{
		for ( j = 0; j < 256; j++ )
		{
			uword tmpVol = j;
			if (measuredValues)
			{
				tmpVol = (uword) ((293.0*(1-exp(j/-130.0)))+4.0);
				if (j == 0)
					tmpVol = 0;
				if (tmpVol > 255)
					tmpVol = 255;
			}
			// Want the modulated volume value in the high byte.
			masterAmplModTable[k++] = ((tmpVol * masterVolumeLevels[i]) / 255) << 8;
		}
	}

	for ( i = 0; i < 16; i++ )
	{
#ifdef SID_FPUENVE
		double scaledenvelen = floor(( attackTimes[i] * updateFreq ) / 1000UL );
		if (scaledenvelen == 0)
			scaledenvelen = 1;
		attackRates[i] = attackTabLen / scaledenvelen;

		scaledenvelen = floor(( decayReleaseTimes[i] * updateFreq ) / 1000UL );
		if (scaledenvelen == 0)
			scaledenvelen = 1;
		decayReleaseRates[i] = releaseTabLen / scaledenvelen;
#elif defined(DIRECT_FIXPOINT)
		udword scaledenvelen = (udword)floor(( attackTimes[i] * updateFreq ) / 1000UL );
		if (scaledenvelen == 0)
			scaledenvelen = 1;
		attackRates[i] = (attackTabLen << 16) / scaledenvelen;

		scaledenvelen = (udword)floor(( decayReleaseTimes[i] * updateFreq ) / 1000UL );
		if (scaledenvelen == 0)
			scaledenvelen = 1;
		decayReleaseRates[i] = (releaseTabLen << 16) / scaledenvelen;
#else
		udword scaledenvelen = (udword)floor(( attackTimes[i] * updateFreq ) / 1000UL );
		if (scaledenvelen == 0)
			scaledenvelen = 1;
		attackRates[i] = attackTabLen / scaledenvelen;
		attackRatesP[i] = (( attackTabLen % scaledenvelen ) * 65536UL ) / scaledenvelen;

		scaledenvelen = (udword)floor(( decayReleaseTimes[i] * updateFreq ) / 1000UL );
		if (scaledenvelen == 0)
			scaledenvelen = 1;
		decayReleaseRates[i] = releaseTabLen / scaledenvelen;
		decayReleaseRatesP[i] = (( releaseTabLen % scaledenvelen ) * 65536UL ) / scaledenvelen;
#endif
  }
}

// Reset op.

void enveEmuResetOperator(sidOperator* pVoice)
{
	// mute, end of R-phase
	pVoice->ADSRctrl = ENVE_MUTE;
	pVoice->gateOnCtrl = (pVoice->gateOffCtrl = false);
	
#ifdef SID_FPUENVE
	pVoice->fenveStep = (pVoice->fenveStepAdd = 0);
	pVoice->enveStep = 0;
#elif defined(DIRECT_FIXPOINT)
	pVoice->enveStep.l = (pVoice->enveStepAdd.l = 0);
#else
	pVoice->enveStep = (pVoice->enveStepPnt = 0);
	pVoice->enveStepAdd = (pVoice->enveStepAddPnt = 0);
#endif
	pVoice->enveSusVol = 0;
	pVoice->enveVol = 0;
	pVoice->enveShortAttackCount = 0;
}

inline uword enveEmuStartAttack(struct sidOperator*);
inline uword enveEmuStartDecay(struct sidOperator*);
inline uword enveEmuStartRelease(struct sidOperator*);
inline uword enveEmuAlterAttack(struct sidOperator*);
inline uword enveEmuAlterDecay(struct sidOperator*);
inline uword enveEmuAlterSustain(struct sidOperator*);
inline uword enveEmuAlterSustainDecay(struct sidOperator*);
inline uword enveEmuAlterRelease(struct sidOperator*);
inline uword enveEmuAttack(struct sidOperator*);
inline uword enveEmuDecay(struct sidOperator*);
inline uword enveEmuSustain(struct sidOperator*);
inline uword enveEmuSustainDecay(struct sidOperator*);
inline uword enveEmuRelease(struct sidOperator*);
inline uword enveEmuMute(struct sidOperator*);

