File: convert.c

package info (click to toggle)
sift 6.2.1-2
  • links: PTS, VCS
  • area: non-free
  • in suites: sid
  • size: 4,784 kB
  • sloc: ansic: 18,272; perl: 219; csh: 164; makefile: 152
file content (1922 lines) | stat: -rwxr-xr-x 56,813 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
/* (C) Copyright 1993-2001, Fred Hutchinson Cancer Research Center */
/* Use, modification or distribution of these programs is subject to */
/* the terms of the non-commercial licensing agreement in license.h. */

/* convert.c: functions for different methods of converting a block into a */
/*            matrix */
/* Written by: Bill Alford */
/* Change log information is at the end of the file. */


/*	system headers not in global.h */
#include <assert.h>
#include <math.h>
/*	blimps library headers */
#include <global.h>
#include <options.h>
#include <blocks.h>	/* includes sequences.h, output.h */
#include <matrix.h>	/* includes pattern.h */
#include <residues.h>
#include <frequency.h>
#include <protomat.h>	/* for MAXLINE */
#include <convert.h>
/*	headers in current directory */
#include "blimps.h"


/*
 * Exported variables and data structures
 */
double RTot;
struct float_qij *Qij;

/*
 * Local variables and data structures
 */


/*
 * Function definitions
 */


/*
 * --OLD-- Sequence weighting methods.  Various methods of giving different
 * weights to the sequences.
 */

static double *clustered_weights(/*block*/);
static double *pre_weighted_sequences(/*block*/);



/*
 * --OLD-- Matrix construction methods.  Build matricies from blocks and
 * sequence weights.
 */

static void basic_matrix_construction(/*block, seq_weight, matrix*/);







/*
 * Conversion methods
 *   void default_conversion_method(block, matrix)
 *   void original_conversion_method_cleaned_up(block, matrix)
 *   void original_conversion_method(block, matrix)
 *   void pre_weighted_conversion_method(block, matrix)
 *   void altschul_data_dependent_conversion_method(block, matrix)
 *   void gribskov_conversion_method(block, matrix)
 */




/*
 * block_to_matrix
 *   converts a block into a matrix (possition specific matrix?) according
 *   to the rule specified in BlockToMatrixConversionMethod.  The block field
 *   of the matrix is set in this function.
 *   Parameters:
 *     Block *block: the block to convert
 *   Return codes: Returns the pointer to the new Matrix.
 *   Error codes:
 */

Matrix *block_to_matrix(block, conversion_method)
     Block *block;
     int conversion_method;
{
  Matrix *matrix;
  char *tmp;

  /* get new matrix */
  matrix = new_matrix(block->width);

  /* initialize the pattern */
  matrix->patterns = NULL;

  /* copy the relevant block information into the matrix */
  matrix->block = block;

  strncpy(Buffer, block->id, SMALL_BUFF_LENGTH);
  /* NOTE: Chance to goof by replacing the wrong "BLOCK" */
  tmp = strstr(Buffer, "BLOCK");
  if (tmp != NULL) {
    strncpy(strstr(Buffer, "BLOCK"), "MATRIX\0", 7);
    strncpy(matrix->id, Buffer, SMALL_BUFF_LENGTH);
  }
  else {
    strncpy(matrix->id,
	    strncat(Buffer, "; MATRIX", SMALL_BUFF_LENGTH - strlen(Buffer)),
	    SMALL_BUFF_LENGTH);
  }

  strcpy(matrix->ac, block->ac);
  strncpy(matrix->de, block->de, DESC_WIDTH);
  strncpy(matrix->ma, block->bl, SMALL_BUFF_LENGTH);
  /* Just leave it BLxxxxx */
  strcpy(matrix->number, block->number);
  strncpy(matrix->motif, block->motif, 20);
  /* This 20 is from the size in the struct */

  matrix->width = block->width;
  matrix->max_length = matrix->width;
  matrix->percentile = block->percentile;
  matrix->strength = block->strength;
  matrix->num_sequences = block->num_sequences;


  switch (conversion_method) {
  case 0:   /* seq wts from clumps, odds ratios */
    original_conversion_method_cleaned_up(block, matrix);
    break;
  case 1:   /* seq wts from clumps, odds ratios */
    original_conversion_method(block, matrix);
    break;
  case 2:   /* seq wts from block else pb_weights(), odds ratios */
    pre_weighted_conversion_method(block, matrix);
    break;

  /*  DEFAULT is case 3 (scale=0)  */
  /* cases 3-40 use seq wts from block else pb_weights()  */
  /* cases 3-6, 10, 20 use position-specific pseudo counts */
  /*  require frequency[] = default.amino.frq, RTot and  */
  /*  Qij = default.qij which must be initialized by calling program */
  case 3:   /* Altschul's data-dependent method of computing a PSSM */
	    /* log_e(odds ratios)=nats, positive values */
    altschul_data_dependent_conversion_method(block, matrix, 0);
    break;
  case 4:   /* log_2(odds ratios)=bits, signed integers */
    altschul_data_dependent_conversion_method(block, matrix, 1);
    break;
  case 5:   /* log_2(odds ratios)/2= half bits, signed integers */
    altschul_data_dependent_conversion_method(block, matrix, 2);
    break;
  case 6:   /* log_2(odds ratios)/3= third bits, signed integers */
    altschul_data_dependent_conversion_method(block, matrix, 3);
    break;
  case 9:   /* pseudo-counts close to zero */
	    /* log_e(odds ratios)=nats, positive values */
    altschul_data_dependent_conversion_method(block, matrix, 9);
    break;

  case 10:   /* odds ratios */
    altschul_data_dependent_conversion_method(block, matrix, 10);
    break;
  case 20:   /* (count[aa]+pseudo-count[aa])/(totcount+totpseudo) */
    altschul_data_dependent_conversion_method(block, matrix, 20);
    break;
  case 21:   /* count[aa]/totcount */
    altschul_data_dependent_conversion_method(block, matrix, 21);
    break;

  case 30:   /* Gribskov's average score method; loads default.sij */
    gribskov_conversion_method(block, matrix);
    break;

  case 40:   /* SIFT method; requires default.rank, default.diri   */
	     /* which are loaded here */
    SIFT_conversion_method(block, matrix);
    break;

  default:  /* the default case */

    sprintf(ErrorBuffer,
	    "Invalid block to matrix conversion method specified, %d.",
	    conversion_method);
    ErrorReport(WARNING_ERR_LVL);

    sprintf(ErrorBuffer,     /* ^^^^----------------vvvvvvvvvvvvvvvvvvv */
	    "Using the default conversion method of Altschul's data-dependent method.\n");
    ErrorReport(WARNING_ERR_LVL);
    altschul_data_dependent_conversion_method(block, matrix, 0);
    break;

  } /* end switch of conversion types */

  /* return the matrix */
  return matrix;
}



/*
 * original_conversion_method_cleaned_up
 *   The original conversion method.  This is done by weighted average of the
 *   clusters.  This follows the method in patmat but has been written in
 *   a more legible manner and has the following changes:
 *     no more reliance on flag values for B, Z, and X
 *     X, '-', '*', & non-code scores are read straight from the frequencies
 *     the frequencies for B and Z are ignored, when a B or Z is encountered
 *       it is partitioned between D & N or E & Q.
 *     the matrix scores for B and Z are computed from the matrix scores of
 *       D & N and E & Q.
 *   Parameters:
 *     Block *block:   the block to be converted
 *     Matrix *matrix: where the resulting matrix will be put
 *   Error codes: none
 */

void original_conversion_method_cleaned_up(block, matrix)
     Block *block;
     Matrix *matrix;
{
  double *seq_weight;		/* the contribution of this sequence to the */
				/* block.  = 1/(num seq in cluster) */

