1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
|
/************************************************************************
*
* Copyright (C) 2022-2025 IRCAD France
*
* This file is part of Sight.
*
* Sight is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Sight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Sight. If not, see <https://www.gnu.org/licenses/>.
*
***********************************************************************/
#include "synchronizer.hpp"
#include <core/com/signal.hxx>
#include <core/com/slots.hxx>
#include <core/ptree.hpp>
#include <data/image_series.hpp>
namespace sight::module::sync
{
// ----------------------------------------------------------------------------
synchronizer::synchronizer()
{
new_slot(slots::RESET_TIMELINE, &synchronizer::reset_timeline, this);
new_slot(slots::TRY_SYNC, &synchronizer::try_sync, this);
new_slot(slots::REQUEST_SYNC, &synchronizer::request_sync, this);
new_slot(slots::SET_FRAME_BINDING, &synchronizer::set_frame_binding, this);
new_slot(slots::SET_MATRIX_BINDING, &synchronizer::set_matrix_binding, this);
new_slot(slots::SET_DELAY, &synchronizer::set_delay, this);
new_signal<signals::timestamp_t>(signals::SYNCHRONIZATION_DONE);
new_signal<signals::int_t>(signals::FRAME_SYNCHRONIZED);
new_signal<signals::int_t>(signals::FRAME_UNSYNCHRONIZED);
new_signal<signals::int_t>(signals::MATRIX_SYNCHRONIZED);
new_signal<signals::int_t>(signals::MATRIX_UNSYNCHRONIZED);
}
//-----------------------------------------------------------------------------
service::connections_t synchronizer::auto_connections() const
{
return {
{config_key::FRAMETL_INPUT, data::timeline::signals::CLEARED, slots::RESET_TIMELINE},
{config_key::MATRIXTL_INPUT, data::timeline::signals::CLEARED, slots::RESET_TIMELINE},
{config_key::FRAMETL_INPUT, data::timeline::signals::PUSHED, slots::TRY_SYNC},
{config_key::MATRIXTL_INPUT, data::timeline::signals::PUSHED, slots::TRY_SYNC}
};
}
// ----------------------------------------------------------------------------
void synchronizer::configuring()
{
const auto cfg = this->get_config();
m_legacy_auto_sync = cfg.get<bool>(config_key::LEGACY_AUTO_SYNCH, m_legacy_auto_sync);
m_tolerance = cfg.get<core::clock::type>(config_key::TOLERANCE, m_tolerance);
}
//-----------------------------------------------------------------------------
void synchronizer::starting()
{
const config_t& configuration = this->get_config();
// Iterates on all "in"
for(const auto& in_config : boost::make_iterator_range(configuration.equal_range("in")))
{
if(const auto optional_group = in_config.second.get_optional<std::string>(config_key::GROUP);
optional_group
&& (*optional_group == config_key::FRAMETL_INPUT || *optional_group == config_key::MATRIXTL_INPUT))
{
const auto& group = *optional_group;
// Iterates on all "key" in the "in"
for(const auto& key_config : boost::make_iterator_range(in_config.second.equal_range(config_key::KEY)))
{
int delay = 0;
// Get the delay, if any
if(const auto optional_delay = key_config.second.get_optional<std::string>(config_key::TL_DELAY);
optional_delay)
{
auto string_delay = *optional_delay;
// Try to convert it to a string serializable object
// This allows to handle the case where the delay is defined with a property
/// @note This may need to be improved in the future to handle all attributes as properties
if(const auto object =
std::dynamic_pointer_cast<data::string_serializable>(core::id::get_object(string_delay));
object)
{
string_delay = object->to_string();
}
// Parse the string to an integer
try
{
delay = std::stoi(string_delay);
}
catch(...)
