1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
/************************************************************************
*
* Copyright (C) 2020-2025 IRCAD France
* Copyright (C) 2020 IHU Strasbourg
*
* This file is part of Sight.
*
* Sight is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Sight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Sight. If not, see <https://www.gnu.org/licenses/>.
*
***********************************************************************/
#include "filter/image/image_extruder.hpp"
#include <core/tools/dispatcher.hpp>
#include <geometry/data/image.hpp>
#include <geometry/data/matrix4.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/matrix.hpp>
#include <glm/vec2.hpp>
#define GLM_ENABLE_EXPERIMENTAL
#include <glm/gtx/intersect.hpp>
#undef GLM_ENABLE_EXPERIMENTAL
#include <cmath>
// Usual nolint comment does not work for an unknown reason (clang 17)
// cspell:ignore Wunknown
#ifdef __clang_analyzer__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunknown-pragmas"
#endif
namespace sight::filter::image
{
//------------------------------------------------------------------------------
void image_extruder::extrude(
const data::image::sptr& _image,
const data::mesh::csptr& _mesh,
const data::matrix4::csptr& _transform
)
{
SIGHT_ASSERT("The image must be in 3 dimensions", _image->num_dimensions() == 3);
SIGHT_ASSERT("Spacing should be set", _image->spacing() != data::image::spacing_t({0., 0., 0.}));
parameters param;
param.m_image = _image;
param.m_mesh = _mesh;
param.m_transform = _transform;
// We use a dispatcher because we can't retrieve the image type without a dynamic_t.
core::type type = _image->type();
core::tools::dispatcher<core::tools::supported_dispatcher_types, image_extruder>::invoke(type, param);
}
//------------------------------------------------------------------------------
template<typename IMAGE_TYPE>
void image_extruder::operator()(parameters& _param)
{
auto transform = glm::identity<glm::mat4>();
if(_param.m_transform)
{
// Apply the inverse matrix of the image to each point of the mesh
const glm::dmat4x4 mat = sight::geometry::data::to_glm_mat(*_param.m_transform);
transform = glm::inverse(mat);
}
// Creates triangles and bounding box of the mesh.
std::int64_t index_x_beg = std::numeric_limits<std::int64_t>::max();
std::int64_t index_x_end = std::numeric_limits<std::int64_t>::min();
std::int64_t index_y_beg = std::numeric_limits<std::int64_t>::max();
std::int64_t index_y_end = std::numeric_limits<std::int64_t>::min();
std::int64_t index_z_beg = std::numeric_limits<std::int64_t>::max();
std::int64_t index_z_end = std::numeric_limits<std::int64_t>::min();
std::list<triangle> triangles;
const auto add_triangle =
[&](const data::iterator::point::xyz& _pa,
const data::iterator::point::xyz& _pb,
const data::iterator::point::xyz& _pc,
const glm::mat4 _transform)
{
const float ax = _pa.x;
const float ay = _pa.y;
const float az = _pa.z;
const float bx = _pb.x;
const float by = _pb.y;
const float bz = _pb.z;
const float cx = _pc.x;
const float cy = _pc.y;
const float cz = _pc.z;
const glm::vec4 tri_a = _transform * glm::vec4(ax, ay, az, 1.0);
const glm::vec4 tri_b = _transform * glm::vec4(bx, by, bz, 1.0);
const glm::vec4 tri_c = _transform * glm::vec4(cx, cy, cz, 1.0);
triangles.push_back(triangle {tri_a, tri_b, tri_c});
using sight::geometry::data::world_to_image;
const auto a = world_to_image<std::array<std::int64_t, 3> >(*_param.m_image, tri_a, false, false);
const auto b = world_to_image<std::array<std::int64_t, 3> >(*_param.m_image, tri_b, false, false);
const auto c = world_to_image<std::array<std::int64_t, 3> >(*_param.m_image, tri_c, false, false);
index_x_beg = std::min(index_x_beg, std::min(a[0], std::min(b[0], c[0])));
index_y_beg = std::min(index_y_beg, std::min(a[1], std::min(b[1], c[1])));
index_z_beg = std::min(index_z_beg, std::min(a[2], std::min(b[2], c[2])));
index_x_end = std::max(index_x_end, std::max(a[0], std::max(b[0], c[0])));
index_y_end = std::max(index_y_end, std::max(a[1], std::max(b[1], c[1])));
index_z_end = std::max(index_z_end, std::max(a[2], std::max(b[2], c[2])));
};
auto it_point = _param.m_mesh->cbegin<data::iterator::point::xyz>();
const auto cell_size = _param.m_mesh->cell_size();
if(cell_size < 3)
{
SIGHT_FATAL("The extrusion works only with meshes of at least three points per cells");
}
else if(cell_size == 3)
{
for(const auto& cell : _param.m_mesh->crange<data::iterator::cell::triangle>())
{
const auto& point_a = it_point + cell.pt[0];
const auto& point_b = it_point + cell.pt[1];
const auto& point_c = it_point + cell.pt[2];
add_triangle(*point_a, *point_b, *point_c, transform);
}
}
else if(cell_size == 4)
{
for(const auto& cell : _param.m_mesh->crange<data::iterator::cell::quad>())
{
const auto& point_a = it_point + cell.pt[0];
const auto& point_b = it_point + cell.pt[1];
const auto& point_c = it_point + cell.pt[2];
const auto& point_d = it_point + cell.pt[3];
add_triangle(*point_a, *point_b, *point_c, transform);
add_triangle(*point_c, *point_d, *point_a, transform);
}
}
else
{
SIGHT_FATAL("The extrusion works only with meshes of at most four points per cells");
}
// Get images.