  /* get the weights of the sequences */
  seq_weight = clustered_weights(block);

  basic_matrix_construction(block, seq_weight, matrix);

  free(seq_weight);
}



/*
 * pre_weighted_conversion_method
 *   This conversion method uses the pre-weighted sequence scores and
 *   uses the basic matrix construction method.  This method has the
 *   following properties:
 *     X, '-', '*', & non-code scores are read straight from the frequencies
 *     the frequencies for B and Z are ignored, when a B or Z is encountered
 *       it is partitioned between D & N or E & Q.
 *     the matrix scores for B and Z are computed from the matrix scores of
 *       D & N and E & Q.
 *   Parameters:
 *     Block *block:   the block to be converted
 *     Matrix *matrix: where the resulting matrix will be put
 *   Error codes: none
 */

void pre_weighted_conversion_method(block, matrix)
     Block *block;
     Matrix *matrix;
{
  double *seq_weight;		/* the contribution of this sequence to the */
				/* block.  = the value given in the block */

  /* get the weights of the sequences */
  seq_weight = pre_weighted_sequences(block);

  if (seq_weight != NULL) {
    basic_matrix_construction(block, seq_weight, matrix);

    free(seq_weight);
  }
  else {
    /* remember that seq_weight has been freed already if NULL is returned */
    sprintf(ErrorBuffer,
	    "All weights in the block were less than or equal to zero.");
    ErrorReport(WARNING_ERR_LVL);
    sprintf(ErrorBuffer,
	    "Computing position-based sequence weights.\n");
    ErrorReport(WARNING_ERR_LVL);

    pb_weights(block);
    seq_weight = pre_weighted_sequences(block);

    if (seq_weight != NULL) {
       basic_matrix_construction(block, seq_weight, matrix);
       free(seq_weight);
    }


  }

} /* end of pre_weighted_convertion_method */




/*>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>*/

/*
 * altschul data dependent conversion method aux. structures/defines
 */

/* these are from JGH's makealts, I am not sure where these are from exctly. */
/* I think they are the actual values from the aabet.h structures. */
/* AAS and AASALL are not matched up with any of the aabet.h defines. */
#define AASALL 26
/* 0- 1A 2R 3N 4D 5C 6Q 7E 8G 9H 10I 11L 12K 13M 14F 15P 16S 17T 18W 19Y
   20V 21B 22Z 23X 24* 25J,O,U */

#define MAXWIDTH 400			/* Max. block width */

struct working {	/* Working information for one column */
  double cnt[AASALL];		/* Sequence-weighted counts */
  double totcnt;
  double raw[AASALL];		/* unweighted counts */
  double totraw;
  double reg[AASALL];		/*  pseudo counts */
  double totreg;
  double probn[MAXDIRI];        /* for dirichlet */
  double probj[MAXDIRI];        /* for dirichlet */

};

struct work_pssm {              /* Working PSSM area */
  double** value;   /* double value[MAXWIDTH][AASALL]*/
  double* sum ;   /* double sum[MAXWIDTH] */
};

struct rank_cell {
        int aa;
        double value;
};

/*
 * altschul data dependent conversion method aux. functions
 */

/*==================================================================*/
static struct working *make_col()
{
  struct working *col;
  int aa;

  CheckMem(
	   col = (struct working *) malloc(sizeof(struct working))
	   );

  col->totcnt = col->totreg = 0.0;
  for (aa=0; aa < AASALL; aa++) {
    col->cnt[aa] = col->reg[aa] = 0.0;
  }

  return col;
}  /* end of make_col */


/*=====================================================================*/
static struct work_pssm *make_work_pssm(length)
int length;
{
  struct work_pssm *pssm;
  int pos, aa;
  double* double_pointer;

  CheckMem(
           pssm = (struct work_pssm *) malloc(sizeof(struct work_pssm))
           );

        double_pointer = (double*) calloc (length * AASALL, sizeof (double));
        pssm->value = (double **) calloc (length, sizeof (double*));
        pssm->sum = (double *) calloc (length, sizeof (double));

  for (pos = 0; pos < length; pos++) {
        pssm->value[pos] = &(double_pointer[pos * AASALL]);
  }

  for (pos = 0; pos < length; pos++) {
    pssm->sum[pos] = 0.0;
    for (aa=0; aa < AASALL; aa++) {
      pssm->value[pos][aa] = 0.0;
    }
  }

  return pssm;
}  /* end of make_work_pssm */
/*=====================================================================*/
void free_work_pssm(pssm)
struct work_pssm *pssm;
{
  free(pssm->value[0]);
  free(pssm->value);
  free(pssm->sum);
  free(pssm);
}  /* end of free_work_pssm */


/*======================================================================*/
static void counts(block, col, pos)
     Block *block;
     struct working *col;
     int pos;
{
  int seq, aa, aa1;

  col->totcnt = col->totraw = col->totreg = 0.0;
  for (aa = 0; aa < AASALL; aa++) {
    col->cnt[aa] = col->raw[aa] = col->reg[aa] = 0.0;
  }

  /*  Only count the real 20 aas, combine B(21) with D & Z(22) with E  */
  for (seq = 0; seq < block->num_sequences; seq++) {
    aa = block->residues[seq][pos];
    if (aa == 21) aa = 4;			/* combine B with D */
    if (aa == 22) aa = 7;			/* combine Z with E */
    if (aa >= 1 && aa < AAS) {
      col->cnt[aa] += block->sequences[seq].weight;
      col->totcnt += block->sequences[seq].weight;
      col->raw[aa] += 1.0;
      col->totraw += 1.0;
    }
    else {
/*
      sprintf(ErrorBuffer,
	      "Uncounted \"residue\" character for %s: %c\n",
	      block->number, aa_btoa[block->residues[seq][pos]]);
      ErrorReport(INFO_ERR_LVL);
*/
      /* If not one of the basic aas, divide the count among them */
      for (aa1 = 1; aa1 < AAS; aa1++)
      {
         col->cnt[aa1] += (block->sequences[seq].weight / 20.0);
         col->raw[aa1] += (1.0 / 20.0) ;
      }
      col->totcnt += block->sequences[seq].weight;
      col->totraw += 1.0;
    }
  }
}  /* end of counts */


/*=====================================================================*/
static int count_residues(col)
     struct working *col;
{
  int aa, nr;

  nr = 0;
  for (aa = 1; aa < AAS; aa++) {
    if (col->cnt[aa] > 0.0) nr++;
  }

  return nr;
}  /*  end of count_residues */


/*=======================================================================*/
static void pseudo_alts(col, qij, epsilon)
     struct working *col;
     struct float_qij *qij;
     double epsilon;
{
  int aa, row;

  /*---------- get the pseudo counts -------------------------------*/
  for (aa=1; aa < AAS; aa++) {
    col->reg[aa] = 0.0;
    for (row = 1; row < AAS; row++) {
      col->reg[aa] += (col->cnt[row] * qij->value[aa][row] / qij->marg[row]);
    }
    col->reg[aa] *= epsilon;
    if (col->totcnt > 0.0) col->reg[aa] /= col->totcnt;
    col->totreg += col->reg[aa];
  }
}  /* end of pseudo_alts */


/*========================================================================
	Computes scores for B, Z, X, -(gap) and *(stop) in a column
	of a PSSM using other scores in the column
	frequency[] is a global array created by load_frequencies()
	why is it an argument here?
==========================================================================*/
/* SOME DUPLICATE CODE FROM basic_matrix_construction(). */
static void compute_BZX(frequency, matrix, col)
     double *frequency;
     Matrix *matrix;
     int col;
{
  int aa;
  double dmean, dmin;
  double part_D;		/* the partition of D for B. */
				/* = freq[D] / ( freq[D] + freq[N] ) */
  double part_N;		/* the partition of N for B. */
				/* = freq[N] / ( freq[D] + freq[N] ) */
  double part_E;		/* the partition of E for Z. */
				/* = freq[E] / ( freq[E] + freq[Q] ) */
  double part_Q;		/* the partition of Q for Z. */
				/* = freq[Q] / ( freq[E] + freq[Q] ) */
  /*
   * find the partitions of D, N, E, and Q for B and Z
   */
  part_D = frequency[aa_atob['D']] /
    ( frequency[aa_atob['D']] + frequency[aa_atob['N']] );
  part_N = frequency[aa_atob['N']] /
    ( frequency[aa_atob['D']] + frequency[aa_atob['N']] );
  part_E = frequency[aa_atob['E']] /
    ( frequency[aa_atob['E']] + frequency[aa_atob['Q']] );
  part_Q = frequency[aa_atob['Q']] /
    ( frequency[aa_atob['E']] + frequency[aa_atob['Q']] );