inline uword enveEmuStartShortAttack(struct sidOperator*);
inline uword enveEmuAlterShortAttack(struct sidOperator*);
inline uword enveEmuShortAttack(struct sidOperator*);


ptr2sidUwordFunc enveModeTable[] =
{
	// 0
	&enveEmuStartAttack, &enveEmuStartRelease,
	&enveEmuAttack, &enveEmuDecay, &enveEmuSustain, &enveEmuRelease,
	&enveEmuSustainDecay, &enveEmuMute,
	// 16
	&enveEmuStartShortAttack, 
	&enveEmuMute, &enveEmuMute, &enveEmuMute, 
	&enveEmuMute, &enveEmuMute, &enveEmuMute, &enveEmuMute,
    // 32		
	&enveEmuStartAttack, &enveEmuStartRelease,
	&enveEmuAlterAttack, &enveEmuAlterDecay, &enveEmuAlterSustain, &enveEmuAlterRelease,
	&enveEmuAlterSustainDecay, &enveEmuMute,
    // 48		
	&enveEmuStartShortAttack, 
	&enveEmuMute, &enveEmuMute, &enveEmuMute, 
	&enveEmuMute, &enveEmuMute, &enveEmuMute, &enveEmuMute
};

// Real-time functions.
// Order is important because of inline optimizations.
//
// ADSRctrl is (index*2) to enveModeTable[], because of KEY-bit.

inline void enveEmuEnveAdvance(struct sidOperator* pVoice)
{
#ifdef SID_FPUENVE
	pVoice->fenveStep += pVoice->fenveStepAdd;
#elif defined(DIRECT_FIXPOINT)
	pVoice->enveStep.l += pVoice->enveStepAdd.l;
#else
	pVoice->enveStepPnt += pVoice->enveStepAddPnt;
	pVoice->enveStep += pVoice->enveStepAdd + ( pVoice->enveStepPnt > 65535 );
	pVoice->enveStepPnt &= 0xFFFF;
#endif
}

//
// Mute/Idle.
//

// Only used in the beginning.
inline uword enveEmuMute(struct sidOperator* pVoice)
{
	return 0;
}

//
// Release
//

inline uword enveEmuRelease(struct sidOperator* pVoice)
{
#ifdef SID_FPUENVE
	pVoice->enveStep = (uword)pVoice->fenveStep;
#endif
#if defined(DIRECT_FIXPOINT) && !defined(SID_FPUENVE)
	if ( pVoice->enveStep.w[HI] >= releaseTabLen )
#else
	if ( pVoice->enveStep >= releaseTabLen )
#endif
	{
		pVoice->enveVol = releaseTab[releaseTabLen -1];
		return masterAmplModTable[ masterVolumeAmplIndex + pVoice->enveVol ];
	}	
	else
	{
#if defined(DIRECT_FIXPOINT) && !defined(SID_FPUENVE)
		pVoice->enveVol = releaseTab[pVoice->enveStep.w[HI]];
#else
		pVoice->enveVol = releaseTab[pVoice->enveStep];
#endif
		enveEmuEnveAdvance(pVoice);
		return masterAmplModTable[ masterVolumeAmplIndex + pVoice->enveVol ];
	}
}

inline uword enveEmuAlterRelease(struct sidOperator* pVoice)
{
	ubyte release = pVoice->SIDSR & 0x0F;
#ifdef SID_FPUENVE
	pVoice->fenveStepAdd = decayReleaseRates[release];
#elif defined(DIRECT_FIXPOINT)
	pVoice->enveStepAdd.l = decayReleaseRates[release];
#else
	pVoice->enveStepAdd = decayReleaseRates[release];
	pVoice->enveStepAddPnt = decayReleaseRatesP[release];
#endif
	pVoice->ADSRproc = &enveEmuRelease;
	return enveEmuRelease(pVoice);
}

inline uword enveEmuStartRelease(struct sidOperator* pVoice)
{
	pVoice->ADSRctrl = ENVE_RELEASE;
#ifdef SID_FPUENVE
	pVoice->fenveStep = releasePos[pVoice->enveVol];
#elif defined(DIRECT_FIXPOINT)
	pVoice->enveStep.w[HI] = releasePos[pVoice->enveVol];
	pVoice->enveStep.w[LO] = 0;
#else
	pVoice->enveStep = releasePos[pVoice->enveVol];
	pVoice->enveStepPnt = 0;
#endif
	return enveEmuAlterRelease(pVoice);
}

