1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
/************************************************************************
*
* Copyright (C) 2017-2023 IRCAD France
* Copyright (C) 2017-2020 IHU Strasbourg
*
* This file is part of Sight.
*
* Sight is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Sight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Sight. If not, see <https://www.gnu.org/licenses/>.
*
***********************************************************************/
#ifdef WIN32
#pragma warning(disable:4701)
#endif
#include "automatic_registration.hpp"
#include "filter/image/itk_image_caster.hpp"
#include <io/itk/helper/transform.hpp>
#include <io/itk/itk.hpp>
#include <itkCommand.h>
#include <itkCorrelationImageToImageMetricv4.h>
#include <itkEuler3DTransform.h>
#include <itkImage.h>
#include <itkImageMomentsCalculator.h>
#include <itkImageRegistrationMethodv4.h>
#include <itkImageToImageMetricv4.h>
#include <itkLinearInterpolateImageFunction.h>
#include <itkMattesMutualInformationImageToImageMetricv4.h>
#include <itkMeanSquaresImageToImageMetricv4.h>
#include <itkNearestNeighborInterpolateImageFunction.h>
#include <numeric>
namespace sight::filter::image
{
using transform_t = itk::Euler3DTransform<automatic_registration::real_t>;
using registration_method_t = itk::ImageRegistrationMethodv4<
automatic_registration::registered_image_t,
automatic_registration::registered_image_t,
transform_t
>;
class automatic_registration::automatic_registrationImpl final
{
public:
/// Delete default constructors and assignment operators
automatic_registrationImpl() = delete;
automatic_registrationImpl(const automatic_registrationImpl&) = delete;
automatic_registrationImpl(automatic_registrationImpl&&) = delete;
automatic_registrationImpl& operator=(const automatic_registrationImpl&) = delete;
automatic_registrationImpl& operator=(automatic_registrationImpl&&) = delete;
/// Constructor
inline explicit automatic_registrationImpl(automatic_registration* const _automatic_registration) :
m_automatic_registration(_automatic_registration)
{
}
/// Default destructor
inline ~automatic_registrationImpl() noexcept = default;
automatic_registration* m_automatic_registration {nullptr};
optimizer_t::Pointer m_optimizer {nullptr};
registration_method_t::Pointer m_registrator {nullptr};
bool m_invert {false};
//------------------------------------------------------------------------------
inline void convertfrom_eigen_matrix(const transform_t* _itk_mat, const data::matrix4::sptr& _f4s_mat) const
{
itk::Matrix<real_t, 3, 3> rigid_mat = _itk_mat->GetMatrix();
itk::Vector<real_t, 3> offset = _itk_mat->GetOffset();
if(m_invert)
{
rigid_mat = itk::Matrix<real_t, 3, 3>(_itk_mat->GetMatrix().GetTranspose());
offset = -(rigid_mat * offset);
}
// Convert itk::RigidTransform to f4s matrix.
for(std::uint8_t i = 0 ; i < 3 ; ++i)
{
(*_f4s_mat)(i, 3) = offset[i];
for(std::uint8_t j = 0 ; j < 3 ; ++j)
{
(*_f4s_mat)(i, j) = rigid_mat(i, j);
}
}
}
//------------------------------------------------------------------------------
inline static double compute_volume(const data::image::csptr& _img)
{
const auto& spacing = _img->spacing();
const auto& size = _img->size();
SIGHT_ASSERT(
"Degenerated image. Spacing and size should be of the same dimension.",
spacing.size() == size.size()
);
const double voxel_volume = std::accumulate(spacing.begin(), spacing.end(), 1., std::multiplies<>());
const std::size_t nb_voxels = std::accumulate(
size.begin(),
size.end(),
std::size_t(1),
std::multiplies<>()
);
return voxel_volume * static_cast<double>(nb_voxels);
}
};
//------------------------------------------------------------------------------
class registration_observer : public itk::Command
{
public:
using self_t = registration_observer;
using superclass = itk::Command;
using Pointer = itk::SmartPointer<self_t>;
itkNewMacro(self_t)
/// Command to be executed. Updates the progress bar.
void Execute(itk::Object* _caller, const itk::EventObject& _event) override
{
const itk::Object* const_caller = _caller;
Execute(const_caller, _event);
}
/// Const overload of the above method.
void Execute(const itk::Object* /*caller*/, const itk::EventObject& _event) override
{
{
if(itk::IterationEvent().CheckEvent(&_event))
{
m_iteration_callback();
}
}
}
//------------------------------------------------------------------------------
void set_callback(std::function<void()> _callback)
{
m_iteration_callback = _callback;
}
private:
/// Constructor, initializes progress dialog and sets the user cancel callback.