    /* fill in the matrix for B, Z, X, gap, stop and non */
    matrix->weights[aa_atob['B']][col] =
      (part_D * matrix->weights[aa_atob['D']][col] +
       part_N * matrix->weights[aa_atob['N']][col]);
    matrix->weights[aa_atob['Z']][col] =
      (part_E * matrix->weights[aa_atob['E']][col] +
       part_Q * matrix->weights[aa_atob['Q']][col]);

    /*   X or unk gets the weighted average score; - and * get the min score */
    dmin = 999.99;
    dmean = 0.0;
    for (aa=1; aa<20; aa++)
    {
       dmean += frequency[aa] * matrix->weights[aa][col];
       if (matrix->weights[aa][col] < dmin) dmin = matrix->weights[aa][col];
    }
    matrix->weights[aa_atob['X']][col] = dmean;
    matrix->weights[aa_atob[25]][col] = dmean;		/* unknown res */
    matrix->weights[aa_atob['-']][col] = dmin;
    if (dmin > 0.0) matrix->weights[aa_atob['*']][col] = 0.0;
    else            matrix->weights[aa_atob['*']][col] = dmin;

}  /* end of compute_BZX */


/*=========================================================================
      Adds negative minval to give all positive matrix,
      then multiplies by 99/maxval to give scores ranging from 0 to 99
      NOTE: Not 0 to 100 because "output_matrix" routine might not leave
	    enough space.
===========================================================================*/
static void positive_matrix(freqs, pssm, matrix)
     double *freqs;
     struct work_pssm *pssm;
     Matrix *matrix;
{
  int pos, aa;
  double factor, maxval, minval, dtemp;

  minval = 9999.9;
  maxval = -9999.9;
  for (pos = 0; pos < matrix->width; pos++) {
    for (aa=1; aa < AAS; aa++) {
      if (pssm->value[pos][aa] < minval) minval = pssm->value[pos][aa];
      if (pssm->value[pos][aa] > maxval) maxval = pssm->value[pos][aa];
    }
  }

  if (minval < 0.0) {
    factor = 99.0 / (maxval - minval);
  }
  else {
    factor = 99.0 / maxval;
  }
  if (factor < 1.0) {
    factor = 1.0;
  }
  for (pos = 0; pos < matrix->width; pos++) {
    for (aa=1; aa < AAS; aa++) {
      if (minval < 0.0) {
	dtemp = factor * (pssm->value[pos][aa] - minval);
      }
      else {
	dtemp = factor * pssm->value[pos][aa];
      }
      matrix->weights[aa][pos] = (MatType) dtemp;
    }
    compute_BZX(freqs, matrix, pos);
  }  /*  end of for pos */
}  /* end of positive_matrix */


/*==========================================================================
     Uses Altschul's method of getting pseudo-counts with a qij matrix,
	scale=0 => DEFAULT nats, positive integers
	scale=1 => bits, signed integers
	scale=2 => half bits, signed integers
	scale=3 => third bits, signed integers
	scale=9 => few pseudo counts, bits, positive integers
	scale=10 => odds ratios
	scale=20 => counts + pseudo counts
	scale=21 => counts
===========================================================================*/
static void make_alts(block, matrix, freqs, qij, RTot, scale)
     Block *block;
     Matrix *matrix;
     double *freqs;
     struct float_qij *qij;
     double RTot;		/* Total R for Altschul */
     int scale;
{
  double factor, dtemp, epsilon;
  int pos, aa;
  struct working *col;
  struct work_pssm *pssm;

  factor = 1.0;
  if (scale > 0 && scale < 9) factor = (double) scale / log(2.0);
  col = make_col();
  pssm = make_work_pssm(block->width);

  /*--------------  Do one position at a time -------------------*/
  for (pos = 0; pos < block->width; pos++)
  {
    /*-------- count the number of each aa in this position ------------*/
    counts(block, col, pos);

    /*-------- determine total number of pseudo-counts in column ------*/
    /*  9 => compute minimal number of pseudo-counts; RTot should
	be a large number in this case, such as 1000  */
    if (scale == 9)
/*
    {  epsilon = (double) col->totcnt / RTot ; }
*/
    {  epsilon = (double) 1.0 / RTot ; }
    else
    {  epsilon = (double) RTot * count_residues(col);  }

    /*---------- get the pseudo counts -------------------------------*/
    pseudo_alts(col, qij, epsilon);

    /*---------   Fill in the matrix entries --------------------*/
    pssm->sum[pos] = 0.0;
    for (aa=1; aa < AAS; aa++)
    {
       /*    Count proportions; returned if scale == 21   */
       if (scale == 21)
       {
          pssm->value[pos][aa] = col->cnt[aa];
          if ( col->totcnt > 0.0)
             pssm->value[pos][aa] /= col->totcnt;
       }

       /*    Count+pseudo proportions; returned if scale == 20   */
       if (scale <= 20)
       {
          pssm->value[pos][aa] = col->cnt[aa] + col->reg[aa];
          if ( (col->totcnt + col->totreg) > 0.0)
             pssm->value[pos][aa] /= (col->totcnt + col->totreg);
       }

       /*     Odds ratios; returned if scale == 10   */
       if (scale < 20 && freqs[aa] > 0.0)
          pssm->value[pos][aa] /= freqs[aa];

       /*   take the log of the odds ratio  */
       if (scale < 10 && pssm->value[pos][aa] > 0.0)
          pssm->value[pos][aa] = log(pssm->value[pos][aa]);

       pssm->sum[pos] += pssm->value[pos][aa];

       /*  scale the matrix  */
       dtemp = factor * pssm->value[pos][aa];
       matrix->weights[aa][pos] = dtemp;

     }  /* end of aa */

     compute_BZX(freqs, matrix, pos);
  }  /*  end of for pos */

  /*------ Now make the final scores; make log scores non-neg    */
  /*       by subtracting the min. value for all positions ----- */
  if (scale==0 || scale==9) positive_matrix(freqs, pssm, matrix);

  free(col);
  free_work_pssm(pssm);
}  /* end of make_alts */

/*==========================================================================
     Uses Gribskov's method
     Assumes a non-negative substition matrix (min. value = 0)
     Sets 20 aas plus B and Z from the matrix; X, etc to zero = min. value
     Index for B is 21, for Z is 22
===========================================================================*/
void make_gribs(block, matrix, subst)
Block *block;
Matrix *matrix;
struct float_qij *subst;
{
   double sum, temp[AASALL];
   int pos, aa, aa1;
   struct working *col;

   col = make_col();

   for (pos = 0; pos < block->width; pos++)
   {
      /*-------- count the number of each aa in this position ------------*/
      counts(block, col, pos);

      sum = 0.0;
	/* pauline changed from 22 to AAS . this will skip Z, but 
	remove compilation warnings*/
      for (aa=0; aa <= AAS; aa++)
      {
         temp[aa] = 0.0;
         for (aa1=1; aa1 <= AAS ; aa1++)  
         {
            temp[aa] += col->cnt[aa1] * subst->value[aa][aa1];
         }
         temp[aa] /= col->totcnt;
         sum += temp[aa];
      }
      for (aa=1; aa <= 22; aa++)
      {
/*		ends up rounding to zero!
         dtemp = temp[aa];
         matrix->weights[aa][pos] = round(dtemp);
*/
         matrix->weights[aa][pos] = temp[aa];
      }
      /*  Set X, * and - to zero */
      matrix->weights[0][pos] = matrix->weights[23][pos] = 0.0;
      matrix->weights[24][pos] = matrix->weights[25][pos] = 0.0;
   }  /*  end of for pos */

   free(col);
}   /*  end of make_gribs */

/*======================================================================*/
struct float_qij *load_qij( FILE *fin)
{
  char line[LARGE_BUFF_LENGTH], *ptr;
  double total;
  int alpha[AAS], nrows, ncols, row, col, i;
  struct float_qij *new;

