1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/************************************************************************
*
* Copyright (C) 2019-2023 IRCAD France
* Copyright (C) 2019-2020 IHU Strasbourg
*
* This file is part of Sight.
*
* Sight is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Sight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Sight. If not, see <https://www.gnu.org/licenses/>.
*
***********************************************************************/
#include "module/geometry/__/point_to_landmark_vector.hpp"
#include <core/com/signal.hxx>
#include <core/com/slots.hxx>
#include <geometry/data/matrix4.hpp>
#include <glm/glm.hpp>
namespace sight::module::geometry
{
// -----------------------------------------------------------------------------
static const core::com::signals::key_t LENGTH_CHANGED_SIG = "lengthChanged";
static const core::com::signals::key_t LENGTH_STR_CHANGED_SIG = "lengthChangedStr";
static const core::com::signals::key_t SAME_SLICE_SIG = "sameSlice";
// -----------------------------------------------------------------------------
// -----------------------------------------------------------------------------
point_to_landmark_vector::point_to_landmark_vector() noexcept
{
new_signal<length_changed_signal_t>(LENGTH_CHANGED_SIG);
new_signal<length_str_changed_signal_t>(LENGTH_STR_CHANGED_SIG);
new_signal<same_slice_signal_t>(SAME_SLICE_SIG);
}
// -----------------------------------------------------------------------------
point_to_landmark_vector::~point_to_landmark_vector() noexcept =
default;
// -----------------------------------------------------------------------------
void point_to_landmark_vector::starting()
{
auto computed_landmark = m_computed_landmark.lock();
computed_landmark->add_group(m_group_label);
}
// -----------------------------------------------------------------------------
void point_to_landmark_vector::stopping()
{
}
// -----------------------------------------------------------------------------
void point_to_landmark_vector::configuring()
{
const config_t configuration = this->get_config();
m_origin_label = configuration.get<std::string>("originLabel", m_origin_label);
m_end_label = configuration.get<std::string>("endLabel", m_end_label);
m_group_label = configuration.get<std::string>("computedLandmarkLabel", m_group_label);
m_tolerance = configuration.get<double>("sameAxialSliceTolerance", m_tolerance);
m_same_slice_label = configuration.get<std::string>("sameAxialSliceLabel", m_same_slice_label);
}
// -----------------------------------------------------------------------------
void point_to_landmark_vector::updating()
{
auto transform = m_transform.lock();
auto translation_matrix = m_translation_matrix.lock();
const auto landmark = m_landmark.lock();
std::array<double, 3> source_point {};
std::array<double, 3> target_point {};
if(landmark->get_group(m_origin_label).m_size >= 1)
{
source_point = landmark->get_point(m_origin_label, 0);
}
if(landmark->get_group(m_end_label).m_size >= 1)
{
target_point = landmark->get_point(m_end_label, 0);
}
if(std::abs(source_point[2] - target_point[2]) < m_tolerance)
{
this->signal<same_slice_signal_t>(SAME_SLICE_SIG)->async_emit(m_same_slice_label + ": Yes");
}
else
{
this->signal<same_slice_signal_t>(SAME_SLICE_SIG)->async_emit(m_same_slice_label + ": No");
}
// Compute the vector and put the result in the translation part of the matrix.
const glm::dvec3 source_pt(source_point[0], source_point[1], source_point[2]);
const glm::dvec3 target_pt(target_point[0], target_point[1], target_point[2]);
const glm::dvec3 point_to_target = target_pt - source_pt;
const auto length = static_cast<float>(glm::length(point_to_target));
this->signal<length_changed_signal_t>(LENGTH_CHANGED_SIG)->async_emit(length);
const std::string length_str = std::to_string(length) + " mm";
this->signal<length_str_changed_signal_t>(LENGTH_STR_CHANGED_SIG)->async_emit(length_str);
glm::dmat4x4 point_to_target_mat(1.0);
const glm::dvec3 front = glm::normalize(point_to_target);
// compute an orthogonal vector to front ( vec(a,b,c) --> vecOrtho(-b,a,0))
glm::dvec3 up = glm::dvec3(-front[1], front[0], 0);
const glm::dvec3 right = glm::normalize(cross(up, front));
up = glm::cross(front, right);
point_to_target_mat[0] = glm::dvec4(right, 0.0);
point_to_target_mat[1] = glm::dvec4(up, 0.0);
point_to_target_mat[2] = glm::dvec4(front, 0.0);
point_to_target_mat[3] = glm::dvec4(source_pt, 1.0);
sight::geometry::data::from_glm_mat(*transform, point_to_target_mat);
auto sig = transform->signal<data::object::modified_signal_t>(data::object::MODIFIED_SIG);
sig->async_emit();
// Create the computed landmark containing the position of the target point
auto computed_landmark = m_computed_landmark.lock();
if(computed_landmark->get_group(m_group_label).m_size > 0)
{
computed_landmark->clear_points(m_group_label);
}
computed_landmark->add_point(m_group_label, target_point);
auto sig1 = computed_landmark->signal<data::landmarks::point_added_signal_t>(data::landmarks::POINT_ADDED_SIG);
sig1->async_emit(m_group_label);
(*translation_matrix)(0, 3) = point_to_target[0];
(*translation_matrix)(1, 3) = point_to_target[1];
(*translation_matrix)(2, 3) = point_to_target[2];
auto sig2 = translation_matrix->signal<data::object::modified_signal_t>(data::object::MODIFIED_SIG);
sig2->async_emit();
}
// -----------------------------------------------------------------------------
service::connections_t point_to_landmark_vector::auto_connections() const
{
return {{LANDMARK_INPUT, data::landmarks::POINT_ADDED_SIG, service::slots::UPDATE}};
}
// -----------------------------------------------------------------------------
} // namespace sight::module::geometry
|