1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
/************************************************************************
*
* Copyright (C) 2018-2023 IRCAD France
* Copyright (C) 2018-2021 IHU Strasbourg
*
* This file is part of Sight.
*
* Sight is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Sight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Sight. If not, see <https://www.gnu.org/licenses/>.
*
***********************************************************************/
// cspell:ignore NOLINTNEXTLINE
#include "module/filter/vision/optical_flow.hpp"
#include <core/com/signal.hxx>
#include <core/com/slots.hxx>
#include <io/opencv/frame_tl.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/video/tracking.hpp>
namespace sight::module::filter::vision
{
static const core::com::signals::key_t CAMERA_MOVED_SIG = "camera_moved";
static const core::com::signals::key_t CAMERA_REMAINED_SIG = "camera_remained";
// ----------------------------------------------------------------------------
optical_flow::optical_flow() noexcept
{
m_motion_signal = new_signal<motion_signal_t>(CAMERA_MOVED_SIG);
m_no_motion_signal = new_signal<no_motion_signal_t>(CAMERA_REMAINED_SIG);
}
// ----------------------------------------------------------------------------
optical_flow::~optical_flow() noexcept =
default;
// ----------------------------------------------------------------------------
void optical_flow::configuring()
{
const auto config_tree = this->get_config();
const auto config = config_tree.get_child_optional("config.<xmlattr>");
if(config)
{
m_latency = config->get<unsigned int>("latency", m_latency);
m_image_scale_factor = config->get<float>("scaleFactor", m_image_scale_factor);
}
}
// ----------------------------------------------------------------------------
void optical_flow::starting()
{
m_initialization = false;
m_motion = false;
}
// ----------------------------------------------------------------------------
void optical_flow::updating()
{
if(!this->started())
{
SIGHT_ERROR("Cannot call `update` when service is stopped.");
return;
}
cv::Mat temp_img;
cv::Mat gray_img;
// Scope to lock frameTL
{
const auto frame_tl = m_timeline.lock();
SIGHT_ASSERT(" Input " << FRAME_TIMELINE_INPUT << " cannot be null", frame_tl);
core::clock::type timestamp = frame_tl->get_newer_timestamp();
if(timestamp < m_last_timestamp + m_latency)
{
return;
}
m_last_timestamp = timestamp;
CSPTR(data::frame_tl::buffer_t) buffer = frame_tl->get_closest_buffer(frame_tl->get_newer_timestamp());
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
auto* frame_buff = const_cast<std::uint8_t*>(&buffer->get_element(0));
temp_img = io::opencv::frame_tl::move_to_cv(frame_tl.get_shared(), frame_buff);
// Use a specific size for images:
// good balance between computation time & image quality for features tracking.
const cv::MatSize size_of_frame = temp_img.size;
cv::Size s;
// If image is small enough no need to re-scale it.
if(size_of_frame[0] > 640)
{
s.width = static_cast<int>(std::round(static_cast<float>(size_of_frame[0]) / m_image_scale_factor));
s.height = static_cast<int>(std::round(static_cast<float>(size_of_frame[1]) / m_image_scale_factor));
cv::resize(temp_img, temp_img, s);
}
if(frame_tl->num_components() == 1)
{
gray_img = temp_img;
}
else if(frame_tl->num_components() == 3)
{
cv::cvtColor(temp_img, gray_img, cv::COLOR_RGB2GRAY);
}
else if(frame_tl->num_components() == 4)
{
cv::cvtColor(temp_img, gray_img, cv::COLOR_RGBA2GRAY);
}
else
{
SIGHT_FATAL("Wrong type of image (nb of components = " << frame_tl->num_components() << ").");
}
}
if(!m_initialization)
{
m_main_mutex.lock();
m_last_gray_img = gray_img;
// Detect "good" features in frame. (parameters coming from opencv/samples/cpp/lkdemo.cpp).
cv::goodFeaturesToTrack(m_last_gray_img, m_last_corners, 2000, 0.01, 10);
m_initialization = true;
m_main_mutex.unlock();
return;
}
cv::Mat current_corners;
cv::Vec2f corners_diff;
std::vector<uchar> status;
std::vector<float> err;
int acc = 0; // Incremented each time the flow of a feature has been found.
long double rms = 0; // Root mean square difference between each detected corners.
int n_move = 0; // Incremented each time a corners has moved.
m_main_mutex.lock();
SIGHT_ASSERT(
"last image and current image should have same size: " << m_last_gray_img.size << " , "
<< gray_img.size
,
m_last_gray_img.size == gray_img.size
);
// Optical flow (Lucas-Kanade version).
cv::calcOpticalFlowPyrLK(m_last_gray_img, gray_img, m_last_corners, current_corners, status, err);
for(int index = 0 ; index < m_last_corners.size().height ; index++)
{
// Check if flow for feature 'index' has been found.
// Opencv doc for 'status' vector: Each element of the vector is set to 1 if
// the flow for the corresponding features has been found, otherwise, it is set to 0.
if(status[static_cast<std::size_t>(index)] != 0U)
{
corners_diff = m_last_corners.at<cv::Vec2f>(index) - current_corners.at<cv::Vec2f>(index);
rms +=
static_cast<long double>(corners_diff[0] * corners_diff[0] + corners_diff[1] * corners_diff[1]);
// Check if corners has moved.
if((corners_diff[0] * corners_diff[0] + corners_diff[1] * corners_diff[1]) > 2)
{
++n_move;
}
++acc;
}
}
if(acc != 0)
{
rms = rms / static_cast<long double>(acc);
rms = std::sqrt(rms);
}
// If movement is > 100 pixel and at least 80% of detected points has moved:
// we can say that the camera is moving (values find empirically).
if((rms > 100) && ((static_cast<float>(n_move) / (static_cast<float>(acc))) > 0.8F) && !m_motion)
{
m_motion = !m_motion;
m_motion_signal->async_emit();
}
// No movement or movement on few points (ex: an object moving on the video):
// we can assume that camera is not moving.
else if((rms < 1 || ((static_cast<float>(n_move) / (static_cast<float>(acc))) < 0.5F)) && m_motion)
{
m_motion = !m_motion;
m_no_motion_signal->async_emit();
}
// Keep last image.
m_last_gray_img = gray_img;
// Detect "good" features in the frame. (parameters coming from opencv/samples/cpp/lkdemo.cpp).
cv::goodFeaturesToTrack(m_last_gray_img, m_last_corners, 2000, 0.01, 10);
m_main_mutex.unlock();
}
// ----------------------------------------------------------------------------
void optical_flow::stopping()
{
m_initialization = false;
m_motion = false;
}
// ----------------------------------------------------------------------------
service::connections_t optical_flow::auto_connections() const
{
connections_t connections;
connections.push(FRAME_TIMELINE_INPUT, data::timeline::signals::PUSHED, service::slots::UPDATE);
return connections;
}
} //namespace sight::module::filter::vision
|