1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
/************************************************************************
*
* Copyright (C) 2019-2023 IRCAD France
* Copyright (C) 2019-2020 IHU Strasbourg
*
* This file is part of Sight.
*
* Sight is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Sight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Sight. If not, see <https://www.gnu.org/licenses/>.
*
***********************************************************************/
#include "module/geometry/__/targeting.hpp"
#include <core/com/signal.hxx>
#include <core/com/slots.hxx>
#include <geometry/data/matrix4.hpp>
#include <service/macros.hpp>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_inverse.hpp>
#define GLM_ENABLE_EXPERIMENTAL
#include <glm/gtx/intersect.hpp>
#undef GLM_ENABLE_EXPERIMENTAL
namespace sight::module::geometry
{
// -----------------------------------------------------------------------------
const core::com::slots::key_t SELECTED_POINT_SLOT = "updateSelectedPoint";
const core::com::slots::key_t UPDATE_POINT_SLOT = "updatePoint";
const core::com::slots::key_t REMOVE_POINT_SLOT = "removePoint";
// -----------------------------------------------------------------------------
// -----------------------------------------------------------------------------
targeting::targeting() noexcept :
m_target_landmark(glm::dvec3(0.0, 0.0, 0.0))
{
new_slot(SELECTED_POINT_SLOT, &targeting::update_selected_point, this);
new_slot(UPDATE_POINT_SLOT, &targeting::update_point, this);
new_slot(REMOVE_POINT_SLOT, &targeting::remove_point, this);
}
// -----------------------------------------------------------------------------
targeting::~targeting() noexcept =
default;
// -----------------------------------------------------------------------------
void targeting::starting()
{
}
// -----------------------------------------------------------------------------
void targeting::stopping()
{
}
// -----------------------------------------------------------------------------
void targeting::configuring()
{
const config_t configuration = this->get_config();
m_label = configuration.get<std::string>("label", m_label);
if(!m_label.empty())
{
m_landmark_selected = true;
}
m_width = configuration.get<int>("width", m_width);
}
// -----------------------------------------------------------------------------
void targeting::updating()
{
if(m_landmark_selected)
{
const auto landmark = m_landmark.lock();
SIGHT_ASSERT("Input \"landmark\" is missing.", landmark);
if(!landmark->get_group(m_label).m_points.empty())
{
const data::landmarks::point_t point = landmark->get_point(m_label, m_index);
m_target_landmark = glm::dvec3(point[0], point[1], point[2]);
}
else
{
return;
}
}
// Get the input matrix for the needle tip
const auto matrix = m_matrix.lock();
SIGHT_ASSERT("Input \"matrix\" is missing.", matrix);
const glm::dmat4x4 mat = sight::geometry::data::to_glm_mat(*matrix);
const glm::dvec4 origin(0.0, 0.0, 0.0, 1.0);
const glm::dvec4 axis_x(1.0, 0.0, 0.0, 0.0);
const glm::dvec4 axis_z(0.0, 0.0, 1.0, 0.0);
// Compute the needle tip position
const glm::dvec3 needle_tip = glm::dvec3(mat * origin);
// Compute the needle orientation vectors
const glm::dvec3 needle_tip_x = glm::dvec3(mat * axis_x);
const glm::dvec3 needle_tip_z = glm::dvec3(mat * axis_z);
// WARNING: this axis must be consistent with the orientation of the input matrix
// For example:
// - If you use a camera matrix, this must be the Z axis
// - If you use an EM sensor from the trakSTAR, this must be the X axis
const glm::dvec3 needle_direction = glm::normalize(needle_tip_z);
const glm::dvec3 needle_tip_to_landmark = glm::normalize(m_target_landmark - needle_tip);
// Compute the intersection between the needle (from the tip) and the landmark plane
double distance = 0.0;
double distance_x = 0.0;
/* Project the needle tip origin and the associated X axis of the matrices on the landmark plane */
/* To get a coordinate system on this plane (the Y axis will be obtained via a cross product) */
if(glm::intersectRayPlane(needle_tip, needle_direction, m_target_landmark, -needle_tip_to_landmark, distance)