registration_observer() = default;
std::function<void()> m_iteration_callback;
};
automatic_registration::automatic_registration() noexcept :
m_pimpl(std::make_unique<automatic_registration::automatic_registrationImpl>(this))
{
}
automatic_registration::~automatic_registration() noexcept = default;
//------------------------------------------------------------------------------
void automatic_registration::register_image(
const data::image::csptr& _target,
const data::image::csptr& _reference,
const data::matrix4::sptr& _trf,
metric_t _metric,
const multi_resolution_parameters_t& _multi_resolution_parameters,
real_t _sampling_percentage,
double _min_step,
std::uint64_t _max_iterations,
iteration_callback_t _callback
)
{
typename itk::ImageToImageMetricv4<registered_image_t, registered_image_t, registered_image_t,
real_t>::Pointer metric;
data::image::csptr ref = _reference;
data::image::csptr tgt = _target;
m_pimpl->m_invert = m_pimpl->compute_volume(tgt) < m_pimpl->compute_volume(ref);
// Always register images with the largest one being fixed.
// Otherwise, our metric may not find any matching points between them.
if(m_pimpl->m_invert)
{
std::swap(ref, tgt);
}
// Convert input images to float. Integer images aren't supported yet.
registered_image_t::Pointer target = cast_to<float>(tgt);
registered_image_t::Pointer reference = cast_to<float>(ref);
// Choose a metric.
switch(_metric)
{
case mean_squares:
metric =
itk::MeanSquaresImageToImageMetricv4<registered_image_t, registered_image_t, registered_image_t,
real_t>::New();
break;
case normalized_correlation:
metric =
itk::CorrelationImageToImageMetricv4<registered_image_t, registered_image_t, registered_image_t,
real_t>::New();
break;
case mutual_information:
{
auto mut_info_metric =
itk::MattesMutualInformationImageToImageMetricv4<registered_image_t, registered_image_t,
registered_image_t,
real_t>::New();
// TODO: find a strategy to compute the appropriate number of bins or let the user set it.
// More bins means better precision but longer evaluation.
mut_info_metric->SetNumberOfHistogramBins(20);
metric = mut_info_metric;
break;
}
default:
SIGHT_FATAL("Unknown metric");
}
transform_t::Pointer itk_transform = transform_t::New();
itk::Matrix<real_t, 3, 3> m;
itk::Vector<real_t, 3> t;
for(std::uint8_t i = 0 ; i < 3 ; ++i)
{
t[i] = (*_trf)(i, 3);
for(std::uint8_t j = 0 ; j < 3 ; ++j)
{
m(i, j) = (*_trf)(i, j);
}
}
if(m_pimpl->m_invert)
{
// Our algorithm assumes m to be orthogonal. If it isn't, an exception will be thrown later on.
m = itk::Matrix<real_t, 3, 3>(m.GetTranspose());
t = -(m * t);
}
// Initialize the transform.
itk::ImageMomentsCalculator<registered_image_t>::Pointer moments_calculator =
itk::ImageMomentsCalculator<registered_image_t>::New();
moments_calculator->SetImage(target);
moments_calculator->Compute();
// Set the rigid transform center to the center of mass of the target image.
// This truly helps the registration algorithm.
itk_transform->SetCenter(moments_calculator->GetCenterOfGravity());
// Setting the offset also recomputes the translation using the offset, rotation and center
// so the matrix needs to be set first.
itk_transform->SetMatrix(m);
itk_transform->SetOffset(t);
// Registration.
m_pimpl->m_registrator = registration_method_t::New();
m_pimpl->m_optimizer = optimizer_t::New();
m_pimpl->m_registrator->SetMetric(metric);
m_pimpl->m_registrator->SetOptimizer(m_pimpl->m_optimizer);
optimizer_t::ScalesType optimizer_scales(static_cast<unsigned int>(itk_transform->GetNumberOfParameters()));
const double translation_scale = 1.0 / 1000.0;
optimizer_scales[0] = 1.0;
optimizer_scales[1] = 1.0;
optimizer_scales[2] = 1.0;
optimizer_scales[3] = translation_scale;
optimizer_scales[4] = translation_scale;
optimizer_scales[5] = translation_scale;
m_pimpl->m_optimizer->SetScales(optimizer_scales);
m_pimpl->m_optimizer->SetDoEstimateLearningRateAtEachIteration(true);
m_pimpl->m_optimizer->SetMinimumStepLength(_min_step);
// The solution is the transform returned when optimization ends.
m_pimpl->m_optimizer->SetReturnBestParametersAndValue(false);
m_pimpl->m_optimizer->SetNumberOfIterations(_max_iterations);
// The fixed image isn't transformed, nearest neighbor interpolation is enough.
