1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
/************************************************************************
*
* Copyright (C) 2017-2025 IRCAD France
* Copyright (C) 2017-2020 IHU Strasbourg
*
* This file is part of Sight.
*
* Sight is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Sight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Sight. If not, see <https://www.gnu.org/licenses/>.
*
***********************************************************************/
#include "plane_slicer.hpp"
#include <core/com/signal.hxx>
#include <core/com/slots.hxx>
#include <data/helper/medical_image.hpp>
#include <data/point.hpp>
#include <geometry/__/line.hpp>
#include <geometry/data/matrix4.hpp>
#include <geometry/data/image.hpp>
#include <io/vtk/vtk.hpp>
#include <vtkImageData.h>
#include <vtkImageReslice.h>
#include <glm/glm.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <glm/gtc/matrix_inverse.hpp>
#define GLM_ENABLE_EXPERIMENTAL
#include <glm/gtx/intersect.hpp>
#undef GLM_ENABLE_EXPERIMENTAL
namespace sight::module::filter::image
{
//------------------------------------------------------------------------------
plane_slicer::plane_slicer() noexcept :
filter(m_signals),
m_reslicer(vtkSmartPointer<vtkImageReslice>::New())
{
new_signal<signals::slice_range_changed_t>(signals::SLICE_RANGE_CHANGED);
new_slot(slots::UPDATE_DEFAULT_VALUE, &plane_slicer::update_default_value, this);
}
//------------------------------------------------------------------------------
void plane_slicer::configuring()
{
}
//------------------------------------------------------------------------------
void plane_slicer::starting()
{
m_reslicer->SetOutputDimensionality(2);
m_reslicer->SetInterpolationModeToLinear();
update_default_value();
this->updating();
}
//------------------------------------------------------------------------------
void plane_slicer::stopping()
{
}
//------------------------------------------------------------------------------
void plane_slicer::updating()
{
const auto image_in = m_image.lock();
if(not sight::data::helper::medical_image::check_image_validity(*image_in))
{
// Resets the slice
auto slice = m_slice.lock();
slice->deep_copy(std::make_shared<sight::data::image>());
slice->async_emit(data::image::MODIFIED_SIG);
return;
}
const auto axes = m_axes.lock();
auto reslice_matrix = std::make_shared<sight::data::matrix4>();
// If we have an offset, add it to the reslice matrix
const auto offset = m_offset.lock();
if(offset)
{
sight::geometry::data::multiply(*axes, *offset, *reslice_matrix);
}
else
{
reslice_matrix->deep_copy(axes.get_shared());
}
const auto reslice_axes = std::make_shared<sight::data::matrix4>();
{
const auto origin = image_in->origin();
const auto orientation = image_in->orientation();
// Get the orientation/position from original input image and reconstruct the pose
sight::data::matrix4 image_pose_to_world_transform({
orientation[0], orientation[1], orientation[2], origin[0],
orientation[3], orientation[4], orientation[5], origin[1],
orientation[6], orientation[7], orientation[8], origin[2],
0., 0., 0., 1
});
// Compute the reslice by taking into account the image orientation
sight::data::matrix4 world_to_image_pose_transform;
sight::geometry::data::invert(image_pose_to_world_transform, world_to_image_pose_transform);
sight::geometry::data::multiply(world_to_image_pose_transform, *reslice_matrix, *reslice_axes);
}
// Make a shallow-copied input image, centered at the origin for the resampling
// This is due to the fact that VTK version prior to 9.2 do not take the data orientation into account.
// Starting from VTK 9.2, we should be able to use SetOutputDirection rather than this trick.