{
SIGHT_ERROR(string_delay << " cannot be converted to an integer. 0 will be used as delay.");
}
if(delay < 0)
{
SIGHT_ERROR("Synchronization delay should be positive. 0 will be used as delay.");
delay = 0;
}
}
if(group == config_key::FRAMETL_INPUT)
{
m_frame_tl_delay.push_back(delay);
}
else if(group == config_key::MATRIXTL_INPUT)
{
m_matrix_tl_delay.push_back(delay);
}
}
}
}
const auto inouts_config = configuration.equal_range("inout");
for(auto it_config = inouts_config.first ; it_config != inouts_config.second ; ++it_config)
{
const std::string group = it_config->second.get<std::string>("<xmlattr>.group", "");
if(group == config_key::FRAME_INOUT)
{
std::size_t frame_index = 0;
const auto key_config = it_config->second.equal_range(config_key::KEY);
for(auto frame_out_var_config = key_config.first ;
frame_out_var_config != key_config.second ;
++frame_out_var_config, ++frame_index)
{
const std::size_t tl_index = frame_out_var_config->second.get<std::size_t>(
config_key::OUTVAR_TL_INDEX,
0
);
const unsigned int element_index = frame_out_var_config->second.get<unsigned int>(
config_key::OUTVAR_ELEMENT_INDEX,
0
);
const bool send_status = frame_out_var_config->second.get<bool>(
config_key::OUTVAR_SEND_STATUS,
false
);
m_frame_out_var_parameters.emplace_back(
out_var_parameter(
{
frame_index,
tl_index,
element_index,
false,
send_status,
0
})
);
}
}
else if(group == config_key::MATRIX_INOUT)
{
std::size_t matrix_index = 0;
const auto key_config = it_config->second.equal_range(config_key::KEY);
for(auto matrix_out_var_config = key_config.first ;
matrix_out_var_config != key_config.second ;
++matrix_out_var_config, ++matrix_index)
{
const std::size_t tl_index = matrix_out_var_config->second.get<std::size_t>(
config_key::OUTVAR_TL_INDEX,
0
);
const unsigned int element_index = matrix_out_var_config->second.get<unsigned int>(
config_key::OUTVAR_ELEMENT_INDEX,
0
);
const bool send_status = matrix_out_var_config->second.get<bool>(
config_key::OUTVAR_SEND_STATUS,
false
);
m_matrix_out_var_parameters.emplace_back(
out_var_parameter(
{
matrix_index,
tl_index,
element_index,
false,
send_status,
0
})
);
}
}
}
SIGHT_ASSERT("No valid worker for timer.", this->worker());
if(m_legacy_auto_sync)
{
m_worker = sight::core::thread::worker::make();
m_timer = m_worker->create_timer();
const auto duration = std::chrono::milliseconds(m_time_step);
m_timer->set_function([this](auto&& ...){synchronize();});
m_timer->set_duration(duration);
m_timer->start();
}
}
// ----------------------------------------------------------------------------
void synchronizer::updating()
{
this->synchronize();
}
// ----------------------------------------------------------------------------
void synchronizer::stopping()
{
if(m_legacy_auto_sync)
{
m_timer->stop();
m_timer.reset();
m_worker->stop();
m_worker.reset();
}
}
// ----------------------------------------------------------------------------
void synchronizer::synchronize()
{
// do the synchronisation
// step 1: get the TL implicated in the synchronization
std::vector<std::size_t> frame_tl_populated_index;
std::vector<core::clock::type> frame_tl_populated_timestamp;
for(std::size_t i = 0 ; i != m_frame_tls.size() ; ++i)
{
const auto tl = m_frame_tls[i].lock();
// if the tl is null, ignore it
if(tl)
{
// get the tl new timestamp
const auto tl_newest_timestamp = tl->get_newer_timestamp();
//treat only the tl with some data inside.
if(tl_newest_timestamp > 0)
{
frame_tl_populated_timestamp.push_back(tl_newest_timestamp);
frame_tl_populated_index.push_back(i);
}
}
}
std::vector<std::size_t> matrix_tl_populated_index;
std::vector<core::clock::type> matrix_tl_populated_timestamp;
for(std::size_t i = 0 ; i != m_matrix_tl_s.size() ; ++i)
{
const auto tl = m_matrix_tl_s[i].lock();
if(tl)
{
// get the tl new timestamp
const auto tl_newest_timestamp = tl->get_newer_timestamp();
//treat only the tl with some data inside.
if(tl_newest_timestamp > 0)
{
matrix_tl_populated_timestamp.push_back(tl_newest_timestamp);
matrix_tl_populated_index.push_back(i);
}
}
}
// step 2: find the synchronization timestamp
// Timestamp reference for the synchronization
const auto frame_tl_max_timestamp = frame_tl_populated_timestamp.empty() ? 0 : *(std::max_element(
frame_tl_populated_timestamp.
begin(),
frame_tl_populated_timestamp.
end()
));
const auto matrix_tl_max_timestamp = matrix_tl_populated_timestamp.empty() ? 0 : *(std::max_element(
matrix_tl_populated_timestamp
.begin(),
matrix_tl_populated_timestamp
.end()
));
core::clock::type max_synchronization_timestamp = std::max(
frame_tl_max_timestamp,
matrix_tl_max_timestamp
);
// This gives the most recent timestamp provided in a TL.