&& glm::intersectRayPlane(
needle_tip + needle_tip_x,
needle_direction,
m_target_landmark,
-needle_tip_to_landmark,
distance_x
)
&& !m_label.empty())
{
// Compute the 3D position of the intersection between the needle and the landmark plane
const glm::dvec3 projected_needle_origin = needle_tip + needle_direction * distance;
// Shift the needleTip with the axis vector
const glm::dvec3 projected_needle_x = needle_tip + needle_tip_x + needle_direction * distance_x;
const glm::dvec3 projected_x_axis = glm::normalize(projected_needle_x - projected_needle_origin);
const glm::dvec3 projected_y_axis = glm::cross(needle_tip_to_landmark, projected_x_axis);
// Compute the matrix from the world coordinates to the landmark plane coordinates
glm::dmat4x4 world_to_plane_matrix;
world_to_plane_matrix[0] = glm::dvec4(projected_x_axis, 0.0);
world_to_plane_matrix[1] = glm::dvec4(projected_y_axis, 0.0);
world_to_plane_matrix[2] = glm::dvec4(needle_tip_to_landmark, 0.0);
world_to_plane_matrix[3] = glm::dvec4(m_target_landmark, 1.0);
// Invert the world to landmark plane matrix
const glm::dmat4x4 plane_to_world_matrix = glm::affineInverse(world_to_plane_matrix);
// Transform in the 2D landmark plane the needle intersection
glm::dvec3 transformed_needle_intersection =
glm::dvec3(plane_to_world_matrix * glm::dvec4(projected_needle_origin, 1.0));
transformed_needle_intersection = glm::normalize(transformed_needle_intersection);
// Get the distance between the projected needle point and the landmark position
const double projected_needle_to_landmarkdistance = glm::distance(projected_needle_origin, m_target_landmark);
// Compute a scale value so that the vector will represent the correct distance value on the view
const double max_distance = 50.0;
double scale = projected_needle_to_landmarkdistance / max_distance * m_width / 2.0;
scale = (projected_needle_to_landmarkdistance > max_distance ? m_width / 2.0 : scale);
transformed_needle_intersection = transformed_needle_intersection * scale;
auto point_list = m_point_list.lock();
SIGHT_ASSERT("InOut \"pointList\" is missing.", point_list);
if(!point_list->get_points().empty())
{
point_list->clear();
}
const data::point::sptr point = std::make_shared<data::point>(
transformed_needle_intersection[0],
-transformed_needle_intersection[1],
0.
);
point_list->push_back(point);
auto sig = point_list->signal<data::point_list::point_added_signal_t>(
data::point_list::POINT_ADDED_SIG
);
sig->async_emit(point);
}
}
// -----------------------------------------------------------------------------
service::connections_t targeting::auto_connections() const
{
return {{MATRIX_INPUT, data::object::MODIFIED_SIG, service::slots::UPDATE}};
}
// -----------------------------------------------------------------------------
void targeting::update_selected_point(std::string _name, std::size_t _index)
{
m_label = _name;
m_landmark_selected = true;
m_index = _index;
this->update();
}
// -----------------------------------------------------------------------------
void targeting::update_point(std::string _name)
{
m_label = _name;
m_landmark_selected = true;
{
const auto landmark = m_landmark.lock();
SIGHT_ASSERT("Input \"landmark\" is missing.", landmark);
const std::size_t size = landmark->get_group(m_label).m_points.size();
m_index = size - 1;
}
this->update();
}
// -----------------------------------------------------------------------------
void targeting::remove_point()
{
// When a point is removed, it's not selected anymore
m_landmark_selected = false;
auto point_list = m_point_list.lock();
SIGHT_ASSERT("InOut \"pointList\" is missing.", point_list);
data::point_list::container_t points = point_list->get_points(); // copy the points.
point_list->clear();
for(const auto& pt : points)
{
// Send signals.
auto sig = point_list->signal<data::point_list::point_removed_signal_t>(
data::point_list::POINT_REMOVED_SIG
);
sig->async_emit(pt);
}
}
// -----------------------------------------------------------------------------
} // namespace sight::module::geometry
|