  CheckMem (
	    new = (struct float_qij *) malloc(sizeof(struct float_qij))
	    );

  /*----------Read file until first non-blank line --------------*/
  /* Skip comments at beginning of file - 1st char = #, > or ;   */
  line[0] = '\0';
  while (((int) strlen(line) < 1 ||
           line[0]=='#' || line[0]=='>' || line[0]==';')
	 && fgets(line, sizeof(line), fin) != NULL)
    ;

  /*------See if the first line has characters on it ------------*/
  for (col=0; col < AAS; col++) alpha[col] = -1;
  if (strstr(line, "A") != NULL) {	/* This line has characters */
    row = 0;	/* # of alphabetic characters on the line */
    for (i=0; i< (int) strlen(line); i++) {
      col = -1;
      col = aa_atob[(int)line[i]];
      if (col >= 0 && col < AAS) {
	alpha[row] = col;
	row++;
      }
      else if (isalpha(line[i])) {
	row++;
      }
    }
  }

  /*-------Get the data values now ------------*/
  for (row=0; row<AAS; row++) {
    for (col=0; col<AAS; col++) {
      new->value[row][col] = -1.0;		/* Null value */
    }
  }

  nrows = 0;
  line[0] = '\0';
  while (fgets(line, sizeof(line), fin) != NULL) {
    if ((int) strlen(line) > 1 && nrows < AAS) {
      if (alpha[nrows] >= 0 && alpha[nrows] < AAS) {
	row = alpha[nrows]; ncols = 0;
	ptr = strtok(line, " ,\n");
	while (ptr != NULL) {
	  if (strspn(ptr, ".+-0123456789") == strlen(ptr)) {
	    col = alpha[ncols];
	    if (col >= 0 && col < AAS) {
	      new->value[row][col] = (double) atof(ptr);
	    }
	    ncols++;
	  }
	  ptr = strtok(NULL, " ,\n");
	}
      }
      nrows++;
    }
  }

  /*-------If some entries are still missing, assume symmetry ---------*/
  for (row=0; row<AAS; row++) {
    for (col=0; col<AAS; col++) {
      if (new->value[row][col] < 0.0) {
	new->value[row][col] = new->value[col][row];
      }
    }
  }

  /*-------compute the marginal probabilities ---------*/
  total = 0.0;
  for (row=1; row<AAS; row++) {
    new->marg[row] = 0.0;
    for (col=1; col<AAS; col++) {
      new->marg[row] += new->value[row][col];
    }
    total += new->marg[row];
  }

  return new;
}  /* end of load_qij */


/*=========================================================================
    Normalize sequence weights to add up to the number of sequences
=========================================================================*/
void normalize(block)
     Block *block;
{
  double sum, factor;
  int seq;

  sum = 0.0;
  for (seq = 0; seq < block->num_sequences; seq++) {
    sum += block->sequences[seq].weight;
  }
  if (sum <= 0.0)   /*  All seqs have zero weight! Add pb weights */
  {
      sprintf(ErrorBuffer,
	    "All weights in the block were less than or equal to zero.");
      ErrorReport(WARNING_ERR_LVL);
      sprintf(ErrorBuffer,
	    "Computing position-based sequence weights.\n");
      ErrorReport(WARNING_ERR_LVL);

      pb_weights(block);
      for (seq = 0; seq < block->num_sequences; seq++) {
        sum += block->sequences[seq].weight;
      }
  }
  if (sum > 0.0) factor = block->num_sequences / sum;
  else factor = 1.0;
  for (seq = 0; seq < block->num_sequences; seq++) {
    block->sequences[seq].weight *= factor;
  }
}  /*  end of normalize */


/*
 * altschul_data_dependent_conversion_method
 *   Expects global variables frequency[], Qij[][] and RTot
 *   Parameters:
 *     Block *block:   the block to be converted
 *     Matrix *matrix: where the resulting matrix will be put
	scale = 0	log odds ratios, positive values
		1	bits, log odds ratios
		2	half bits, log odds ratios
         	3	third bits, log odds ratios
		9	few pseudo counts
		10	odds ratios
		20	(counts+pseudo counts)/tot
		21	counts
 *   Error codes: Checks MAXWIDTH, global variables
 */
void altschul_data_dependent_conversion_method(block, matrix, scale)
     Block *block;
     Matrix *matrix;
     int scale;
{
  int itemp;

  if (block->width > MAXWIDTH)
  {
      itemp = MAXWIDTH;
      sprintf(ErrorBuffer, "convert: Block is too wide, unable to continue (max=%d).\n",
		itemp);
      ErrorReport(FATAL_ERR_LVL);
  }
  if (Qij == NULL) {
      sprintf(ErrorBuffer, "Qij matrix missing, unable to continue.\n");
      ErrorReport(FATAL_ERR_LVL);
    }

  /* check to see if the block has sequence weights */

  normalize(block);   /*  Make weights sum to number of sequences */
  make_alts(block, matrix, frequency, Qij, RTot, scale);

} /* end of altschul_data_dependent_conversion_method  */

/*
 * gribskov_dependent_conversion_method
 *   Expects global variables frequency[]
 *   Loads default.sij
 *   Parameters:
 *     Block *block:   the block to be converted
 *     Matrix *matrix: where the resulting matrix will be put
 *   Error codes: none
 */

void
gribskov_conversion_method(block, matrix)
     Block *block;
     Matrix *matrix;
{
  char sijname[SMALL_BUFF_LENGTH], *blimps_dir;
  struct float_qij *sij_matrix;
  FILE *fp=NULL;
  /* Is this an error?  fp is never opened */

  /*  load the substitution matrix */
  blimps_dir = getenv("BLIMPS_DIR");
  if (blimps_dir != NULL)
  {
     sprintf(sijname, "%s/docs/default.sij", blimps_dir);
  }
  else
  {
     sprintf(sijname, "default.sij");
  }

  sij_matrix = load_qij(fp);
  fclose(fp);
  if (sij_matrix == NULL)
  {
      sprintf(ErrorBuffer,
	      "gribskov_conversion_method: default.sij matrix missing, Cannot continue.\n");
      ErrorReport(FATAL_ERR_LVL);
  }

  /* check to see if the block has sequence weights */
  normalize(block);   /*  Make weights sum to number of sequences */
  make_gribs(block, matrix, sij_matrix);

}

/* end of gribskov_dependent_conversion_method
 * Sequence weighting methods.  Various methods of giving different
 * weights to the sequences.
 */

/*
 * static double *clustered_weights(block)
 * static double *pre_weighted_sequences(block)
 * void pb_weights(block)
 */


/*
 * clustered_weights
 *   This sequence weighing depends on the clustering of the block.
 *   The weight of a sequence is one over the number of sequences in
 *   that cluster.
 *   Parameters:
 *     Block* block: the block that the sequences are from.
 *   Return codes: a pointer to the sequence weights array.
 *   Error codes:
 */

static double *clustered_weights(block)
     Block* block;
{
  double *seq_weight;		/* the contribution of this sequence to the */
				/* block.  = 1/(num seq in cluster) */

  int clust;			/* a cluster counter */
  int seq;			/* a sequence counter */

  int seq_num;			/* keep's track of where to start when */
				/* filling seq_weight*/

  double weight;		/* a temporary holder for the weight */


  /*
   * create and fill the seq_weight array.
   */
  /* allocate space */
  CheckMem(
	   seq_weight = (double *) calloc(block->num_sequences, sizeof(double))
	   );

