File: plane_slicer.cpp

package info (click to toggle)
sight 25.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 43,252 kB
  • sloc: cpp: 310,629; xml: 17,622; ansic: 9,960; python: 1,379; sh: 144; makefile: 33
file content (373 lines) | stat: -rw-r--r-- 14,404 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/************************************************************************
 *
 * Copyright (C) 2017-2025 IRCAD France
 * Copyright (C) 2017-2020 IHU Strasbourg
 *
 * This file is part of Sight.
 *
 * Sight is free software: you can redistribute it and/or modify it under
 * the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Sight is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Sight. If not, see <https://www.gnu.org/licenses/>.
 *
 ***********************************************************************/

#include "plane_slicer.hpp"

#include <core/com/signal.hxx>
#include <core/com/slots.hxx>

#include <data/helper/medical_image.hpp>
#include <data/point.hpp>

#include <geometry/__/line.hpp>
#include <geometry/data/matrix4.hpp>
#include <geometry/data/image.hpp>

#include <io/vtk/vtk.hpp>

#include <vtkImageData.h>
#include <vtkImageReslice.h>

#include <glm/glm.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <glm/gtc/matrix_inverse.hpp>
#define GLM_ENABLE_EXPERIMENTAL
#include <glm/gtx/intersect.hpp>
#undef GLM_ENABLE_EXPERIMENTAL

namespace sight::module::filter::image
{

//------------------------------------------------------------------------------

plane_slicer::plane_slicer() noexcept :
    filter(m_signals),
    m_reslicer(vtkSmartPointer<vtkImageReslice>::New())
{
    new_signal<signals::slice_range_changed_t>(signals::SLICE_RANGE_CHANGED);
    new_slot(slots::UPDATE_DEFAULT_VALUE, &plane_slicer::update_default_value, this);
}

//------------------------------------------------------------------------------

void plane_slicer::configuring()
{
}

//------------------------------------------------------------------------------

void plane_slicer::starting()
{
    m_reslicer->SetOutputDimensionality(2);
    m_reslicer->SetInterpolationModeToLinear();

    update_default_value();

    this->updating();
}

//------------------------------------------------------------------------------

void plane_slicer::stopping()
{
}

//------------------------------------------------------------------------------

void plane_slicer::updating()
{
    const auto image_in = m_image.lock();
    if(not sight::data::helper::medical_image::check_image_validity(*image_in))
    {
        // Resets the slice
        auto slice = m_slice.lock();
        slice->deep_copy(std::make_shared<sight::data::image>());
        slice->async_emit(data::image::MODIFIED_SIG);
        return;
    }

    const auto axes     = m_axes.lock();
    auto reslice_matrix = std::make_shared<sight::data::matrix4>();

    // If we have an offset, add it to the reslice matrix
    const auto offset = m_offset.lock();
    if(offset)
    {
        sight::geometry::data::multiply(*axes, *offset, *reslice_matrix);
    }
    else
    {
        reslice_matrix->deep_copy(axes.get_shared());
    }

    const auto reslice_axes = std::make_shared<sight::data::matrix4>();
    {
        const auto origin      = image_in->origin();
        const auto orientation = image_in->orientation();

        // Get the orientation/position from original input image and reconstruct the pose
        sight::data::matrix4 image_pose_to_world_transform({
                orientation[0], orientation[1], orientation[2], origin[0],
                orientation[3], orientation[4], orientation[5], origin[1],
                orientation[6], orientation[7], orientation[8], origin[2],
                0., 0., 0., 1
            });
        // Compute the reslice by taking into account the image orientation
        sight::data::matrix4 world_to_image_pose_transform;
        sight::geometry::data::invert(image_pose_to_world_transform, world_to_image_pose_transform);

        sight::geometry::data::multiply(world_to_image_pose_transform, *reslice_matrix, *reslice_axes);
    }

    // Make a shallow-copied input image, centered at the origin for the resampling
    // This is due to the fact that VTK version prior to 9.2 do not take the data orientation into account.
    // Starting from VTK 9.2, we should be able to use SetOutputDirection rather than this trick.
    {
        auto image = std::make_shared<sight::data::image>();
        image->shallow_copy(image_in.get_shared());

        image->set_origin({0.0, 0.0, 0.0});
        image->set_orientation({1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0});

        auto vtk_img = vtkSmartPointer<vtkImageData>::New();
        io::vtk::to_vtk_image(image, vtk_img.Get());