//
// Sustain
//

inline uword enveEmuSustain(struct sidOperator* pVoice)
{
	return masterAmplModTable[masterVolumeAmplIndex+pVoice->enveVol];
}

inline uword enveEmuSustainDecay(struct sidOperator* pVoice)
{
#ifdef SID_FPUENVE
	pVoice->enveStep = (uword)pVoice->fenveStep;
#endif
#if defined(DIRECT_FIXPOINT) && !defined(SID_FPUENVE)
	if ( pVoice->enveStep.w[HI] >= releaseTabLen )
#else
	if ( pVoice->enveStep >= releaseTabLen )
#endif
	{
		pVoice->enveVol = releaseTab[releaseTabLen-1];
		return enveEmuAlterSustain(pVoice);
	}
	else
	{
#if defined(DIRECT_FIXPOINT) && !defined(SID_FPUENVE)
		pVoice->enveVol = releaseTab[pVoice->enveStep.w[HI]];
#else
		pVoice->enveVol = releaseTab[pVoice->enveStep];
#endif
		// Will be controlled from sidEmuSet2().
		if ( pVoice->enveVol <= pVoice->enveSusVol )
		{
			pVoice->enveVol = pVoice->enveSusVol;
			return enveEmuAlterSustain(pVoice);
		}
		else
		{
			enveEmuEnveAdvance(pVoice);
			return masterAmplModTable[ masterVolumeAmplIndex + pVoice->enveVol ];
		}
	}
}

// This is the same as enveEmuStartSustainDecay().
inline uword enveEmuAlterSustainDecay(struct sidOperator* pVoice)
{
	ubyte decay = pVoice->SIDAD & 0x0F ;
#ifdef SID_FPUENVE
	pVoice->fenveStepAdd = decayReleaseRates[decay];
#elif defined(DIRECT_FIXPOINT)
	pVoice->enveStepAdd.l = decayReleaseRates[decay];
#else
	pVoice->enveStepAdd = decayReleaseRates[decay];
	pVoice->enveStepAddPnt = decayReleaseRatesP[decay];
#endif
	pVoice->ADSRproc = &enveEmuSustainDecay;
	return enveEmuSustainDecay(pVoice);
}

// This is the same as enveEmuStartSustain().
inline uword enveEmuAlterSustain(struct sidOperator* pVoice)
{
	if ( pVoice->enveVol > pVoice->enveSusVol )
	{
		pVoice->ADSRctrl = ENVE_SUSTAINDECAY;
		pVoice->ADSRproc = &enveEmuSustainDecay;
		return enveEmuAlterSustainDecay(pVoice);
	}
	else
	{
		pVoice->ADSRctrl = ENVE_SUSTAIN;
		pVoice->ADSRproc = &enveEmuSustain;
		return enveEmuSustain(pVoice);
	}
}

//
// Decay
//

inline uword enveEmuDecay(struct sidOperator* pVoice)
{
#ifdef SID_FPUENVE
	pVoice->enveStep = (uword)pVoice->fenveStep;
#endif
#if defined(DIRECT_FIXPOINT) && !defined(SID_FPUENVE)
	if ( pVoice->enveStep.w[HI] >= releaseTabLen )
#else
	if ( pVoice->enveStep >= releaseTabLen )
#endif
	{
		pVoice->enveVol = pVoice->enveSusVol;
		return enveEmuAlterSustain(pVoice);  // start sustain
	}
	else
	{
#if defined(DIRECT_FIXPOINT) && !defined(SID_FPUENVE)
		pVoice->enveVol = releaseTab[pVoice->enveStep.w[HI]];
#else
		pVoice->enveVol = releaseTab[pVoice->enveStep];
#endif
		// Will be controlled from sidEmuSet2().
		if ( pVoice->enveVol <= pVoice->enveSusVol )
		{
			pVoice->enveVol = pVoice->enveSusVol;
			return enveEmuAlterSustain(pVoice);  // start sustain
		}
		else
		{
			enveEmuEnveAdvance(pVoice);
			return masterAmplModTable[ masterVolumeAmplIndex + pVoice->enveVol ];
		}
	}
}