  /* fill the seq_weight array */
  seq_num = 0;
  for (clust=0; clust<block->num_clusters; clust++) {
    weight = 1.0/(double)block->clusters[clust].num_sequences;
    /* fill each sequence in the cluster */
    for (seq=seq_num; seq<seq_num+block->clusters[clust].num_sequences;
	 seq++) {
      seq_weight[seq] = weight;
    }
    seq_num += block->clusters[clust].num_sequences;
  }

  return seq_weight;
} /* end of clustered_weights */

/*
 * pre_weighted_sequences
 *   This sequence weighing was done beforehand.  The weight of the
 *   sequence was read from the block.
 *   Parameters:
 *     Block* block: the block that the sequences are from.
 *   Return codes: a pointer to the sequence weights array.
 *   Error codes: NULL if all of the weights in the block are <= zero.
 */

static double *pre_weighted_sequences(block)
     Block* block;
{
  double *seq_weight;		/* the contribution of this sequence to the */
				/* block. */

  int seq;			/* a sequence counter */

  int num_seqs;			/* keep's track of total sequences */

  double max_weight;

  /*
   * create and fill the seq_weight array.
   */
  /* allocate space */
  CheckMem(
	   seq_weight = (double *) calloc(block->num_sequences, sizeof(double))
	   );

  num_seqs = block->num_sequences;

  /* fill each sequence weight from the block */
  max_weight = 0.0;
  for (seq=0; seq<num_seqs; seq++) {
    seq_weight[seq] = block->sequences[seq].weight;
    if (seq_weight[seq] > max_weight) {
      max_weight = seq_weight[seq];
    }
  }

  if (max_weight <= 0) {
    /* all weights were zero */
    free(seq_weight);

    return NULL;  /* the error is handled in the calling function */
  }

  return seq_weight;
}  /* end of pre_weighted_sequences  */

/*=======================================================================
      Compute Steve's position-based sequence weights
	NOTE:  Characters - (0), X (23) and * (24) are ignored
	       Characters 1-22 are the 20 basic aas plus B & Z
	MATRIX_AA_WIDTH = 26, defined in matrix.h
========================================================================*/
void pb_weights(block)
Block *block;
{
   struct pb_counts *pb;
   //double factor, dtemp;
   double dtemp;
   int seq, pos, aa, width;

   width = block->width;
   CheckMem(
	pb = (struct pb_counts *) malloc(width*sizeof(struct pb_counts))
    );

   for (pos = 0; pos < width; pos++)
   {
      pb[pos].diffaas = 0.0;
      for (aa = 0; aa < MATRIX_AA_WIDTH; aa++)
         pb[pos].naas[aa] = (double) 0.0;
   }

   for (pos = 0; pos < width; pos++)
      for (seq = 0; seq < block->num_sequences; seq++)
      {
         if (block->residues[seq][pos] >= 1 &&
             block->residues[seq][pos] <= 22)
         {
            pb[pos].naas[block->residues[seq][pos]] += 1;
         }
         else
         {
            sprintf(ErrorBuffer, "pb_weights:%d ignored for %s\n",
                 block->residues[seq][pos], block->number);
	        // ErrorReport(INFO_ERR_LVL);
         }
      }

   // factor = 1.0;
   for (pos = 0; pos < width; pos++)
   {
      for (aa = 1; aa <= 22; aa++)
      {
         if (pb[pos].naas[aa] > 0.0)
         {
            pb[pos].diffaas += 1;	/* # of different types of aas in pos */
         }
      }
   }

   for (seq = 0; seq < block->num_sequences; seq++)
   {
      block->sequences[seq].weight = 0.0;
      for (pos = 0; pos < width; pos++)
      {
         aa = block->residues[seq][pos];
         dtemp = pb[pos].diffaas * pb[pos].naas[aa];
         if (dtemp > 0.0)
            block->sequences[seq].weight += 1.0 / dtemp;
      }
   }

   free(pb);
}  /* end of pb_weights */




/*
 * Matrix construction methods.  Build matricies from blocks and
 * sequence weights.
 */

/*
 * static void basic_matrix_construction(block, seq_weight, matrix)
 *
 */


/*
 * basic_matrix_construction
 *   This is the most general matrix construction method.  Each
 *   occurence of a residue in a sequence contributes the sequence
 *   weight of the sequence divided by the frequency of the residue to
 *   the total weight of the residue in the matrix at that column.
 *   This contribution is scaled by the total of the other residue
 *   contributions for the column of the matrix.  The following are
 *   exceptions to the method:
 *     X, '-', '*', & non-code scores are read straight from the frequencies
 *     the frequencies for B and Z are ignored, when a B or Z is encountered
 *       it is partitioned between D & N or E & Q.
 *     the matrix scores for B and Z are computed from the matrix scores of
 *       D & N and E & Q.
 *   Parameters:
 *     Block *block:       the block to be converted
 *     double *seq_weight: the weights of each sequence.
 *     Matrix *matrix:     where the resulting matrix will be put
 *   Error codes: none
 */

static void basic_matrix_construction(block, seq_weight, matrix)
     Block *block;
     double *seq_weight;
     Matrix *matrix;
{
  int seq;			/* a sequence counter */
  int col;			/* a column counter */
  int aa;			/* an amino acid counter */

  int num_sequences;		/* the number of sequences in the block */

  Residue res;			/* a residue.  Used for keeping hold of */
				/* block->residues[seq][col] */

  double total;			/* the sum of the seq_weight/freq[] for each */
				/* column (every amino acid).  This is used */
				/* to scale each matrix entry for a column */
				/* to a percentage */

  double count[MATRIX_AA_WIDTH]; /* the sum of the weights for each amino */
				 /* acid in the column */

  double part_D;		/* the partition of D for B. */
				/* = freq[D] / ( freq[D] + freq[N] ) */
  double part_N;		/* the partition of N for B. */
				/* = freq[N] / ( freq[D] + freq[N] ) */
  double part_E;		/* the partition of E for Z. */
				/* = freq[E] / ( freq[E] + freq[Q] ) */
  double part_Q;		/* the partition of Q for Z. */
				/* = freq[Q] / ( freq[E] + freq[Q] ) */


  /*
   * find the partitions of D, N, E, and Q for B and Z
   */
  part_D = frequency[aa_atob['D']] /
    ( frequency[aa_atob['D']] + frequency[aa_atob['N']] );
  part_N = frequency[aa_atob['N']] /
    ( frequency[aa_atob['D']] + frequency[aa_atob['N']] );
  part_E = frequency[aa_atob['E']] /
    ( frequency[aa_atob['E']] + frequency[aa_atob['Q']] );
  part_Q = frequency[aa_atob['Q']] /
    ( frequency[aa_atob['E']] + frequency[aa_atob['Q']] );


  /*
   * make the matrix
   */
  /* for every column in the block, count up the countribution of each aa, */
  /* and fill the matrix column */
  for (col=0; col<block->width; col++) {
    /* reset the counts array and the total */
    for (aa=0; aa<MATRIX_AA_WIDTH; aa++) {
      count[aa] = 0.0;
    }
    total = 0.0;