        // Configure and perform the reslice
        vtkSmartPointer<vtkMatrix4x4> vtk_reslice_axes = io::vtk::to_vtk_matrix(reslice_axes);
        m_reslicer->SetResliceAxes(vtk_reslice_axes);
        m_reslicer->SetInputData(vtk_img);
        m_reslicer->SetOutputOrigin(0.0, 0.0, 0.0);
        m_reslicer->Update();
    }

    // Build the output slice
    {
        auto slice = m_slice.lock();

        sight::data::matrix4 output_slice_matrix;
        if(*m_center)
        {
            // To compute the reslice in the center, we reuse the slice computed from the bottom-left corner
            // to get the size of the slice, offset it to the center and compute it again
            // This is maybe not the smartest way, but since we do rely on VTK to perform the reslice
            // It could be difficult to try to redo the exact intersection computation
            auto* const bottom_left_slice       = m_reslicer->GetOutput();
            const auto* const size              = bottom_left_slice->GetDimensions();
            const auto* const spacing           = bottom_left_slice->GetSpacing();
            std::array<double, 2> center_offset =
            {
                -static_cast<double>(size[0]) * .5 * spacing[0],
                -static_cast<double>(size[1]) * .5 * spacing[1]
            };

            // The first "trick" is to offset the output origin to move the resampling to the center
            m_reslicer->SetOutputOrigin(center_offset[0], center_offset[1], 0.0);
            m_reslicer->Update();

            // However we will still need to apply this center offset to the slice location to move it physically
            // Thus the second trick apply the center offset to the origin and orientation of the slice
            sight::data::matrix4 center_matrix;
            center_matrix.set_position({center_offset[0], center_offset[1], 0.0});
            sight::geometry::data::multiply(*reslice_matrix, center_matrix, output_slice_matrix);
        }
        else
        {
            output_slice_matrix.deep_copy(reslice_matrix);
        }

        io::vtk::from_vtk_image(m_reslicer->GetOutput(), slice.get_shared());

        const auto    size = slice->size();
        slice->resize({{size[0], size[1], 1}}, slice->type(), slice->pixel_format());
        const auto    spacing = slice->spacing();
        slice->set_spacing({{spacing[0], spacing[1], 0}});

        // Position the slice at the position of the input matrix
        slice->set_origin(output_slice_matrix.position());
        slice->set_orientation(output_slice_matrix.orientation());

        slice->async_emit(data::image::MODIFIED_SIG);
    }

    // Compute the range so that we can slide on this axis
    // First we check at least one of the four edges of the slice intersect the image
    // Then, we compute the range trying to find the farthest planes of the eight corners of the image
    // Otherwise we reset the range
    {
        const auto size = image_in->size();

        auto slice            = m_slice.lock();
        const auto slice_size = slice->size();

        std::array<glm::dvec4, 4> slice_corners =
        {
            glm::dvec4(0., 0., 0., 1.),
            glm::dvec4(slice_size[0], 0, 0, 1.),
            glm::dvec4(slice_size[0], slice_size[1], 0, 1.),
            glm::dvec4(0., slice_size[1], 0., 1.)
        };

        const glm::dmat4 transform = geometry::data::image_to_world_transform(*slice);
        for(auto& slice_corner : slice_corners)
        {
            slice_corner = transform * slice_corner;
        }

        if(offset)
        {
            const glm::dmat4 inverse_offset = glm::inverse(geometry::data::to_glm_mat(*offset));
            // Do not take into account the offset for the intersection, go back to the reslice location if there
            // was no offset - beware it does not work if the offset contains a rotation !
            const glm::dmat3 slice_orientation = glm::transpose(glm::make_mat3(slice->orientation().data()));
            const glm::dmat4 rotate            = glm::dmat4(slice_orientation) * inverse_offset;
            const glm::dvec3 rotated_offset    = glm::dvec3(rotate[3][0], rotate[3][1], rotate[3][2]);
            const glm::dmat4 translate_offset  = glm::translate(glm::identity<glm::dmat4>(), rotated_offset);
            for(auto& slice_corner : slice_corners)
            {
                slice_corner = translate_offset * slice_corner;
            }
        }