const auto dump_lock = _param.m_image->dump_lock();
const auto& size = _param.m_image->size();
index_x_beg = std::clamp(index_x_beg, std::int64_t(0), std::int64_t(size[0]));
index_x_end = std::clamp(index_x_end, std::int64_t(0), std::int64_t(size[0]));
index_y_beg = std::clamp(index_y_beg, std::int64_t(0), std::int64_t(size[1]));
index_y_end = std::clamp(index_y_end, std::int64_t(0), std::int64_t(size[1]));
index_z_beg = std::clamp(index_z_beg, std::int64_t(0), std::int64_t(size[2]));
index_z_end = std::clamp(index_z_end, std::int64_t(0), std::int64_t(size[2]));
// Check if the ray origin is inside or outside of the mesh and return all found intersections.
const auto get_intersections =
[&triangles](const glm::vec3& _ray_orig, const glm::vec3& _ray_dir,
std::vector<glm::vec3>& _intersections) -> bool
{
bool inside = false;
for(const triangle& tri : triangles)
{
glm::vec2 pos;
float distance = NAN;
if(glm::intersectRayTriangle(
_ray_orig,
_ray_dir,
tri.a,
tri.b,
tri.c,
pos,
distance
))
{
if(distance >= 0.F)
{
const glm::vec3 cross = _ray_orig + _ray_dir * distance;
// Sometime, the ray it the edge of a triangle, we need to take it into account only one time.
if(std::find(_intersections.begin(), _intersections.end(), cross) == _intersections.end())
{
_intersections.push_back(cross);
inside = !inside;
}
}
}
}
// Sort all intersections from nearest to farthest from the origin.
std::sort(
_intersections.begin(),
_intersections.end(),
[&](const glm::vec3& _a,
const glm::vec3& _b)
{
return glm::distance(_ray_orig, _a) < glm::distance(_ray_orig, _b);
});
return inside;
};
// Check if each voxel are in the mesh and sets the mask to zero.
const IMAGE_TYPE empty_value = 0;
using index_t = typename data::image::index_t;
const auto orientation = _param.m_image->orientation();
const glm::vec3 orientation_x(orientation[0], orientation[3], orientation[6]);
const glm::vec3 orientation_y(orientation[1], orientation[4], orientation[7]);
const glm::vec3 orientation_z(orientation[2], orientation[5], orientation[8]);
const auto image_to_world_trf = sight::geometry::data::image_to_world_transform<glm::mat4>(*_param.m_image);
const auto half = glm::vec4(0.5, 0.5, 0.5, 0.);
// We loop over two dimensions out of three, for each voxel, we launch a ray on the third dimension and get a
// list of intersections. After that, we iterate over the voxel line on the third dimension and with the
// intersections list, we know if the voxel is inside or outside of the mesh. So to improve performance, we need
// to launch the minimum number of rays. The better way is to create three loops and call the right one.
const auto z_loop =
[&]()
{
// NOLINTNEXTLINE(clang-diagnostic-unknown-pragmas)
#pragma omp parallel for
for(std::int64_t x = index_x_beg ; x < index_x_end ; ++x)
{
for(std::int64_t y = index_y_beg ; y < index_y_end ; ++y)
{
// For each voxel of the slice, launch a ray to the third axis.
const auto ray_orig = glm::xyz(image_to_world_trf * (glm::vec4(x, y, index_z_beg, 1.0) + half));
// Check if the first voxel is inside or not, and stores all intersections.
std::vector<glm::vec3> intersections;
bool inside = get_intersections(ray_orig, orientation_z, intersections);
// If there is no intersection, the entire line is visible.
if(!intersections.empty())
{
// Iterate over the "ray" and check intersections to know if the voxel is inside
// or outside of the mesh.
auto next_intersection = intersections.begin();
const auto intersection_end = intersections.end();
for(std::int64_t z = index_z_beg ; z < index_z_end ; ++z)
{
const auto voxel = glm::xyz(image_to_world_trf * (glm::vec4(x, y, z, 1.0) + half));
// While the current ray position is near to the next intersection, set the
// voxel to the value if
// it's needed.
