1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
/* (C) Copyright 1993-9, Fred Hutchinson Cancer Research Center */
/* Use, modification or distribution of these programs is subject to */
/* the terms of the non-commercial licensing agreement in license.h. */
/* gcode.c: Functions for the translation of nucleotides to amino acids */
/* Modified by: Bill Alford */
/* Change log information is at the end of the file. */
#include <global.h>
#include <residues.h>
#include <sequences.h>
/* ----------------------- initialize a genetic code -------------------*/
void
init_gcode(gp, xltab, rcxltab)
GeneticCodePtr gp;
register unsigned char xltab[64], rcxltab[64];
{
register char *code;
register int i, j, k, tot;
/* gctrans -- used to translate from the binary alphabet used in ntbet.h
into a binary alphabet appropriate for the GeneticCode strings */
static unsigned char gctrans[] = { '\003', '\001', '\000', '\002' };
code = gp->code;
for (i=0; i<4; ++i) {
for (j=0; j<4; ++j) {
for (k=0; k<4; ++k, ++code) {
tot = gctrans[i]*4*4 + gctrans[j]*4 + gctrans[k];
xltab[tot] = aa_atob[(int)*code];
tot = (3-gctrans[i])*4*4 + (3-gctrans[j])*4 + (3-gctrans[k]);
rcxltab[tot] = aa_atob[(int)*code];
}
}
}
return;
}
/*
codon2aa
Translate 3 binary-encoded nucleotides (n1, n2, and n3) into a binary
amino acid in the specified genetic code.
*/
unsigned char
codon2aa(gcode, n1, n2, n3)
unsigned char *gcode;
unsigned n1, n2, n3;
{
if (n1 < 4 && n2 < 4 && n3 < 4)
return gcode[n1*4*4 + n2*4 + n3];
if (n1 >= NUCID_MAX || n2 >= NUCID_MAX || n3 >= NUCID_MAX)
return (unsigned char)aa_atob[UNKNOWN_AA_CHR];
{
unsigned char aa;
unsigned char b1, b2, b3;
int i1, i2, i3;
b1 = nt_bdegen[n1].list[0];
b2 = nt_bdegen[n2].list[0];
b3 = nt_bdegen[n3].list[0];
aa = gcode[b1*4*4 + b2*4 + b3];
for (i1=0; i1 < nt_bdegen[n1].ndegen; ++i1) {
b1 = nt_bdegen[n1].list[i1]*4*4;
for (i2=0; i2 < nt_bdegen[n2].ndegen; ++i2) {
b2 = b1 + nt_bdegen[n2].list[i2]*4;
for (i3=0; i3 < nt_bdegen[n3].ndegen; ++i3) {
b3 = nt_bdegen[n3].list[i3];
if (gcode[b2 + b3] != aa)
return (unsigned char)aa_atob[UNKNOWN_AA_CHR];
}
}
}
return aa;
}
/*NOTREACHED*/
} /* end of codon2aa */
/*
aa2codon
Translate a single binary-encoded amino acid into 3 binary-encoded
nucleotides (n1, n2, and n3)
Note: Could add translation tables to gcode.h
The translations here are simplified to one degenerate codon per aa
and therefore not quite correct for:
Arg (R) = CGT, CGC, CGA, CGG; AGA, AGG = CGN or AGR
Leu (L) = CTT, CTC, CTA, CTG; TTA, TTG = CTN or TTR
Ser (S) = TCT, TCC, TCA, TCG; AGT, AGC = TCN or AGY
*/
void aa2codon(aa, n1, n2, n3)
Residue aa, *n1, *n2, *n3;