auto fixed_interpolator = itk::NearestNeighborInterpolateImageFunction<registered_image_t, real_t>::New();
auto moving_interpolator = itk::LinearInterpolateImageFunction<registered_image_t, real_t>::New();
metric->SetFixedInterpolator(fixed_interpolator.GetPointer());
metric->SetMovingInterpolator(moving_interpolator.GetPointer());
// Number of registration stages
SIGHT_ASSERT("255 is the maximum number of steps.", _multi_resolution_parameters.size() < 256);
const auto number_of_levels = std::uint8_t(_multi_resolution_parameters.size());
registration_method_t::ShrinkFactorsArrayType shrink_factors_per_level;
shrink_factors_per_level.SetSize(number_of_levels);
registration_method_t::SmoothingSigmasArrayType smoothing_sigmas_per_level;
smoothing_sigmas_per_level.SetSize(number_of_levels);
// We set the shrink factor and smoothing Sigma for each stage.
for(std::uint8_t i = 0 ; i < number_of_levels ; ++i)
{
const auto& stage_parameters = _multi_resolution_parameters[i];
shrink_factors_per_level[i] = stage_parameters.first;
smoothing_sigmas_per_level[i] = stage_parameters.second;
}
m_pimpl->m_registrator->SetInitialTransform(itk_transform);
m_pimpl->m_registrator->SetFixedImage(target);
m_pimpl->m_registrator->SetMovingImage(reference);
m_pimpl->m_registrator->SetMetricSamplingPercentage(_sampling_percentage);
const auto sampling_strategy = _sampling_percentage < 1.0
? registration_method_t::REGULAR : registration_method_t::NONE;
m_pimpl->m_registrator->SetMetricSamplingStrategy(sampling_strategy);
m_pimpl->m_registrator->SetNumberOfLevels(itk::SizeValueType(number_of_levels));
m_pimpl->m_registrator->SetSmoothingSigmasPerLevel(smoothing_sigmas_per_level);
m_pimpl->m_registrator->SetShrinkFactorsPerLevel(shrink_factors_per_level);
m_pimpl->m_registrator->SetSmoothingSigmasAreSpecifiedInPhysicalUnits(true);
auto observer = registration_observer::New();
if(_callback)
{
observer->set_callback(_callback);
m_pimpl->m_optimizer->AddObserver(itk::IterationEvent(), observer);
}
try
{
// Time for lift-off.
m_pimpl->m_registrator->Update();
this->get_current_matrix(_trf);
}
catch(itk::ExceptionObject& err)
{
SIGHT_ERROR("Error while registering : " << err);
}
}
//------------------------------------------------------------------------------
void automatic_registration::stop_registration()
{
if((m_pimpl->m_optimizer != nullptr) && (m_pimpl->m_registrator != nullptr))
{
// Stop registration by removing all levels.
m_pimpl->m_registrator->SetNumberOfLevels(0);
m_pimpl->m_optimizer->StopOptimization();
}
}
//------------------------------------------------------------------------------
automatic_registration::real_t automatic_registration::get_current_metric_value() const
{
SIGHT_ASSERT("No optimization process running.", m_pimpl->m_optimizer);
return m_pimpl->m_optimizer->GetCurrentMetricValue();
}
//------------------------------------------------------------------------------
const automatic_registration::optimizer_t::ParametersType& automatic_registration::get_current_parameters() const
{
SIGHT_ASSERT("No optimization process running.", m_pimpl->m_optimizer);
return m_pimpl->m_optimizer->GetCurrentPosition();
}
//------------------------------------------------------------------------------
automatic_registration::real_t automatic_registration::get_relaxation_factor() const
{
SIGHT_ASSERT("No optimization process running.", m_pimpl->m_optimizer);
return m_pimpl->m_optimizer->GetRelaxationFactor();
}
//------------------------------------------------------------------------------
automatic_registration::real_t automatic_registration::get_learning_rate() const
{
SIGHT_ASSERT("No optimization process running.", m_pimpl->m_optimizer);
return m_pimpl->m_optimizer->GetLearningRate();
}
//------------------------------------------------------------------------------
automatic_registration::real_t automatic_registration::get_gradient_magnitude_tolerance() const
{
SIGHT_ASSERT("No optimization process running.", m_pimpl->m_optimizer);
return m_pimpl->m_optimizer->GetGradientMagnitudeTolerance();
}
//------------------------------------------------------------------------------
itk::SizeValueType automatic_registration::get_current_iteration() const
{
SIGHT_ASSERT("No optimization process running.", m_pimpl->m_optimizer);
return m_pimpl->m_optimizer->GetCurrentIteration();
}
//------------------------------------------------------------------------------
itk::SizeValueType filter::image::automatic_registration::get_current_level() const
{
SIGHT_ASSERT("No registration process running.", m_pimpl->m_registrator);
return m_pimpl->m_registrator->GetCurrentLevel();
}
//------------------------------------------------------------------------------
void automatic_registration::get_current_matrix(const data::matrix4::sptr& _trf) const
{
SIGHT_ASSERT("No registration process running.", m_pimpl->m_registrator);
const auto* itk_matrix = m_pimpl->m_registrator->GetTransform();
m_pimpl->convertfrom_eigen_matrix(itk_matrix, _trf);
}
//------------------------------------------------------------------------------
} // namespace sight::filter::image
|