if(glm::distance(ray_orig, voxel) < glm::distance(ray_orig, *next_intersection))
{
if(inside)
{
_param.m_image->at<IMAGE_TYPE>(
index_t(x),
index_t(y),
index_t(z)
) = empty_value;
}
}
// Once the intersection reach, get the next one.
else
{
inside = !inside;
++next_intersection;
// Once we found the last intersection, finish the image line.
if(next_intersection == intersection_end)
{
if(inside)
{
for(std::int64_t zp = z ; zp < index_z_end ; ++zp)
{
_param.m_image->at<IMAGE_TYPE>(
index_t(x),
index_t(y),
index_t(zp)
) = empty_value;
}
}
break;
}
}
}
}
}
}
};
const auto y_loop =
[&]()
{
// NOLINTNEXTLINE(clang-diagnostic-unknown-pragmas)
#pragma omp parallel for
for(std::int64_t x = index_x_beg ; x < index_x_end ; ++x)
{
for(std::int64_t z = index_z_beg ; z < index_z_end ; ++z)
{
const auto ray_orig = glm::xyz(image_to_world_trf * (glm::vec4(x, index_y_beg, z, 1.0) + half));
std::vector<glm::vec3> intersections;
bool inside = get_intersections(ray_orig, orientation_y, intersections);
if(!intersections.empty())
{
auto next_intersection = intersections.begin();
const auto intersection_end = intersections.end();
for(std::int64_t y = index_y_beg ; y < index_y_end ; ++y)
{
const auto voxel = glm::xyz(image_to_world_trf * (glm::vec4(x, y, z, 1.0) + half));
if(glm::distance(ray_orig, voxel) < glm::distance(ray_orig, *next_intersection))
{
if(inside)
{
_param.m_image->at<IMAGE_TYPE>(
index_t(x),
index_t(y),
index_t(z)
) = empty_value;
}
}
else
{
inside = !inside;
++next_intersection;
if(next_intersection == intersection_end)
{
if(inside)
{
for(std::int64_t yp = y ; yp < index_y_end ; ++yp)
{
_param.m_image->at<IMAGE_TYPE>(
index_t(x),
index_t(yp),
index_t(z)
) = empty_value;
}
}
break;
}
}
}
}
}
}
};
const auto x_loop =
[&]()
{
// NOLINTNEXTLINE(clang-diagnostic-unknown-pragmas)
#pragma omp parallel for
for(std::int64_t y = index_y_beg ; y < index_y_end ; ++y)
{
for(std::int64_t z = index_z_beg ; z < index_z_end ; ++z)
{
const auto ray_orig = glm::xyz(image_to_world_trf * (glm::vec4(index_x_beg, y, z, 1.0) + half));
std::vector<glm::vec3> intersections;
bool inside = get_intersections(ray_orig, orientation_x, intersections);
if(!intersections.empty())
{
auto next_intersection = intersections.begin();
const auto intersection_end = intersections.end();
for(std::int64_t x = index_x_beg ; x < index_x_end ; ++x)
{
const auto voxel = glm::xyz(image_to_world_trf * (glm::vec4(x, y, z, 1.0) + half));
if(glm::distance(ray_orig, voxel) < glm::distance(ray_orig, *next_intersection))
{
if(inside)
{
_param.m_image->at<IMAGE_TYPE>(
index_t(x),
index_t(y),
index_t(z)
) = empty_value;
}
}
else
{
inside = !inside;
++next_intersection;
if(next_intersection == intersection_end)
{
if(inside)
{
for(std::int64_t xp = x ; xp < index_x_end ; ++xp)
{
_param.m_image->at<IMAGE_TYPE>(
index_t(xp),
index_t(y),
index_t(z)
) = empty_value;
}
}
break;
}
}
}
}
}
}
};
// Get the smallest dimension in terms of voxel to loop over the minimum of voxel.
std::uint8_t axis = 2;
auto voxel = std::size_t((index_x_end - index_x_beg) * (index_y_end - index_y_beg));
auto voxel_xz = std::size_t((index_x_end - index_x_beg) * (index_z_end - index_z_beg));
auto voxel_yz = std::size_t((index_y_end - index_y_beg) * (index_z_end - index_z_beg));
if(voxel_xz < voxel)
{
axis = 1;
voxel = voxel_xz;
}
if(voxel_yz < voxel)
{
axis = 0;
voxel = voxel_yz;
}
// Call the right loop.
switch(axis)
{
case 2:
z_loop();
break;
case 1:
y_loop();
break;
case 0:
x_loop();
break;
default:
SIGHT_ASSERT("Unreachable code", false);
}
}
} // namespace sight::filter::image
#ifdef __clang_analyzer__
#pragma clang diagnostic pop
#endif
|