    /* for every sequence in the block build up the count and total data */
    num_sequences = block->num_sequences;
    for (seq=0; seq<num_sequences; seq++) {
      res = block->residues[seq][col];
      /* if not B, Z, X, gap, stop and non, do the regular */
      if ((res != aa_atob['B']) &&
	  (res != aa_atob['Z']) &&
	  (res != aa_atob['X']) &&
	  (res != aa_atob['-']) && /* gap */
	  (res != aa_atob['*']) && /* stop */
	  (res != AAID_NAR)) {     /* non */
	if (frequency[res] != 0.0) { /* try to protect from div by zero */
	  count[res] += seq_weight[seq] / frequency[res];
	  total      += seq_weight[seq] / frequency[res];
	}
      }
      /* otherwise, if it is B, partition B between D and N */
      else if (res == aa_atob['B']) {
	if (frequency[aa_atob['D']] != 0.0) { /* try to protect div by zero */
	  count[aa_atob['D']] +=
	    (part_D * seq_weight[seq]) / frequency[aa_atob['D']];
	  total +=
	    (part_D * seq_weight[seq]) / frequency[aa_atob['D']];
	}
	if (frequency[aa_atob['N']] != 0.0) { /* try to protect div by zero */
	  count[aa_atob['N']] +=
	    (part_N * seq_weight[seq]) / frequency[aa_atob['N']];
	  total +=
	    (part_N * seq_weight[seq]) / frequency[aa_atob['N']];
	}
      }
      /* otherwise, if it is Z, partition Z between E and Q */
      else if (res == aa_atob['Z']) {
	if (frequency[aa_atob['E']] != 0.0) { /* try to protect div by zero */
	  count[aa_atob['E']] +=
	    (part_E * seq_weight[seq]) / frequency[aa_atob['E']];
	  total +=
	    (part_E * seq_weight[seq]) / frequency[aa_atob['E']];
	}
	if (frequency[aa_atob['Q']] != 0.0) { /* try to protect div by zero */
	  count[aa_atob['Q']] +=
	    (part_Q * seq_weight[seq]) / frequency[aa_atob['Q']];
	  total +=
	    (part_Q * seq_weight[seq]) / frequency[aa_atob['Q']];
	}
      }
      /* otherwise, if it is X, gap, stop or non, don't calculate */
    }

    /* for every amino acid, fill in the matrix for this column, unless it */
    /* is B, Z, X, gap, stop or non */
    for (aa=0; aa<MATRIX_AA_WIDTH; aa++) {
      if ((aa != aa_atob['B']) &&
	  (aa != aa_atob['Z']) &&
	  (aa != aa_atob['X']) &&
	  (aa != aa_atob['-']) && /* gap */
	  (aa != aa_atob['*']) && /* stop */
	  (aa != AAID_NAR)) {	  /* non */
	if (total != 0.0) {	/* try to protect from div by zero */
	  matrix->weights[aa][col] = count[aa] * 100.0 / total;
	}
	else {
	  matrix->weights[aa][col] = 0.0;
	}
      }
    }

    /* fill in the matrix for B, Z, X, gap, stop and non */
    matrix->weights[aa_atob['B']][col] =
      (part_D * matrix->weights[aa_atob['D']][col] +
       part_N * matrix->weights[aa_atob['N']][col]);
    matrix->weights[aa_atob['Z']][col] =
      (part_E * matrix->weights[aa_atob['E']][col] +
       part_Q * matrix->weights[aa_atob['Q']][col]);
    matrix->weights[aa_atob['X']][col] = frequency[aa_atob['X']];
    matrix->weights[aa_atob['-']][col] = frequency[aa_atob['-']];
    matrix->weights[aa_atob['*']][col] = frequency[aa_atob['*']];
    matrix->weights[AAID_NAR][col]     = frequency[AAID_NAR];

  } /* end for each column */

} /* end of basic_matrix_construction */









/*
 * The original PATMAT method.  Hardly ever done anymore.
 */

/*
 * original_conversion_method
 *   The original conversion method.  This is done by weighted average of the
 *   clusters.  This follows the method in patmat.
 *   Parameters:
 *     Block *block:   the block to be converted
 *     Matrix *matrix: where the resulting matrix will be put
 *   Error codes: none
 */

void original_conversion_method(block, matrix)
     Block *block;
     Matrix *matrix;
{
  int aa, pos, clust, seq;
  int num_clusters, num_sequences, width;
  Residue *sequence;
  double *divisor;

  double tmp_double;

  double *number_occurred[MATRIX_AA_WIDTH]; /* [amino acid][position] */



  /* allocate the space for the number occured 2-d array ([amino acid][pos]) */
  CheckMem(
	 number_occurred[0] = (double *) calloc(matrix->width*MATRIX_AA_WIDTH,
						sizeof(double))
	   );

  /* setup the array of pointers */
  for (aa=0; aa < MATRIX_AA_WIDTH; aa++) {
    number_occurred[aa] = number_occurred[0] + aa*matrix->width;
  }

  /* get the space for the divisor array */
  CheckMem(
	   divisor = (double *) calloc(block->width, sizeof(double))
	   );



  width = block->width;

  /*
   * get the number of residues at each position.  clusters use
   * fractional values.
   */

  /* for each cluster */
  num_clusters = block->num_clusters;
  for (clust=0; clust < num_clusters; clust++) {

    /* for each sequence in the cluster */
    num_sequences = block->clusters[clust].num_sequences;
    for (seq=0; seq < num_sequences; seq++) {

      /* for each position in the sequence */
      sequence = block->clusters[clust].sequences[seq].sequence;
      for (pos=0; pos < width; pos++) {

	/* increase the number of amino acids seen at this position */
	/* in the number_occured matrix */
	number_occurred[sequence[pos]][pos] +=
	  (double) 1.0/(double)num_sequences; /* type casting to be safe */

      } /* end for each position */
    } /* end for each sequence */
  } /* end for each cluster */

  /*
   * calculate the divisor for later use.
   * divisor[i] = summation over all amino acids of
   *                ( num_occured[aa][i] / frequency[aa] )
   */

  /* for each position */
  for (pos=0; pos < width; pos++) {

    /* for all amino acids */
    for (aa=0; aa < MATRIX_AA_WIDTH; aa++) {

      if (frequency[aa] > 0.0) {
	if (number_occurred[aa][pos] > 0.0) {
	  divisor[pos] += number_occurred[aa][pos] / frequency[aa];
	}
      }

    } /* end for all amino acids */
  } /* end for each position */


  /*
   * calculate the matrix weights.
   *                              ( num_occur[aa][i] / freq[aa] ) * 100
   * in general: weights[aa][i] = -------------------------------------
   *                                     divisor[i]
   */

  /* for each amino acid */
  for (aa=0; aa < MATRIX_AA_WIDTH; aa++) {

    /* if there is a valid weight (frequency is not -1.0) */
    if ((int)frequency[aa] != -1) { /* typecast to be safe */

      /* for each position */
      for (pos=0; pos < width; pos++) {

	if (frequency[aa] < -1.0) {
	  tmp_double = frequency[aa];
	}
	else if (number_occurred[aa][pos] > 0) {
	  tmp_double = ( (number_occurred[aa][pos] / frequency[aa]) * 100 )
	               / divisor[pos];
	}
	else {
	  tmp_double = 0.0;
	}

	matrix->weights[aa][pos] = tmp_double;

      } /* end for each position */
    } /* end if valid weight */
  } /* end for each amino acid */

  /* free temporarily allocated space */
  free(divisor);
  free(number_occurred[0]);

}  /* end of original_conversion_method  */

/*===================================================================*/
/*  Pauline's additions to convert.c for SIFT */

void SIFT_conversion_method(block, pssm)
     Block *block;
     Matrix *pssm;
{
     int diri_option, gap_option, exp_option, subtract_option;

	diri_option = gap_option = exp_option = TRUE;
	subtract_option = FALSE;

      if (Qij == NULL) {
          sprintf(ErrorBuffer, "Qij matrix missing, unable to continue.\n");
          ErrorReport(FATAL_ERR_LVL);
        }
        normalize  (block);
        SIFT_pssm(block, pssm, frequency, Qij, diri_option, gap_option,
                          exp_option, subtract_option);
}  /* end of SIFT_conversion_method */