        // Planes border + two diagonals
        std::array<geometry::line_t, 6> slice_edges =
        {
            geometry::line_t({slice_corners[0], slice_corners[1]}),
            geometry::line_t({slice_corners[1], slice_corners[2]}),
            geometry::line_t({slice_corners[2], slice_corners[3]}),
            geometry::line_t({slice_corners[3], slice_corners[0]}),
            geometry::line_t({slice_corners[0], slice_corners[2]}),
            geometry::line_t({slice_corners[1], slice_corners[3]})
        };

        const glm::dvec3 center = geometry::data::image_to_world(*image_in, {size[0] / 2, size[1] / 2, size[2] / 2});

        const auto spacing = image_in->spacing();
        const auto extent  = 0.5 * glm::dvec3(
            static_cast<double>(size[0]) * spacing[0],
            static_cast<double>(size[1]) * spacing[1],
            static_cast<double>(size[2]) * spacing[2]
        );

        const auto image_orientation = image_in->orientation();
        const glm::dmat3 orientation = glm::transpose(glm::make_mat3(image_orientation.data()));

        geometry::oriented_box_t image_box = {.center = center, .extent = extent, .orientation = orientation};

        bool does_plane_intersect_image = false;
        for(auto edge : slice_edges)
        {
            if(geometry::intersect_box(edge, image_box))
            {
                does_plane_intersect_image = true;
                break;
            }
        }

        if(does_plane_intersect_image)
        {
            std::array<glm::dvec3, 8> corners =
            {{
                {0., 0., 0.},
                {size[0], 0., 0.},
                {0., size[1], 0.},
                {0., 0., size[2]},
                {size[0], size[1], 0.},
                {size[0], 0., size[2]},
                {0., size[1], size[2]},
                {size[0], size[1], size[2]},
            }
            };

            // For each corner, we will compute the intersection with the planes oriented in the direction and in the
            // opposite direction to get the greatest distance
            const auto ray_origin = glm::make_vec3(axes->position().data());
            const glm::dvec3 ray_direction(axes->orientation()[2], axes->orientation()[5], axes->orientation()[8]);

            double t1_distance = std::numeric_limits<double>::min();
            double t2_distance = std::numeric_limits<double>::min();
            size_t t1_index    = ~0UL;
            size_t t2_index    = ~0UL;
            size_t i           = 0;

            const glm::dmat4 image_transform = geometry::data::image_to_world_transform(*image_in);
            for(auto corner : corners)
            {
                corner = image_transform * glm::dvec4(corner, 1.0);

                if(double dist = 0.; glm::intersectRayPlane(ray_origin, ray_direction, corner, ray_direction, dist))
                {
                    if(t1_distance < dist)
                    {
                        t1_distance = dist;
                        t1_index    = i;
                    }
                }

                if(double dist = 0.; glm::intersectRayPlane(ray_origin, -ray_direction, corner, ray_direction, dist))
                {
                    if(t2_distance < dist)
                    {
                        t2_distance = dist;
                        t2_index    = i;
                    }
                }

                ++i;
            }

            double min_range = 0.;
            double max_range = 0.;
            if(t1_index != ~0UL && t2_index != ~0UL)
            {
                min_range = std::min(t1_distance, -t2_distance);
                max_range = std::max(t1_distance, -t2_distance);
            }

            this->async_emit(signals::SLICE_RANGE_CHANGED, min_range, max_range);
        }
        else
        {
            this->async_emit(signals::SLICE_RANGE_CHANGED, 0.0, 0.0);
        }
    }
}

//------------------------------------------------------------------------------

service::connections_t plane_slicer::auto_connections() const
{
    return {
        {m_image, data::image::MODIFIED_SIG, service::slots::UPDATE},
        {m_image, data::image::BUFFER_MODIFIED_SIG, service::slots::UPDATE},
        {m_image, data::image::MODIFIED_SIG, slots::UPDATE_DEFAULT_VALUE},
        {m_image, data::image::BUFFER_MODIFIED_SIG, slots::UPDATE_DEFAULT_VALUE},
        {m_axes, data::matrix4::MODIFIED_SIG, service::slots::UPDATE},
        {m_offset, data::matrix4::MODIFIED_SIG, service::slots::UPDATE},
        {m_center, data::object::MODIFIED_SIG, service::slots::UPDATE}
    };
}

//------------------------------------------------------------------------------

void plane_slicer::update_default_value()
{
    const auto image = m_image.lock();
    SIGHT_ASSERT("No " << m_image.key() << " found.", image);

    const auto& [min, max] = data::helper::medical_image::get_min_max<double>(image.get_shared());

    m_reslicer->SetBackgroundLevel(min);
}

//------------------------------------------------------------------------------

} //namespace sight::module::filter::image