// However the max is not enough, as some timelines have there own maxTimestamp < global maxTimestamp.
// Using the global max, will imply that only the most recent TL can be properly synchronized.
// To cover this, the algorithm will find every TL which are in the tolerance range from the max, and will take the
// minimum.
// This should allow a synchronization around a reference timestamp which is up to date, while being consensual
// over the populated TL.
if(max_synchronization_timestamp == 0)
{
// Nothing to synchronize, print a debug message
SIGHT_DEBUG("skip sync, because there is nothing to sync");
this->signal<signals::timestamp_t>(signals::SYNCHRONIZATION_DONE)->async_emit(max_synchronization_timestamp);
return;
}
core::clock::type synchronization_timestamp = max_synchronization_timestamp;
std::vector<std::size_t> frame_tl_to_synch_index;
for(std::size_t i = 0 ; i < frame_tl_populated_timestamp.size() ; i++)
{
if(max_synchronization_timestamp - frame_tl_populated_timestamp[i] < m_tolerance)
{
synchronization_timestamp = std::min(synchronization_timestamp, frame_tl_populated_timestamp[i]);
frame_tl_to_synch_index.push_back(frame_tl_populated_index[i]);
}
}
std::vector<std::size_t> matrix_tl_to_synch_index;
for(std::size_t i = 0 ; i < matrix_tl_populated_timestamp.size() ; i++)
{
if(max_synchronization_timestamp - matrix_tl_populated_timestamp[i] < m_tolerance)
{
synchronization_timestamp = std::min(synchronization_timestamp, matrix_tl_populated_timestamp[i]);
matrix_tl_to_synch_index.push_back(matrix_tl_populated_index[i]);
}
}
//step 3: get the matrix + frame and populate the output
if(m_last_time_stamp != synchronization_timestamp)
{
m_last_time_stamp = synchronization_timestamp;
for(const std::size_t tl_index : frame_tl_to_synch_index)
{
copy_frame_from_tl_to_output(tl_index, synchronization_timestamp);
}
for(const std::size_t tl_index : matrix_tl_to_synch_index)
{
copy_matrix_from_tl_to_output(tl_index, synchronization_timestamp);
}
this->signal<signals::timestamp_t>(signals::SYNCHRONIZATION_DONE)->async_emit(synchronization_timestamp);
send_frame_var_status(frame_tl_to_synch_index);
send_matrix_var_status(matrix_tl_to_synch_index);
}
else
{
this->signal<signals::timestamp_t>(signals::SYNCHRONIZATION_DONE)->async_emit(synchronization_timestamp);
}
}
// ----------------------------------------------------------------------------
void synchronizer::try_sync()
{
if(m_locked)
{
return;
}
m_locked = true;
this->synchronize();
}
//------------------------------------------------------------------------------
void synchronizer::request_sync()
{
m_locked = false;
}
//------------------------------------------------------------------------------
std::vector<synchronizer::out_var_parameter> synchronizer::get_frame_tl_output_var_index(std::size_t _frame_tl_index)
{
std::vector<out_var_parameter> result;
for(auto outvar_param : m_frame_out_var_parameters)
{
if(outvar_param.tl_index == _frame_tl_index)
{
result.push_back(outvar_param);
}
}
return result;
}
// ----------------------------------------------------------------------------
void synchronizer::copy_frame_from_tl_to_output(
std::size_t _frame_tl_index,
core::clock::type _synchronization_timestamp
)
{
const auto frame_tl = m_frame_tls[_frame_tl_index].lock();
CSPTR(data::frame_tl::buffer_t) buffer =
frame_tl->get_closest_buffer(_synchronization_timestamp - m_frame_tl_delay[_frame_tl_index]);
data::image::size_t frame_tl_size = {frame_tl->get_width(), frame_tl->get_height(), 0};
std::size_t frame_tl_num_components = frame_tl->num_components();
core::type frame_tl_type = frame_tl->type();
enum data::frame_tl::pixel_format frame_tl_pixel_format = frame_tl->pixel_format();
if(buffer)
{
for(const out_var_parameter output_var_param : get_frame_tl_output_var_index(_frame_tl_index))
{
const std::size_t frame_out_index = output_var_param.out_var_index;
const unsigned int frame_tl_element_index = output_var_param.tl_element_index;
const auto frame = m_frames[frame_out_index].lock();
SIGHT_ASSERT("image with index '" << frame_out_index << "' does not exist", frame);
// Check if frame dimensions have changed
if(frame_tl_size != frame->size() || frame_tl_num_components != frame->num_components())
{
enum data::image::pixel_format_t format
{
data::image::undefined
};
switch(frame_tl_pixel_format)
{
case data::frame_tl::pixel_format::gray_scale:
format = data::image::gray_scale;
break;
case data::frame_tl::pixel_format::rgb:
format = data::image::rgb;
break;
case data::frame_tl::pixel_format::bgr:
format = data::image::bgr;
break;
case data::frame_tl::pixel_format::rgba:
format = data::image::rgba;
break;
case data::frame_tl::pixel_format::bgra:
format = data::image::bgra;
break;
default:
SIGHT_ERROR("FrameTL pixel format undefined");
return;
}
frame->resize(frame_tl_size, frame_tl_type, format);
const data::image::origin_t origin = {0., 0., 0.};
frame->set_origin(origin);
const data::image::spacing_t spacing = {1., 1., 1.};
frame->set_spacing(spacing);
frame->set_window_width({1.0});
frame->set_window_center({0.0});
}
// Set the time stamp on the image, if we set dicom image as output.