/*==========================================================================
10/20/00 SIFT pseudocounts
13-dirichlet component
option:  diri_pseudocounts
	  TRUE: use 13-component Dirichlet
	  FALSE use BLOSUM62 qij's
option:  gap: TRUE -allow everything
	      FALSE - just look at 20 amino acids
option:  exp (m)
	 m=0 # of amino acids at pos (default)
	 m=1  similiarity scale (more conservative)

option:	subtract_threshold TRUE : scores -= SIFT_TOLERANCE
			   FALSE: leave as original scores
===========================================================================*/
void SIFT_pssm(block, matrix, freqs, qij,
		diri_pseudocounts, gap_option,
		exp_option, subtract_threshold)
Block *block;
Matrix *matrix;
double *freqs;
struct float_qij *qij;
int diri_pseudocounts, gap_option, exp_option, subtract_threshold;
{
  FILE *rfp;
  double dtemp, epsilon;
  int pos, aa,  itemp;
  struct working *col;
  struct work_pssm *pssm;
  int original_aa;
  struct diri* diric;
  int max_aa;
  double min_freq;
  int div_by_max;
  struct float_qij *rank_matrix;
  char *blimps_dir, diriname[SMALL_BUFF_LENGTH], rankname[SMALL_BUFF_LENGTH];

  blimps_dir = getenv("BLIMPS_DIR");
   if (blimps_dir != NULL)
   {
      sprintf(diriname, "%s/docs/default.diri", blimps_dir);
      sprintf(rankname, "%s/docs/default.rank", blimps_dir);
/*>>>>> Need to check that rankname & diriname actually exists
        for WWW servers would be better to check in current
        directory first  <<<<<<*/
   }
   else
   {
      sprintf(diriname, "default.diri");
      sprintf(rankname, "default.rank");
   }

  diric = load_diri (diriname);
  rank_matrix = NULL;

  if (exp_option == 1)
  {
     if ( (rfp = fopen(rankname, "r") ) == NULL)
     {
         sprintf(ErrorBuffer, "SIFT_pssm(): Cannot open %s\n", rankname);
         ErrorReport(FATAL_ERR_LVL);
     }
     else
     {
        rank_matrix = load_qij(rfp);
        fclose(rfp);
     }
  }

  div_by_max = TRUE;
  col = make_col();
  pssm = make_work_pssm(block->width);

  /*--------------  Do one position at a time -------------------*/
  for (pos = 0; pos < block->width; pos++)
  {
    /*-------- count the number of each aa in this position ------------*/
    if (gap_option) {
	counts (block,col, pos);
    } else {
	counts_nogaps(block, col, pos);
   }
    /*-------- determine total number of pseudo-counts in column ------*/
    epsilon = 0;
    itemp = count_residues (col);
    original_aa = block->residues[0][pos];

    if (exp_option == 1) {
	/*printf ("pos %d :  ", pos); */
	dtemp = similarity_dependent_scale(col, rank_matrix, original_aa);
	if (itemp == 1) {
		epsilon = 0;
	} else {
		epsilon = exp (dtemp);
	}
    } else {
	if (itemp == 1) { epsilon = 0; }
        else if (itemp > 7) { epsilon = 1000; }
        else { epsilon = exp( (double) itemp) ; }

   }

    /*---------- get the pseudo counts -------------------------------*/
    if (diri_pseudocounts) {
	pseudo_diri (col, diric, epsilon );
    } else {
	pseudo_alts(col, qij, epsilon);
    }

    /*---------   Fill in the matrix entries --------------------*/
    pssm->sum[pos] = 0.0;
    for (aa=1; aa < AAS; aa++)
    {

	pssm->value[pos][aa] = col->cnt[aa] + epsilon * col->reg[aa];
        if ( (col->totcnt + col->totreg) > 0.0)
             pssm->value[pos][aa] /= (col->totcnt + epsilon);


    } /* end of aa, pssm->values filled for a given pos */

   if (div_by_max) {
        max_aa = find_max_aa_pssm (pssm, pos);
	min_freq = pssm->value[pos][max_aa];
       for (aa = 1; aa < AAS; aa++) {
		pssm->value[pos][aa] /= min_freq;
	}
   }

   if (subtract_threshold) {
	   for (aa = 1; aa < AAS; aa++) {
	        pssm->value[pos][aa] -= SIFT_TOLERANCE;
   	}
   }

       pssm->sum[pos] += pssm->value[pos][aa];

    	for (aa = 1; aa < AAS; aa++) {
	  matrix->weights[aa][pos] = pssm->value[pos][aa];
	}
	original_aa = block->residues[0][pos];
        if ( (matrix->weights[original_aa][pos] < SIFT_TOLERANCE
                         && (!subtract_threshold)) ||
              (matrix->weights[original_aa][pos] < 0.0 && subtract_threshold) )
        {
	   sprintf (ErrorBuffer, "SIFT_pssm(): Amino acid %c at pos %d in your original sequence was not allowed by the prediction.\n",
		aa_btoa[original_aa], pos);
           ErrorReport(WARNING_ERR_LVL);
	}

	} /* end of for pos */

  if (diri_pseudocounts) {
	free (diric);
  }

  free(col);
  free_work_pssm(pssm);

}  /* end of SIFT_pssm */

/*======================================================================
   Dirichlet input file order (0-19) is  ARNDCQEGHILKMFPSTWYV
   Blimps order (0-24) is               -ARNDCQEGHILKMFPSTWYVBZX*
   Store Dirichlet alphas in positions 1-20 to match blimps
=======================================================================*/
struct diri *load_diri (filename)
char filename[LARGE_BUFF_LENGTH];
{
   FILE* fin;
   int i, aa, numc, type;
   char line[MAXLINE], *ptr;
   struct diri *diric;
   double denom;
   double background_frequency[AAS];

   if ((fin = fopen (filename, "r")) == NULL)
   {
      sprintf (ErrorBuffer, "dirichlet(): Cannot open dirichlet file %s\n",
			 filename);
      ErrorReport(FATAL_ERR_LVL);
   }

   diric = (struct diri *) malloc(sizeof(struct diri));
   if (diric == NULL)
   {
      sprintf (ErrorBuffer, "dirichlet(): OUT OF MEMORY\n");
      ErrorReport(FATAL_ERR_LVL);
   }
   numc = 0;
   while (numc < MAXDIRI && !feof(fin) && fgets(line, MAXLINE, fin) != NULL)
   {
      type = 0;
      if (strstr(line, "Mixture=") != NULL) type = 1;
      if (strstr(line, "Alpha=") != NULL)  type = 2;
      if (type > 0)
      {
         ptr = strtok(line, "="); ptr = strtok(NULL, "\t\n\r ");
         switch (type)
         {
            case 1:
               diric->q[numc] = atof(ptr);
               break;
            case 2:
               diric->altot[numc] = atof(ptr);
               aa = 1;
               while (aa < AAS && ptr != NULL)
               {
                  ptr = strtok(NULL, "\t\n\r ");
                  diric->alpha[numc][aa++] = atof(ptr);
               }
               numc++;
               break;
            default:
               break;
         }
      }
   }  /* end of while */
   diric->ncomp = numc;
	for (i = 0; i < numc; i++) {
		for (aa = 1; aa < AAS; aa++) {
			diric->alpha_normalized[i][aa] = diric->alpha[i][aa]/diric->altot[i];
		}
	}

	for (aa = 1; aa < AAS; aa++) {
		denom = 0.0;
		for (i = 0; i < numc; i++) {
			denom += (diric->q[i] * diric->alpha[i][aa] /
							diric->altot[i]);
		}
		background_frequency[aa] = denom;
	}
	for (i =0; i < numc; i++) {
	/*	printf ("Component %d ratio of aa relative to background \n", i); */
		for (aa = 1; aa < AAS; aa++) {
			diric->frequency_to_background_ratio[i][aa] =
	diric->alpha[i][aa]/(diric->altot[i] * background_frequency[aa]);
		}
	}
   fclose(fin);
   return(diric);
}   /* end of load_diri */