inline uword enveEmuAlterDecay(struct sidOperator* pVoice)
{
	ubyte decay = pVoice->SIDAD & 0x0F ;
#ifdef SID_FPUENVE
	pVoice->fenveStepAdd = decayReleaseRates[decay];
#elif defined(DIRECT_FIXPOINT)
	pVoice->enveStepAdd.l = decayReleaseRates[decay];
#else
	pVoice->enveStepAdd = decayReleaseRates[decay];
	pVoice->enveStepAddPnt = decayReleaseRatesP[decay];
#endif
	pVoice->ADSRproc = &enveEmuDecay;
	return enveEmuDecay(pVoice);
}

inline uword enveEmuStartDecay(struct sidOperator* pVoice)
{
	pVoice->ADSRctrl = ENVE_DECAY;
#ifdef SID_FPUENVE
	pVoice->fenveStep = 0;
#elif defined(DIRECT_FIXPOINT)
	pVoice->enveStep.l = 0;
#else
	pVoice->enveStep = (pVoice->enveStepPnt = 0);
#endif
	return enveEmuAlterDecay(pVoice);
}

//
// Attack
//

inline uword enveEmuAttack(struct sidOperator* pVoice)
{
#ifdef SID_FPUENVE
	pVoice->enveStep = (uword)pVoice->fenveStep;
#endif
#if defined(DIRECT_FIXPOINT) && !defined(SID_FPUENVE)
  #if defined(SID_LINENVE)
	if ( pVoice->enveStep.w[HI] > attackTabLen )
  #else
	if ( pVoice->enveStep.w[HI] >= attackTabLen )
  #endif
#else
	if ( pVoice->enveStep >= attackTabLen )
#endif
		return enveEmuStartDecay(pVoice);
	else
	{
#if defined(DIRECT_FIXPOINT) && !defined(SID_FPUENVE)
  #if defined(SID_LINENVE)
		pVoice->enveVol = pVoice->enveStep.w[HI];
  #else
		pVoice->enveVol = attackTab[pVoice->enveStep.w[HI]];
  #endif
#else
  #if defined(SID_LINENVE)
		pVoice->enveVol = pVoice->enveStep;
  #else
		pVoice->enveVol = attackTab[pVoice->enveStep];
  #endif
#endif
		enveEmuEnveAdvance(pVoice);
		return masterAmplModTable[ masterVolumeAmplIndex + pVoice->enveVol ];
	}
}

inline uword enveEmuAlterAttack(struct sidOperator* pVoice)
{
	ubyte attack = pVoice->SIDAD >> 4;
#ifdef SID_FPUENVE
	pVoice->fenveStepAdd = attackRates[attack];
#elif defined(DIRECT_FIXPOINT)
	pVoice->enveStepAdd.l = attackRates[attack];
#else
	pVoice->enveStepAdd = attackRates[attack];
	pVoice->enveStepAddPnt = attackRatesP[attack];
#endif
	pVoice->ADSRproc = &enveEmuAttack;
	return enveEmuAttack(pVoice);
}

inline uword enveEmuStartAttack(struct sidOperator* pVoice)
{
	pVoice->ADSRctrl = ENVE_ATTACK;
#ifdef SID_FPUENVE
  #if defined(SID_LINENVE)
	pVoice->fenveStep = (float)pVoice->enveVol;
  #else
	pVoice->fenveStep = attackPos[pVoice->enveVol];
  #endif
#elif defined(DIRECT_FIXPOINT)
  #if defined(SID_LINENVE)
	pVoice->enveStep.w[HI] = pVoice->enveVol;
  #else
	pVoice->enveStep.w[HI] = attackPos[pVoice->enveVol];
  #endif
	pVoice->enveStep.w[LO] = 0;
#else
  #if defined(SID_LINENVE)
	pVoice->enveStep = pVoice->enveVol;
  #else
	pVoice->enveStep = attackPos[pVoice->enveVol];
  #endif
	pVoice->enveStepPnt = 0;
#endif
	return enveEmuAlterAttack(pVoice);
}