{
switch (aa)
{
case 0: /* - => --- */
{ *n1 = *n2 = *n3 = nt_atob['-']; }
break;
case 1: /* A => GCN */
{ *n1 = nt_atob['G']; *n2 = nt_atob['C']; *n3 = nt_atob['N']; }
break;
case 2: /* R => MGN */
{ *n1 = nt_atob['M']; *n2 = nt_atob['G']; *n3 = nt_atob['N']; }
break;
case 3: /* N => AAY */
{ *n1 = nt_atob['A']; *n2 = nt_atob['A']; *n3 = nt_atob['Y']; }
break;
case 4: /* D => GAY */
{ *n1 = nt_atob['G']; *n2 = nt_atob['A']; *n3 = nt_atob['Y']; }
break;
case 5: /* C => UGY */
{ *n1 = nt_atob['U']; *n2 = nt_atob['G']; *n3 = nt_atob['Y']; }
break;
case 6: /* Q => CAR */
{ *n1 = nt_atob['C']; *n2 = nt_atob['A']; *n3 = nt_atob['R']; }
break;
case 7: /* E => GAR */
{ *n1 = nt_atob['G']; *n2 = nt_atob['A']; *n3 = nt_atob['R']; }
break;
case 8: /* G => GGN */
{ *n1 = nt_atob['G']; *n2 = nt_atob['G']; *n3 = nt_atob['N']; }
break;
case 9: /* H => CAY */
{ *n1 = nt_atob['C']; *n2 = nt_atob['A']; *n3 = nt_atob['Y']; }
break;
case 10: /* I => ATH */
{ *n1 = nt_atob['A']; *n2 = nt_atob['T']; *n3 = nt_atob['H']; }
break;
case 11: /* L => YTN */
{ *n1 = nt_atob['Y']; *n2 = nt_atob['T']; *n3 = nt_atob['N']; }
break;
case 12: /* K => AAR */
{ *n1 = nt_atob['A']; *n2 = nt_atob['A']; *n3 = nt_atob['R']; }
break;
case 13: /* M => ATG */
{ *n1 = nt_atob['A']; *n2 = nt_atob['T']; *n3 = nt_atob['G']; }
break;
case 14: /* F => TTY */
{ *n1 = nt_atob['T']; *n2 = nt_atob['T']; *n3 = nt_atob['Y']; }
break;
case 15: /* P => CCN */
{ *n1 = nt_atob['C']; *n2 = nt_atob['C']; *n3 = nt_atob['N']; }
break;
case 16: /* S => WSN */
{ *n1 = nt_atob['W']; *n2 = nt_atob['S']; *n3 = nt_atob['N']; }
break;
case 17: /* T => ACN */
{ *n1 = nt_atob['A']; *n2 = nt_atob['C']; *n3 = nt_atob['N']; }
break;
case 18: /* W => TGG */
{ *n1 = nt_atob['T']; *n2 = nt_atob['G']; *n3 = nt_atob['G']; }
break;
case 19: /* Y => TAY */
{ *n1 = nt_atob['T']; *n2 = nt_atob['A']; *n3 = nt_atob['Y']; }
break;
case 20: /* V => GTN */
{ *n1 = nt_atob['G']; *n2 = nt_atob['T']; *n3 = nt_atob['N']; }
break;
case 21: /* B (D or N) => RAY */
{ *n1 = nt_atob['R']; *n2 = nt_atob['A']; *n3 = nt_atob['Y']; }
break;
case 22: /* Z (E or Q) => SAR */
{ *n1 = nt_atob['S']; *n2 = nt_atob['A']; *n3 = nt_atob['R']; }
break;
case 23: /* X => NNN */
{ *n1 = nt_atob['N']; *n2 = nt_atob['N']; *n3 = nt_atob['N']; }
break;
case 24: /* * => TRR (stop) */
{ *n1 = nt_atob['T']; *n2 = nt_atob['R']; *n3 = nt_atob['R']; }
break;
default: /* Unknown */
{ *n1 = nt_atob['N']; *n2 = nt_atob['N']; *n3 = nt_atob['N']; }
break;
}
} /* end of aa2codon */
/* Change log information follows. */
/* Changes since Blimps Version 3.1:
* 1/19/1997 Added aa2codon() routine.
*
*/
|