// The value must be set after the previous `if`, in order to prevent the data
// from being erased in case of resize (frameTLSize has a 0 value as 3 dimension)
// and thus prevent the timestamp to be lost
if(auto image_series =
std::dynamic_pointer_cast<sight::data::image_series>(frame.get_shared()); image_series)
{
image_series->set_frame_acquisition_time_point(_synchronization_timestamp, 0);
}
const std::uint8_t* frame_buff = &buffer->get_element(frame_tl_element_index);
auto iter = frame->begin<std::uint8_t>();
std::memcpy(&*iter, frame_buff, buffer->size());
// Notify
auto sig = frame->signal<data::image::buffer_modified_signal_t>(data::image::BUFFER_MODIFIED_SIG);
sig->async_emit();
}
}
else
{
SIGHT_ERROR(
"Buffer not found for timestamp " << _synchronization_timestamp << " in timeline 'frame" << _frame_tl_index
<< "'."
);
}
}
// ----------------------------------------------------------------------------
std::vector<synchronizer::out_var_parameter> synchronizer::get_matrix_tl_output_var_index(
std::size_t _matrix_tl_index
)
{
std::vector<out_var_parameter> result;
for(auto outvar_param : m_matrix_out_var_parameters)
{
if(outvar_param.tl_index == _matrix_tl_index)
{
result.push_back(outvar_param);
}
}
return result;
}
//------------------------------------------------------------------------------
void synchronizer::copy_matrix_from_tl_to_output(
std::size_t _matrix_tl_index,
core::clock::type _synchronization_timestamp
)
{
const auto matrix_tl = m_matrix_tl_s[_matrix_tl_index].lock();
CSPTR(data::matrix_tl::buffer_t) buffer =
matrix_tl->get_closest_buffer(_synchronization_timestamp - m_matrix_tl_delay[_matrix_tl_index]);
if(buffer)
{
for(const auto output_var_param : get_matrix_tl_output_var_index(_matrix_tl_index))
{
const std::size_t matrix_out_index = output_var_param.out_var_index;
const unsigned int matrix_tl_element_index = output_var_param.tl_element_index;
if(buffer->is_present(matrix_tl_element_index))
{
auto matrix = m_matrix[matrix_out_index].lock();
SIGHT_ASSERT("Matrix with indices '" << matrix_out_index << "' does not exist", matrix);
const auto& values = buffer->get_element(matrix_tl_element_index);
for(std::uint8_t i = 0 ; i < 4 ; ++i)
{
for(std::uint8_t j = 0 ; j < 4 ; ++j)
{
(*matrix)(i, j) = static_cast<double>(values[i * 4 + j]);
}
}
auto sig = matrix->signal<data::object::modified_signal_t>(data::object::MODIFIED_SIG);
sig->async_emit();
}
}
}
else
{
SIGHT_ERROR(
"Buffer not found for timestamp " << _synchronization_timestamp << " in timeline 'matrix"
<< _matrix_tl_index
<< "'."
