1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/************************************************************************
*
* Copyright (C) 2009-2025 IRCAD France
* Copyright (C) 2012-2018 IHU Strasbourg
*
* This file is part of Sight.
*
* Sight is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Sight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Sight. If not, see <https://www.gnu.org/licenses/>.
*
***********************************************************************/
#include "geometry/data/matrix4.hpp"
#include <data/matrix4.hpp>
#include <data/point.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <glm/matrix.hpp>
namespace sight::geometry::data
{
//------------------------------------------------------------------------------
bool invert(
const sight::data::matrix4& _input,
sight::data::matrix4& _output
)
{
// Normally we should transpose matrices since GLM uses a column-major layout and Sight uses row-major layout
// However the transposition has a cost and inversion does not care about the layout, so we skip it
const glm::dmat4x4 mat = glm::make_mat4<double>(_input.data());
const glm::dmat4x4 mat_inverse = glm::inverse(mat);
for(std::size_t i = 0 ; i < 4 ; ++i)
{
const std::size_t row_dst = i * 4;
const auto row_src = static_cast<glm::length_t>(i);
for(std::size_t j = 0 ; j < 4 ; ++j)
{
const auto col_src = static_cast<glm::length_t>(j);
_output[row_dst + j] = mat_inverse[row_src][col_src];
}
}
return true;
}
// ----------------------------------------------------------------------------
void multiply(
const sight::data::matrix4& _trf_a,
const sight::data::matrix4& _trf_b,
sight::data::matrix4& _output
)
{
// Normally we should transpose matrices since GLM uses a column-major layout and Sight uses row-major layout
// However the transposition has a cost, so it is faster to not transpose them
// and perform the inverse multiplication
const glm::dmat4x4 mat_a = glm::make_mat4<double>(_trf_a.data());
const glm::dmat4x4 mat_b = glm::make_mat4<double>(_trf_b.data());
const glm::dmat4x4 mat_c = mat_b * mat_a;
for(std::size_t i = 0 ; i < 4 ; ++i)
{
const std::size_t row_dst = i * 4;
const auto row_src = static_cast<glm::length_t>(i);
for(std::size_t j = 0 ; j < 4 ; ++j)
{
const auto col_src = static_cast<glm::length_t>(j);
_output[row_dst + j] = mat_c[row_src][col_src];
}
}
}
// ----------------------------------------------------------------------------
void identity(sight::data::matrix4& _trf)
{
for(std::size_t i = 0 ; i < 4 ; ++i)
{
for(std::size_t j = 0 ; j < 4 ; ++j)
{
_trf(i, j) = i == j ? 1 : 0;
}
}
}
// ----------------------------------------------------------------------------
void multiply(
const sight::data::matrix4& _trf,
const sight::data::point& _input,
sight::data::point& _output
)
{
// Normally we should transpose matrices since GLM uses a column-major layout and Sight uses row-major layout
// However the transposition has a cost, so it is faster to not transpose them
// and perform the inverse multiplication
const glm::dmat4x4 mat = glm::make_mat4<double>(_trf.data());
const auto& in_coord = _input.get_coord();
glm::dvec4 in;
in[0] = in_coord[0];
in[1] = in_coord[1];
in[2] = in_coord[2];
in[3] = 1;
glm::dvec4 out = in * mat;
std::array<double, 3> res = {{out[0], out[1], out[2]}};
_output.set_coord(res);
}
// ----------------------------------------------------------------------------
bool is_identity(const sight::data::matrix4& _trf, const double _epsilon)
{
static const sight::data::matrix4 s_IDENTITY;
for(std::size_t i = 0 ; i < s_IDENTITY.size() ; ++i)
{
if(std::abs(s_IDENTITY[i] - _trf[i]) > _epsilon)
{
return false;
}
}
return true;
}
// ----------------------------------------------------------------------------
bool is_orthogonal(const sight::data::matrix4& _trf, double _epsilon)
{
const auto mat = to_glm_mat(_trf);
const glm::dvec3 v1(mat[0]);
const glm::dvec3 v2(mat[1]);
const glm::dvec3 v3(mat[2]);
const glm::dmat3 rot(v1, v2, v3);
const auto rot_t = glm::transpose(rot);
const auto res = rot_t * rot;
const auto identity = glm::identity<glm::dmat3>();
for(glm::length_t i = 0 ; i < 3 ; ++i)
{
for(glm::length_t j = 0 ; j < 3 ; ++j)
{
if(std::abs(identity[i][j] - res[i][j]) > _epsilon)
{
return false;
}
}
}
return true;
}
// ----------------------------------------------------------------------------
bool is_homogeneous(const sight::data::matrix4& _trf, double _epsilon)
{
static const sight::data::matrix4 s_IDENTITY;
for(std::size_t i = 12 ; i < s_IDENTITY.size() ; ++i)
{
if(std::abs(s_IDENTITY[i] - _trf[i]) > _epsilon)
{
return false;
}
}
return true;
}
// ----------------------------------------------------------------------------
} // namespace sight::geometry::data
|