1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
#!env python3
import argparse
import csv
import numpy
import os
import pylab
import sys
def load(filename, direction, has_device, filter_device):
if filter_device:
print(f'Loading {direction} signal from {filename} for device {filter_device} ...',
file=sys.stderr)
else:
print(f'Loading {direction} signal from {filename} ...',
file=sys.stderr)
x_vals = []
y_vals = []
with open(filename) as fp:
for row in csv.reader(fp, dialect='unix'):
if len(row) < 2:
continue
if row[0] != direction[0]:
continue
row = row[1:]
if has_device:
if filter_device and row[0] != filter_device:
continue
row = row[1:]
if len(row) < 2:
continue
try:
ts = float(row[0])
amp = float(row[1])
except:
continue
if ts <= 0:
continue
x_vals.append(ts)
y_vals.append(amp)
return numpy.array([x_vals, y_vals]).T
parser = argparse.ArgumentParser(description='plot dump in csv format')
parser.add_argument('-d,--device', dest='device', type=str, required=False,
help='filter by device name (for multi-input setup)')
parser.add_argument('dump_file', nargs=1, help='csv dump file')
args = parser.parse_args()
has_device = bool(args.device)
out_sig = load(args.dump_file[0], 'output', has_device, None)
in_sig = load(args.dump_file[0], 'input', has_device, args.device)
out_sig[:,0] /= 1000000
in_sig[:,0] /= 1000000
base = min(out_sig[0,0], in_sig[0,0])
out_sig[:,0] -= base
in_sig[:,0] -= base
print('Plotting ...', file=sys.stderr)
fig = pylab.figure()
fig.canvas.mpl_connect('close_event', lambda ev: os._exit(0))
pylab.plot(out_sig[:,0], out_sig[:,1], '-o', label='output signal')
pylab.plot(in_sig[:,0], in_sig[:,1], '-o',
label=(f'input signal ({args.device})' if has_device else 'input signal'))
pylab.grid()
pylab.xlabel('time, milliseconds')
pylab.ylabel('amplitude')
pylab.legend()
pylab.show()
|