1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
/************************************************************************
*
* Copyright (C) 2017-2023 IRCAD France
* Copyright (C) 2017-2021 IHU Strasbourg
*
* This file is part of Sight.
*
* Sight is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Sight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Sight. If not, see <https://www.gnu.org/licenses/>.
*
***********************************************************************/
#include "masker.hpp"
#include <core/spy_log.hpp>
namespace sight::filter::vision
{
// Define the morphological element used
const cv::Mat masker::MORPHELEMENT =
cv::getStructuringElement(
masker::MORPHTYPE,
cv::Size(
2 * masker::MORPHSIZE + 1,
2 * masker::MORPHSIZE + 1
),
cv::Point(masker::MORPHSIZE, masker::MORPHSIZE)
);
//------------------------------------------------------------------------------
masker::masker(const col_space& _c, const detection_mode& _d) :
m_colorspace(_c),
m_detectionmode(_d)
{
}
//------------------------------------------------------------------------------
masker::~masker()
= default;
//------------------------------------------------------------------------------
void masker::train_foreground_model(
const cv::Mat& _rgb_img,
const cv::Mat& _selection_mask,
const unsigned int _num_clusters,
const double _noise
)
{
cv::Mat rgb_img_copy;
_rgb_img.copyTo(rgb_img_copy, _selection_mask);
// This step put some additive gaussian noise in the image.
// It allows to perform a more robust learning step by providing different value close to the pixel values.
cv::Mat gaussian_noise = cv::Mat(rgb_img_copy.size(), _rgb_img.type());
cv::randn(gaussian_noise, 0, _noise);
cv::addWeighted(rgb_img_copy, 1.0, gaussian_noise, 1.0, 0.0, rgb_img_copy);
const cv::Mat s = sight::filter::vision::masker::make_training_samples(
rgb_img_copy,
_selection_mask,
this->m_colorspace
);
this->m_foreground_model = sight::filter::vision::masker::train_model_from_samples(s, _num_clusters);
}
//------------------------------------------------------------------------------
void masker::train_background_model(
const cv::Mat& _rgb_img,
const cv::Mat& _selection_mask,
const unsigned int _num_clusters
)
{
const cv::Mat s = sight::filter::vision::masker::make_training_samples(_rgb_img, _selection_mask, m_colorspace);
m_background_model = sight::filter::vision::masker::train_model_from_samples(s, _num_clusters);
}
//------------------------------------------------------------------------------
cv::Mat masker::make_mask(const cv::Mat& _test_img, const cv::Size& _down_size, cv::InputArray _test_img_mask) const
{
SIGHT_ASSERT("Threshold is not set", m_has_set_threshold);
cv::Mat t2;
cv::Mat test_img_mask2;
// OpenCV check if the downSize is different from the testImg size. If not, a copy is just performed.
cv::resize(_test_img, t2, _down_size);
cv::Mat m;
if(!_test_img_mask.empty())
{
cv::resize(_test_img_mask.getMat(), test_img_mask2, _down_size);
}
const cv::Mat i = convert_colour_space(t2, m_colorspace);
switch(m_detectionmode)
{
case fg_ll:
{
cv::Mat fg_response = make_response_image(i, m_foreground_model, test_img_mask2);
cv::threshold(fg_response, m, m_threshold, 255, cv::THRESH_BINARY);
break;
}
case bg_ll:
{
cv::Mat bg_response = make_response_image(i, m_background_model, test_img_mask2);
cv::threshold(bg_response, m, m_threshold, 255, cv::THRESH_BINARY_INV);
break;
}
case ll_ratio:
{
cv::Mat fg_response = make_response_image(i, m_foreground_model, test_img_mask2);
cv::Mat bg_response = make_response_image(i, m_background_model, test_img_mask2);
cv::threshold(fg_response - bg_response, m, m_threshold, 255, cv::THRESH_BINARY);
break;
}
}
m.convertTo(m, CV_8UC1);
//get mask back to original size:
cv::resize(m, m, _test_img.size());
cv::threshold(m, m, 125, 255, cv::THRESH_BINARY);
//eliminate mask holes with erosion/dilation
cv::Mat filtered_mask1 = remove_mask_holes(m, 2, _test_img_mask);
return filtered_mask1;
}
//------------------------------------------------------------------------------
void masker::set_threshold(double _t)
{
m_threshold = _t;
m_has_set_threshold = true;
}
//------------------------------------------------------------------------------
bool masker::is_model_learned()
{
switch(m_detectionmode)
{
case fg_ll:
return !m_foreground_model.empty();
case bg_ll:
return !m_background_model.empty();
default: // LLRatio
return !m_foreground_model.empty() && !m_background_model.empty();
}
}
//------------------------------------------------------------------------------
cv::Mat masker::make_response_image(
const cv::Mat& _i,
const cv::Ptr<cv::ml::EM> _model,
cv::Mat& _in_img_mask
)
{
const int cn = _i.channels();
const int w = _i.cols;
const bool uses_filter_mask = !_in_img_mask.empty();
cv::Mat output = cv::Mat::zeros(_i.rows, _i.cols, CV_32FC1);
const uchar* pixel_ptr = static_cast<uchar*>(_i.data);
// Parallelization of pixel prediction
cv::parallel_for_(
cv::Range(0, _i.rows * _i.cols),
[&](const cv::Range& _range)
{
cv::Mat sample = cv::Mat::zeros(cn, 1, CV_32FC1);
for(int r = _range.start ; r < _range.end ; ++r)