//
// Experimental.
//

//#include <iostream.h>
//#include <iomanip.h>

inline uword enveEmuShortAttack(struct sidOperator* pVoice)
{
#ifdef SID_FPUENVE
	pVoice->enveStep = (uword)pVoice->fenveStep;
#endif
#if defined(DIRECT_FIXPOINT) && !defined(SID_FPUENVE)
  #if defined(SID_LINENVE)
	if ((pVoice->enveStep.w[HI] > attackTabLen) ||
		(pVoice->enveShortAttackCount == 0))
  #else
	if ((pVoice->enveStep.w[HI] >= attackTabLen) ||
		(pVoice->enveShortAttackCount == 0))
  #endif
#else
	if ((pVoice->enveStep >= attackTabLen) ||
		(pVoice->enveShortAttackCount == 0))
#endif
//		return enveEmuStartRelease(pVoice);
		return enveEmuStartDecay(pVoice);
	else
	{
#if defined(DIRECT_FIXPOINT) && !defined(SID_FPUENVE)
  #if defined(SID_LINENVE)
		pVoice->enveVol = pVoice->enveStep.w[HI];
  #else
		pVoice->enveVol = attackTab[pVoice->enveStep.w[HI]];
  #endif
#else
  #if defined(SID_LINENVE)
		pVoice->enveVol = pVoice->enveStep;
  #else
		pVoice->enveVol = attackTab[pVoice->enveStep];
  #endif
#endif
	    pVoice->enveShortAttackCount--;
//		cout << hex << pVoice->enveShortAttackCount << " / " << pVoice->enveVol << endl;
		enveEmuEnveAdvance(pVoice);
		return masterAmplModTable[ masterVolumeAmplIndex + pVoice->enveVol ];
	}
}

inline uword enveEmuAlterShortAttack(struct sidOperator* pVoice)
{
	ubyte attack = pVoice->SIDAD >> 4;
#ifdef SID_FPUENVE
	pVoice->fenveStepAdd = attackRates[attack];
#elif defined(DIRECT_FIXPOINT)
	pVoice->enveStepAdd.l = attackRates[attack];
#else
	pVoice->enveStepAdd = attackRates[attack];
	pVoice->enveStepAddPnt = attackRatesP[attack];
#endif
	pVoice->ADSRproc = &enveEmuShortAttack;
	return enveEmuShortAttack(pVoice);
}

inline uword enveEmuStartShortAttack(struct sidOperator* pVoice)
{
	pVoice->ADSRctrl = ENVE_SHORTATTACK;
#ifdef SID_FPUENVE
  #if defined(SID_LINENVE)
	pVoice->fenveStep = (float)pVoice->enveVol;
  #else
	pVoice->fenveStep = attackPos[pVoice->enveVol];
  #endif
#elif defined(DIRECT_FIXPOINT)
  #if defined(SID_LINENVE)
	pVoice->enveStep.w[HI] = pVoice->enveVol;
  #else
	pVoice->enveStep.w[HI] = attackPos[pVoice->enveVol];
  #endif
	pVoice->enveStep.w[LO] = 0;
#else
  #if defined(SID_LINENVE)
	pVoice->enveStep = pVoice->enveVol;
  #else
	pVoice->enveStep = attackPos[pVoice->enveVol];
  #endif
	pVoice->enveStepPnt = 0;
#endif
	pVoice->enveShortAttackCount = 65535;  // unused
	return enveEmuAlterShortAttack(pVoice);
}