/*========================================================================
==========================================================================*/
/* only count valid amino acids, no considerationto gaps */
void counts_nogaps (block, col, pos)
Block *block;
struct working *col;
int pos;
{
 int seq, aa;

  col->totcnt = col->totraw = col->totreg = 0.0;
  for (aa = 0; aa < AASALL; aa++) {
    col->cnt[aa] = col->raw[aa] = col->reg[aa] = 0.0;
  }

  /*  Only count the real 20 aas, combine B(21) with D & Z(22) with E  */
  for (seq = 0; seq < block->num_sequences; seq++) {
    aa = block->residues[seq][pos];
    if (aa >= 1 && aa < AAS) {
      col->cnt[aa] += block->sequences[seq].weight;
      col->totcnt += block->sequences[seq].weight;
      col->raw[aa] += 1.0;
      col->totraw += 1.0;
    }
  } /* end of for */
} /* end of counts_nogaps */


/*========================================================================
==========================================================================*/
double similarity_dependent_scale (col, rank_matrix, original_aa)
struct working *col;
struct float_qij *rank_matrix;
int original_aa;
{
  int aa, rank; double sum;
   int n;
  int max_aa;

  max_aa = find_max_aa_col(col);
  original_aa = max_aa; /* change to max aa 10/24/00 */

  n = 0;
  sum = 0.0;
  for (aa = 1; aa <= 20 ; aa++) {
        if (col->cnt[aa] > 0.0) {
                n++;
              rank = (int) rank_matrix->value[original_aa][aa];
              sum += rank * col->cnt[aa]/col->totcnt;
/*		printf ("\taa %c rank %d weight %.3f", aa_btoa[aa], rank, col->cnt[aa]/col->totcnt); */
        }
   }
/*   printf (" sim score %.3f\n", sum); */
  return sum;

} /* end of similarity_dependent_scale */


/*=====================================================================*/
/*========================================================================
==========================================================================*/
void pseudo_diri(col, diric, epsilon)
struct working *col;
struct diri *diric;
double epsilon;
{
   int j, aa;
   double denom, dtemp;
   double total;

      /*-----------   compute equation (3), Prob(n|j) ------------  */
      for (j = 0; j < diric->ncomp; j++)
      {
         col->probn[j] = lgamma(col->totcnt + 1.0) + lgamma(diric->altot[j]);
         col->probn[j] -= lgamma(col->totcnt + diric->altot[j]);

	/*   Note range on aa varies; Diric values only for 1-20 */
         for (aa = 1; aa < AAS; aa++)
         {
         /*  ni = cnt[i] */
	    if (col->cnt[aa] >= 0.0)
            {
               dtemp = lgamma(col->cnt[aa] + diric->alpha[j][aa]);
/*  printf ("aa %c cnt %.3f alpha %.3f dtemp %.3f\n", aa_btoa[aa], col->cnt[aa], diric->alpha[j][aa], dtemp); */
		dtemp -= lgamma(col->cnt[aa] + 1.0);
	   	dtemp -= lgamma(diric->alpha[j][aa]);
		col->probn[j] += dtemp;
/*               printf ("col->probn is now %.3f prob is %.3f \n\n", col->probn[j], exp (col->probn[j])) ; */
	     } /* end of if > = 0.0 */
         } /* end of for amino acids */
      } /* end of for all j components */

      /*------ compute sum qk * p(n|k) using logs & exponents ----------*/
      denom = log(diric->q[0]) + col->probn[0];
      for (j = 1; j < diric->ncomp; j++)
      {
         dtemp = log(diric->q[j]) + col->probn[j];
         denom = add_logs(denom, dtemp);
      }
/* printf ("%.3f denom number of comp %d\n", denom, diric->ncomp); */

      /*   compute equation (3), Prob(j|n)  */
      for (j = 0; j < diric->ncomp; j++)
      {
         col->probj[j] = log(diric->q[j]) + col->probn[j] - denom;
/*       printf("j=%d probn[j]=%f probj[j]=%f\n",
             j, exp(col->probn[j]), exp(col->probj[j])); */

      }

      /* ----- compute equation (4), ni + bi, bi = Prob(j|n) * alpha[j][i]  */

	 for (aa = 1; aa < AAS; aa++)
      {
         for (j = 0; j < diric->ncomp; j++) {
		col->reg[aa] +=
				(exp(col->probj[j]) * diric->alpha[j][aa]);
			/*  * epsilon); */
            }
	 col->totreg += col->reg[aa];
	}
/*	printf (" total prob. %.2f\n", col->totreg); */
/* scale dirichlet to probabilities */
	total = 0.0;
	for (aa = 1; aa < AAS; aa ++) {
		col->reg[aa] /= col->totreg;
		total += col->reg[aa];
	}
/*	printf ("%.2f total\n", total); */

/*	printf ("%c %.3f", aa_btoa[aa], col->reg[aa]);
	if (col->cnt[aa] > 0.0) {printf ("*\n"); } else { printf ("\n");} */

}  /* end of pseudo_diri */

/*========================================================================
==========================================================================*/
int find_max_aa_col (col)
struct working *col;
{
	int aa, max_aa;
	double max = 0.0;

        max_aa = -1;
	for (aa = 1; aa < AAS; aa++) {
		if (col->cnt[aa] > max) {
			max = col->cnt[aa];
			max_aa = aa;
		}
	}
	return max_aa;

} /* end of find_max_aa_col */

/*========================================================================
==========================================================================*/
int find_max_aa_pssm (pssm, pos)
struct work_pssm *pssm;
int pos;
{
	int aa, max_aa;
	double max;

        max_aa = -1;
	max = 0.0;
	for (aa = 1; aa < AAS; aa++) {
		if (pssm->value[pos][aa] > max) {
			max_aa = aa;
			max = pssm->value[pos][aa];
		}
	}
	return max_aa;
} /* end of find_max_aa_pssm */


/*===============================================================
      Returns log(e^x + e^y)
================================================================*/
double add_logs(lx, ly)
double lx, ly;
{
   if (lx > ly)  return(lx + log(1.0 + exp(ly - lx)));
   else          return(ly + log(1.0 + exp(lx - ly)));
}  /*  end of add_logs */


/*=========================================================================*/
/* Change log information follows. */
/*
 Changes since version 3.5:
  8/27/03 Fix problem in make_alts() with scale=10,20,21,30
 Changes since version 3.4:
 12/29/00 Added Pauline's routines for SIFT (SIFT_prediction, etc.)
	  Modified struct working, struct work_pssm and make_work_pssm()
	  (width is now dynamic) Added free_work_pssm()
  6/16/00 Added type 22 (pseudo-counts nearly zero) to block_to_matrix()
 Changes since version 3.3.2:
  5/24/00 Increased MAXWIDTH from 100 to 400, but need to do away with
	  this restriction!
 Changes since version 3.3:
  9/ 4/99 Added type 21 (counts only) to block_to_matrix()
 Changes since version 3.2.5:
  2/22/99  Removed block from positive_matrix()
 Changes since version 3.2.4:
 12/12/98  compute_BZX(): Use 0 for * column instead of min value, unless
	   min value is negative.
 Changes since version 3.2.3:
  8/11/98  convert.c: MAXWIDTH increased, error check added.
  4/ 8/98  Avoid division by zero in pseudo_alts() & block_to_matrix().
           Divide counts of aas other than the basic 20 among those 20.
 Changes since version 3.1:
  1/30/97  Changed no weights error message from SERIOUS to WARNING.
 10/10/96  Fixed bug in pb_weights() when X (#23) in sequence.
  9/25/96  Changed compute_BZX() to compute average score for X.
*/