{
const int i = r / w;
const int j = r % w;
if(uses_filter_mask)
{
if(_in_img_mask.at<uchar>(i, j) == 0)
{
continue;
}
}
for(int channel_idx = 0 ; channel_idx < cn ; ++channel_idx)
{
sample.at<float>(channel_idx) = pixel_ptr[i * w * cn + j * cn + channel_idx];
}
output.at<float>(i, j) = static_cast<float>(_model->predict2(sample, cv::noArray())[0]);
}
});
return output;
}
//------------------------------------------------------------------------------
cv::Mat masker::convert_colour_space(const cv::Mat& _src, const col_space& _c)
{
cv::Mat output;
switch(_c)
{
case bgr:
_src.copyTo(output);
break;
case h_sv:
{
cv::cvtColor(_src, output, cv::COLOR_BGR2HSV);
std::array<cv::Mat, 3> s; //destination array
cv::split(output, s); //split source
std::vector<cv::Mat> array_to_merge;
array_to_merge.push_back(s[0]);
array_to_merge.push_back(s[1]);
array_to_merge.push_back(s[1]); //we remove v channel for illumination invariance. This is done here by
// duplicating the S channel
cv::merge(array_to_merge, output);
break;
}
case l_ab:
{
cv::cvtColor(_src, output, cv::COLOR_BGR2Lab);
std::array<cv::Mat, 3> s; //destination array
cv::split(output, s); //split source
std::vector<cv::Mat> array_to_merge;
array_to_merge.push_back(s[1]);
array_to_merge.push_back(s[2]);
array_to_merge.push_back(s[1]);
cv::merge(array_to_merge, output);
break;
}
case y_cr_cb:
{
cv::cvtColor(_src, output, cv::COLOR_BGR2YCrCb);
std::array<cv::Mat, 3> s; //destination array
cv::split(output, s); //split source
std::vector<cv::Mat> array_to_merge;
array_to_merge.push_back(s[1]);
array_to_merge.push_back(s[2]);
array_to_merge.push_back(s[1]);
cv::merge(array_to_merge, output);
break;
}
}
return output;
}
//------------------------------------------------------------------------------
cv::Ptr<cv::ml::EM> masker::train_model_from_samples(const cv::Mat& _samples, const unsigned int _num_clusters)
{
cv::Ptr<cv::ml::EM> m = cv::ml::EM::create();
m->setClustersNumber(static_cast<int>(_num_clusters));
m->setCovarianceMatrixType(cv::ml::EM::COV_MAT_SPHERICAL);
m->setTermCriteria(cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 300, 0.1));
m->trainEM(_samples, cv::noArray(), cv::noArray(), cv::noArray());
return m;
}
//------------------------------------------------------------------------------
cv::Mat masker::make_training_samples(const cv::Mat& _t, const cv::Mat& _mask, const col_space& _c)
{
cv::Mat train_img = masker::convert_colour_space(_t, _c);
const int cn = train_img.channels();
// Get the N non zero coordinates inside the mask
cv::Mat non_zero_coordinates;
cv::findNonZero(_mask, non_zero_coordinates);
// Create a N*cn matrix to store the value of each non zero pixels in a linear matrix
cv::Mat samples(non_zero_coordinates.rows, cn, CV_64FC1);
// Fill it by copying from the original image to the linear one
cv::parallel_for_(
cv::Range(0, non_zero_coordinates.rows),
[&](const cv::Range& _range)
{
for(int r = _range.start ; r < _range.end ; ++r)
{
cv::Point position = non_zero_coordinates.at<cv::Point>(r);
// Implicit cast from Vec3b to Vec3d avoiding static_cast<float> in next for loop
cv::Vec3d pixel = train_img.at<cv::Vec3b>(position);
for(int channel_idx = 0 ; channel_idx < cn ; ++channel_idx)
{
samples.at<double>(r, channel_idx) = pixel[channel_idx];
}
}
});
return samples;
}
//------------------------------------------------------------------------------
cv::Mat masker::remove_mask_holes(const cv::Mat& _m, std::size_t _n, cv::InputArray _inside_mask)
{
cv::Mat mask;
_m.copyTo(mask);
cv::Mat k = MORPHELEMENT.clone();
k.setTo(1);
// Perform some erosion/dilatation to remove small areas
for(std::size_t i = 0 ; i < _n ; i++)
{
cv::erode(mask, mask, k);
}
for(std::size_t i = 0 ; i < _n ; i++)
{
cv::dilate(mask, mask, k);
}
// Perform a last opening to smooth the edge of the final mask
cv::morphologyEx(mask, mask, cv::MORPH_OPEN, MORPHELEMENT);
cv::dilate(mask, mask, MORPHELEMENT);
// Get connected components from the mask and label them
cv::Mat labels;
int nb_labels = cv::connectedComponents(mask, labels, 8, CV_32S);
// Erode the original mask
cv::Mat inside_mask_eroded;
cv::erode(_inside_mask, inside_mask_eroded, k);
// Perform a diff to get areas connected to the border of the mask
cv::Mat diff = mask - inside_mask_eroded;
cv::Mat res = cv::Mat::zeros(mask.rows, mask.cols, mask.type());
// Browse all labels
cv::parallel_for_(
cv::Range(0, nb_labels),
[&](const cv::Range& _range)
{
for(int r = _range.start ; r < _range.end ; ++r)
{
cv::Mat tmp = cv::Mat::zeros(mask.rows, mask.cols, mask.type());
// Get the binary image corresponding to the current label
cv::Mat bin_tmp = (labels == r);
// Do a 'and' between the diff mask and the current label mask
cv::bitwise_and(diff, bin_tmp, tmp);
// If the 'and' is not empty, it means that it's an area connected to the border of the insideMask
// Otherwise, it's an unconnected small area inside the mask
if(cv::countNonZero(tmp) != 0)
{
res.setTo(255, bin_tmp);
}
}
});
return res;
}
//------------------------------------------------------------------------------
} // namespace sight::filter::vision
|