{
auto image = std::make_shared<sight::data::image>();
image->shallow_copy(image_in.get_shared());
image->set_origin({0.0, 0.0, 0.0});
image->set_orientation({1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0});
auto vtk_img = vtkSmartPointer<vtkImageData>::New();
io::vtk::to_vtk_image(image, vtk_img.Get());
// Configure and perform the reslice
vtkSmartPointer<vtkMatrix4x4> vtk_reslice_axes = io::vtk::to_vtk_matrix(reslice_axes);
m_reslicer->SetResliceAxes(vtk_reslice_axes);
m_reslicer->SetInputData(vtk_img);
m_reslicer->SetOutputOrigin(0.0, 0.0, 0.0);
m_reslicer->Update();
}
// Build the output slice
{
auto slice = m_slice.lock();
sight::data::matrix4 output_slice_matrix;
if(*m_center)
{
// To compute the reslice in the center, we reuse the slice computed from the bottom-left corner
// to get the size of the slice, offset it to the center and compute it again
// This is maybe not the smartest way, but since we do rely on VTK to perform the reslice
// It could be difficult to try to redo the exact intersection computation
auto* const bottom_left_slice = m_reslicer->GetOutput();
const auto* const size = bottom_left_slice->GetDimensions();
const auto* const spacing = bottom_left_slice->GetSpacing();
std::array<double, 2> center_offset =
{
-static_cast<double>(size[0]) * .5 * spacing[0],
-static_cast<double>(size[1]) * .5 * spacing[1]
};
// The first "trick" is to offset the output origin to move the resampling to the center
m_reslicer->SetOutputOrigin(center_offset[0], center_offset[1], 0.0);
m_reslicer->Update();
// However we will still need to apply this center offset to the slice location to move it physically
// Thus the second trick apply the center offset to the origin and orientation of the slice
sight::data::matrix4 center_matrix;
center_matrix.set_position({center_offset[0], center_offset[1], 0.0});
sight::geometry::data::multiply(*reslice_matrix, center_matrix, output_slice_matrix);
}
else
{
output_slice_matrix.deep_copy(reslice_matrix);
}
io::vtk::from_vtk_image(m_reslicer->GetOutput(), slice.get_shared());
const auto size = slice->size();
slice->resize({{size[0], size[1], 1}}, slice->type(), slice->pixel_format());
const auto spacing = slice->spacing();
slice->set_spacing({{spacing[0], spacing[1], 0}});
// Position the slice at the position of the input matrix
slice->set_origin(output_slice_matrix.position());
slice->set_orientation(output_slice_matrix.orientation());
slice->async_emit(data::image::MODIFIED_SIG);
}
// Compute the range so that we can slide on this axis
// First we check at least one of the four edges of the slice intersect the image
// Then, we compute the range trying to find the farthest planes of the eight corners of the image
// Otherwise we reset the range
{
const auto size = image_in->size();
auto slice = m_slice.lock();
const auto slice_size = slice->size();
std::array<glm::dvec4, 4> slice_corners =
{
glm::dvec4(0., 0., 0., 1.),
glm::dvec4(slice_size[0], 0, 0, 1.),
glm::dvec4(slice_size[0], slice_size[1], 0, 1.),
glm::dvec4(0., slice_size[1], 0., 1.)
};
const glm::dmat4 transform = geometry::data::image_to_world_transform(*slice);
for(auto& slice_corner : slice_corners)
{
slice_corner = transform * slice_corner;
}
if(offset)
{
const glm::dmat4 inverse_offset = glm::inverse(geometry::data::to_glm_mat(*offset));
// Do not take into account the offset for the intersection, go back to the reslice location if there
// was no offset - beware it does not work if the offset contains a rotation !
