1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
# /*##########################################################################
#
# Copyright (c) 2017-2021 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
"""
This script displays the different items of :class:`~silx.gui.plot3d.SceneWindow`.
It shows the different visualizations of :class:`~silx.gui.plot3d.SceneWindow`
and :class:`~silx.gui.plot3d.SceneWidget`.
It illustrates the API to set those items.
It features:
- 2D images: data and RGBA images
- 2D scatter data, displayed either as markers, wireframe or surface.
- 3D scatter plot
- 3D scalar field with iso-surface and cutting plane.
- A clipping plane.
"""
__authors__ = ["T. Vincent"]
__license__ = "MIT"
__date__ = "17/11/2017"
import sys
import numpy
from silx.gui import qt
from silx.gui.plot3d.SceneWindow import SceneWindow, items
SIZE = 1024
# Create QApplication
qapp = qt.QApplication.instance() or qt.QApplication([])
# Create a SceneWindow widget
window = SceneWindow()
# Get the SceneWidget contained in the window and set its colors
sceneWidget = window.getSceneWidget()
sceneWidget.setBackgroundColor((0.8, 0.8, 0.8, 1.0))
sceneWidget.setForegroundColor((1.0, 1.0, 1.0, 1.0))
sceneWidget.setTextColor((0.1, 0.1, 0.1, 1.0))
# 2D Image ###
# Add a dummy RGBA image
img = numpy.random.random(3 * SIZE**2).reshape(SIZE, SIZE, 3) # Dummy image
imageRgba = sceneWidget.addImage(img) # Add ImageRgba item to the scene
imageRgba.setLabel("Random RGBA image") # Set name displayed in parameter tree
# Set imageRgba transform
imageRgba.setTranslation(SIZE * 0.15, SIZE * 0.15, 0.0) # Translate the image
# Rotate the image by 45 degrees around its center
imageRgba.setRotationCenter("center", "center", 0.0)
imageRgba.setRotation(45.0, axis=(0.0, 0.0, 1.0))
imageRgba.setScale(0.7, 0.7, 0.7) # Scale down image
# Add a data image
data = numpy.arange(SIZE**2).reshape(SIZE, SIZE) # Dummy data
imageData = sceneWidget.addImage(data) # Add ImageData item to the scene
# Set imageData transform
imageData.setTranslation(0.0, SIZE, 0.0) # Translate the image
# Set imageData properties
imageData.setInterpolation("linear") # 'linear' or 'nearest' interpolation
imageData.getColormap().setName("magma") # Use magma colormap
# 2D scatter data ###
# Create 2D scatter dummy data
x = numpy.random.random(10**3)
y = numpy.random.random(len(x))
values = numpy.exp(-11.0 * ((x - 0.5) ** 2 + (y - 0.5) ** 2))
# Add 2D scatter data with 6 different visualisations
for row, heightMap in enumerate((False, True)):
for col, mode in enumerate(("points", "lines", "solid")):
# Add a new scatter
item = sceneWidget.add2DScatter(x, y, values)
# Set 2D scatter item tranform
item.setTranslation(SIZE + col * SIZE, row * SIZE, 0.0)
item.setScale(SIZE, SIZE, SIZE)
# Set 2D scatter item properties
item.setHeightMap(heightMap)
item.setVisualization(mode)
item.getColormap().setName("viridis")
item.setLineWidth(2.0)
# Group ###
# Create a group item and add it to the scene
# The group children share the group transform
group = items.GroupItem() # Create a new group item
group.setTranslation(SIZE * 4, 0.0, 0.0) # Translate the group
# Clipping plane ###
# Add a clipping plane to the group (and thus to the scene)
# This item hides part of other items in the half space defined by the plane.
# Clipped items are those belonging to the same group (i.e., brothers) that
# comes after the clipping plane.
clipPlane = items.ClipPlane() # Create a new clipping plane item
clipPlane.setNormal((1.0, -0.35, 0.0)) # Set its normal
clipPlane.setPoint((0.0, 0.0, 0.0)) # Set a point on the plane
group.addItem(clipPlane) # Add clipping plane to the group
# 3D scatter data ###
# Create dummy data
x = numpy.random.random(10**3)
y = numpy.random.random(len(x))
z = numpy.random.random(len(x))
values = numpy.random.random(len(x))
# Create a 3D scatter item and set its data
scatter3d = items.Scatter3D()
scatter3d.setData(x, y, z, values)
# Set scatter3d transform
scatter3d.setScale(SIZE, SIZE, SIZE)
# Set scatter3d properties
scatter3d.getColormap().setName("magma") # Use 'magma' colormap
scatter3d.setSymbol("d") # Use diamond markers
scatter3d.setSymbolSize(11) # Set the size of the markers
# Add scatter3d to the group (and thus to the scene)
group.addItem(scatter3d)
# 3D scalar volume ###
# Create dummy 3D array data
x, y, z = numpy.meshgrid(
numpy.linspace(-10, 10, 64),
numpy.linspace(-10, 10, 64),
numpy.linspace(-10, 10, 64),
)
data = numpy.sin(x * y * z) / (x * y * z)
# Create a 3D scalar field item and set its data
volume = items.ScalarField3D() # Create a new 3D volume item
volume.setData(data) # Set its data
group.addItem(volume) # Add it to the group (and thus to the scene)
# Set volume tranform
volume.setTranslation(0.0, SIZE, 0.0)
volume.setScale(SIZE / data.shape[2], SIZE / data.shape[1], SIZE / data.shape[0])
# Add isosurfaces to the volume item given isolevel and color
volume.addIsosurface(0.2, "#FF000080")
volume.addIsosurface(0.5, "#0000FFFF")
# Set the volume cut plane
cutPlane = volume.getCutPlanes()[0] # Get the volume's cut plane
cutPlane.setVisible(True) # Set it to be visible
cutPlane.getColormap().setName("jet") # Set cut plane's colormap
cutPlane.setNormal((0.0, 0.0, 1.0)) # Set cut plane's normal
cutPlane.moveToCenter() # Place the cut plane at the center of the volume
sceneWidget.addItem(group) # Add the group as an item of the scene
# Show the SceneWidget widget
window.show()
# Display exception in a pop-up message box
sys.excepthook = qt.exceptionHandler
# Run Qt event loop
qapp.exec()
|