);
}
}
//-----------------------------------------------------------------------------
void synchronizer::send_frame_var_status(const std::vector<std::size_t>& _synch_frame_tl_index)
{
for(auto& output_var_param : m_frame_out_var_parameters)
{
if(output_var_param.signal_synchronization)
{
//a signal should be send when synchronized/un-synchronized
bool is_synch =
std::find(
_synch_frame_tl_index.begin(),
_synch_frame_tl_index.end(),
output_var_param.tl_index
) != _synch_frame_tl_index.end();
if(output_var_param.is_synchronized != is_synch)
{
output_var_param.is_synchronized = is_synch;
const auto signal_key =
is_synch ? signals::FRAME_SYNCHRONIZED : signals::FRAME_UNSYNCHRONIZED;
this->signal<signals::int_t>(signal_key)->async_emit(
static_cast<int>(output_var_param.
out_var_index)
);
}
}
}
}
//-----------------------------------------------------------------------------
void synchronizer::send_matrix_var_status(const std::vector<std::size_t>& _synch_matrix_tl_index)
{
for(auto& output_var_param : m_matrix_out_var_parameters)
{
if(output_var_param.signal_synchronization)
{
//a signal should be send when synchronized/un-synchronized
bool is_synch =
std::find(
_synch_matrix_tl_index.begin(),
_synch_matrix_tl_index.end(),
output_var_param.tl_index
) != _synch_matrix_tl_index.end();
if(output_var_param.is_synchronized != is_synch)
{
output_var_param.is_synchronized = is_synch;
const auto signal_key =
is_synch ? signals::MATRIX_SYNCHRONIZED : signals::MATRIX_UNSYNCHRONIZED;
this->signal<signals::int_t>(signal_key)->async_emit(
static_cast<int>(output_var_param.
out_var_index)
);
}
}
}
}
// ----------------------------------------------------------------------------
void synchronizer::reset_timeline()
{
m_last_time_stamp = 0.;
}
//-----------------------------------------------------------------------------
void synchronizer::set_frame_binding(
std::size_t _tl_index,
unsigned int _element_index,
std::size_t _output_var_index
)
{
for(auto& output_var_param : m_frame_out_var_parameters)
{
if(output_var_param.out_var_index == _output_var_index)
{
output_var_param.tl_index = _tl_index;
output_var_param.tl_element_index = _element_index;
return;
}
}
SIGHT_WARN(
"The outputVar Index " << _output_var_index
<< " provided in the slot setFrameBinding has not been found."
);
}
//-----------------------------------------------------------------------------
void synchronizer::set_matrix_binding(
std::size_t _tl_index,
unsigned int _element_index,
std::size_t _output_var_index
)
{
for(auto& output_var_param : m_matrix_out_var_parameters)
{
if(output_var_param.out_var_index == _output_var_index)
{
output_var_param.tl_index = _tl_index;
output_var_param.tl_element_index = _element_index;
return;
}
}
SIGHT_WARN(
"The outputVar Index " << _output_var_index
<< " provided in the slot setMatrixBinding has not been found."
);
}
//-----------------------------------------------------------------------------
void synchronizer::set_delay(int _val, std::string _key)
{
if(_val < 0)
{
SIGHT_ERROR("The delay set for " << _key << " is negative. A positive value is expected");
return;
}
/**
* if the key received is of format frameDelay_i where i is a number,
* it means that the value is a delay set for the i th frameTL
* This works respectively for matrixDelay_i and matrixTL
*/
if(_key.starts_with(slots::FRAME_DELAY_PREFIX))
{
try
{
static constexpr size_t s_FRAME_DELAY_KEY_SIZE = std::size(slots::FRAME_DELAY_PREFIX);
const size_t frame_tl_index =
static_cast<size_t>(std::stoul(_key.substr(s_FRAME_DELAY_KEY_SIZE)));
if(frame_tl_index < m_frame_tl_delay.size())
{
m_frame_tl_delay[frame_tl_index] = _val;
}
else
{
SIGHT_ERROR(
"The frameTL index " << frame_tl_index
<< " provided in the update delay slot is out of bound"
);
}
}
catch(...)
{
SIGHT_ERROR("The frameTL index provided in the update delay slot is not a proper number: " << _key);
}
}
else if(_key.starts_with(slots::MATRIX_DELAY_PREFIX))
{
try
{
static constexpr size_t s_MATRIX_DELAY_KEY_SIZE = std::size(slots::MATRIX_DELAY_PREFIX);
const size_t matrix_tl_index =
static_cast<size_t>(std::stoul(_key.substr(s_MATRIX_DELAY_KEY_SIZE)));
if(matrix_tl_index < m_matrix_tl_delay.size())
{
m_matrix_tl_delay[matrix_tl_index] = _val;
}
else
{
SIGHT_ERROR(
"The matrixTL index " << matrix_tl_index << " provided in the update delay slot is out of bound"
);
}
}
catch(...)
{
SIGHT_ERROR("The matrixTL index provided in the update delay slot is not a proper number: " << _key);
}
}
else
{
SIGHT_WARN("Unknown key");
}
}
} // namespace sight::module::sync
|