const glm::dmat3 slice_orientation = glm::transpose(glm::make_mat3(slice->orientation().data()));
const glm::dmat4 rotate = glm::dmat4(slice_orientation) * inverse_offset;
const glm::dvec3 rotated_offset = glm::dvec3(rotate[3][0], rotate[3][1], rotate[3][2]);
const glm::dmat4 translate_offset = glm::translate(glm::identity<glm::dmat4>(), rotated_offset);
for(auto& slice_corner : slice_corners)
{
slice_corner = translate_offset * slice_corner;
}
}
// Planes border + two diagonals
std::array<geometry::line_t, 6> slice_edges =
{
geometry::line_t({slice_corners[0], slice_corners[1]}),
geometry::line_t({slice_corners[1], slice_corners[2]}),
geometry::line_t({slice_corners[2], slice_corners[3]}),
geometry::line_t({slice_corners[3], slice_corners[0]}),
geometry::line_t({slice_corners[0], slice_corners[2]}),
geometry::line_t({slice_corners[1], slice_corners[3]})
};
const glm::dvec3 center = geometry::data::image_to_world(*image_in, {size[0] / 2, size[1] / 2, size[2] / 2});
const auto spacing = image_in->spacing();
const auto extent = 0.5 * glm::dvec3(
static_cast<double>(size[0]) * spacing[0],
static_cast<double>(size[1]) * spacing[1],
static_cast<double>(size[2]) * spacing[2]
);
const auto image_orientation = image_in->orientation();
const glm::dmat3 orientation = glm::transpose(glm::make_mat3(image_orientation.data()));
geometry::oriented_box_t image_box = {.center = center, .extent = extent, .orientation = orientation};
bool does_plane_intersect_image = false;
for(auto edge : slice_edges)
{
if(geometry::intersect_box(edge, image_box))
{
does_plane_intersect_image = true;
break;
}
}
if(does_plane_intersect_image)
{
std::array<glm::dvec3, 8> corners =
{{
{0., 0., 0.},
{size[0], 0., 0.},
{0., size[1], 0.},
{0., 0., size[2]},
{size[0], size[1], 0.},
{size[0], 0., size[2]},
{0., size[1], size[2]},
{size[0], size[1], size[2]},
}
};
// For each corner, we will compute the intersection with the planes oriented in the direction and in the
// opposite direction to get the greatest distance
const auto ray_origin = glm::make_vec3(axes->position().data());
const glm::dvec3 ray_direction(axes->orientation()[2], axes->orientation()[5], axes->orientation()[8]);
double t1_distance = std::numeric_limits<double>::min();
double t2_distance = std::numeric_limits<double>::min();
size_t t1_index = ~0UL;
size_t t2_index = ~0UL;
size_t i = 0;
const glm::dmat4 image_transform = geometry::data::image_to_world_transform(*image_in);
for(auto corner : corners)
{
corner = image_transform * glm::dvec4(corner, 1.0);
if(double dist = 0.; glm::intersectRayPlane(ray_origin, ray_direction, corner, ray_direction, dist))
{
if(t1_distance < dist)
{
t1_distance = dist;
t1_index = i;
}
}
if(double dist = 0.; glm::intersectRayPlane(ray_origin, -ray_direction, corner, ray_direction, dist))
{
if(t2_distance < dist)
{
t2_distance = dist;
t2_index = i;
}
}
++i;
}
double min_range = 0.;
double max_range = 0.;
if(t1_index != ~0UL && t2_index != ~0UL)
{
min_range = std::min(t1_distance, -t2_distance);
max_range = std::max(t1_distance, -t2_distance);
}
this->async_emit(signals::SLICE_RANGE_CHANGED, min_range, max_range);
}
else
{
this->async_emit(signals::SLICE_RANGE_CHANGED, 0.0, 0.0);
}
}
}
//------------------------------------------------------------------------------
service::connections_t plane_slicer::auto_connections() const
{
return {
{m_image, data::image::MODIFIED_SIG, service::slots::UPDATE},
{m_image, data::image::BUFFER_MODIFIED_SIG, service::slots::UPDATE},
{m_image, data::image::MODIFIED_SIG, slots::UPDATE_DEFAULT_VALUE},
{m_image, data::image::BUFFER_MODIFIED_SIG, slots::UPDATE_DEFAULT_VALUE},
{m_axes, data::matrix4::MODIFIED_SIG, service::slots::UPDATE},
{m_offset, data::matrix4::MODIFIED_SIG, service::slots::UPDATE},
{m_center, data::object::MODIFIED_SIG, service::slots::UPDATE}
};
}
//------------------------------------------------------------------------------
void plane_slicer::update_default_value()
{
const auto image = m_image.lock();
SIGHT_ASSERT("No " << m_image.key() << " found.", image);
const auto& [min, max] = data::helper::medical_image::get_min_max<double>(image.get_shared());
m_reslicer->SetBackgroundLevel(min);
}
//------------------------------------------------------------------------------
} //namespace sight::module::filter::image
|