1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
/*
atmega168_timer_64led.c
Copyright 2008, 2009 Michel Pollet <buserror@gmail.com>
This file is part of simavr.
simavr is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
simavr is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with simavr. If not, see <http://www.gnu.org/licenses/>.
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <avr/sleep.h>
#include "atmega168_timer_64led.h"
// for linker, emulator, and programmer's sake
#include "avr_mcu_section.h"
AVR_MCU(F_CPU, "atmega168");
PIN_DEFINE(SRESET, D, PD4, 1);
//PIN_DEFINE(SOE, D, PD6, 1); // pwm AIN0/OC0A
PIN_DEFINE(SLATCH, D, PD7, 1);
PIN_DEFINE(BSTART, C, PC0, 1); // PCI6
PIN_DEFINE(BSTOP, B, PB1, 1); // PCI1
PIN_DEFINE(BRESET, B, PB0, 1); // PCI0
#define TICK_HZ 4
enum {
TICK_SECOND = TICK_HZ,
TICK_250MS = (TICK_SECOND / 4),
TICK_500MS = (TICK_SECOND / 2),
TICK_750MS = (TICK_500MS + TICK_250MS),
TICK_MAX = 0x7f,
TICK_TIMER_DISABLED = 0xff
};
volatile uint32_t tickCount;
struct tick_t {
uint8_t delay;
void (*callback)(struct tick_t *);
};
enum EDelayIndex {
delay_Second = 0,
delay_Update,
delay_DisplayChange,
delay_StopFade,
timer_MAX
};
struct tick_t timer[timer_MAX];
#define tick_timer_fired(_t) (timer[(_t)].delay == 0)
#define tick_timer_reset(_t, _v) timer[(_t)].delay = (_v)
ISR(TIMER2_COMPA_vect) // handler for Output Compare 1 overflow interrupt
{
sei();
tickCount++;
// decrement delay lines
for (char i = 0; i < timer_MAX; i++)
if (timer[(int)i].delay && timer[(int)i].delay != TICK_TIMER_DISABLED) {
timer[(int)i].delay--;
if (timer[(int)i].delay == 0 && timer[(int)i].callback)
timer[(int)i].callback(&timer[(int)i]);
}
}
void tick_init()
{
/*
Timer 2 as RTC
*/
// needs to do that before changing the timer registers
// ASYNC timer using a 32k crystal
ASSR |= (1 << AS2);
TCCR2A = (1 << WGM21);
TCCR2B = (3 << CS20);
OCR2A = 127;
TIMSK2 |= (1 << OCIE2A);
}
enum EKEYS {
KEY_RESET = 0, // 0x01
KEY_STOP, // 0x02
KEY_START, // 0x04
KEY_MAX
};
enum EState {
state_ShowTime = 0,
state_ShowHour,
state_Sleep,
state_IncrementTime = (1 << 7),
state_MAX
} ;
uint8_t state = state_ShowTime | state_IncrementTime;
uint8_t digits[4];
enum EDecimal {
d_second = 0, d_10second, d_minute, d_10minute, d_hour, d_10hour, d_100hour, d_MAX
};
const uint8_t decimal_max[d_MAX] = { 10, 6, 10, 6, 10, 10, 10 };
uint8_t decimal[d_MAX] = {0,0,0,0,0,0,0};
uint8_t decimalChanged = 0;
uint8_t keyState;// = 0x7;
uint8_t keyEvent = 0;
uint8_t keyDebounce[KEY_MAX];
uint8_t lastKeyValue; // = 0; // use to detect which pin(s) triggered the interupt
#define PWM_MAX_DUTY_CYCLE 0xFF
#define STANDBY_DELAY 60
uint8_t pwmRunning = PWM_MAX_DUTY_CYCLE - (PWM_MAX_DUTY_CYCLE >> 4);
uint8_t pwmStopped = PWM_MAX_DUTY_CYCLE - (PWM_MAX_DUTY_CYCLE >> 6);
uint16_t stopTimerCount;
void pwmInit(void)
{
/*
Start Timer 0 with no clock prescaler and phase correct
fast PWM mode. Output on PD6 (OC0A).
*/
TCCR0A = (1<<COM0A1)|(0<<COM0A0)|(0<<COM0B1)|(0<<COM0B0)
|(1<<WGM01) |(1<<WGM00);
TCCR0B = (0<<FOC0A) |(0<<FOC0B) |(0<<WGM02)
|(0<<CS01) |(1<<CS00);
// TIMSK0 = (1 << OCIE0A);
// Reset counter
TCNT0 = 0;
// Set duty cycle to 1/16th duty
// OCR0A = PWM_MAX_DUTY_CYCLE - (PWM_MAX_DUTY_CYCLE >> 4);
OCR0A = pwmRunning;
}
static inline void pwmSet(uint8_t pwm)
{
OCR0A = pwm;
}
void decimalInc()
{
for (uint8_t in = 0; in < d_MAX; in++) {
decimal[in]++;
decimalChanged |= (1 << in);
if (decimal[in] == decimal_max[in]) {
decimal[in] = 0;
} else
break;
}
}
/*
0x01 0x01
0x20 0x02
0x20 0x02
0x40 0x40
0x10 0x04
0x10 0x04
0x08 0x08
*/
const uint8_t digits2led[10]= {
0x3f, 0x06, 0x5b, 79, 102, 109, 125, 7, 0x7f, 111
};
struct {
uint8_t b[16];
uint8_t in : 4;
uint8_t out : 4;
} spi;
void spi_init()
{
spi.in = spi.out = 0;
SPCR = (1 << SPIE) | (1 << SPE) | (0 << DORD) | (1 << MSTR) |
(0 << CPOL) | (0 << CPHA) | (0 << SPR0);
SPSR = (0 << SPI2X);
}
void spi_start()
{
uint8_t b;
if (spi.in != spi.out) {
b = spi.b[spi.in++];
SPDR = b;
}
}
/*
* SPI FIFO and it's interupt function. The function just pushes the
* 'next' byte into the SPI register, and if there are no more bytes, it
* toggles the 'latch' PIN of the 74H595 to update all the LEDS in one go.
*
* There is a potential small race condition here where 2 sets of four bytes
* are sent in sequence, but the probability is that 64 bits will be sent
* before the latch trigges instead of 32; and if they were /that/ close it
* doesn'nt make a difference anyway.
* One way to solve that would be to have a 'terminator' or 'flush' signal
* queued along the byte stream.
*/
ISR(SPI_STC_vect)
{
uint8_t b;
if (spi.in != spi.out) {
b = spi.b[spi.in++];
SPDR = b;
} else {
// fifo is empty, tell the 74hc595 to latch the shift register
SET_SLATCH();
CLR_SLATCH();
}
}
void startShowTime()
{
state = (state & ~0xf) | state_ShowTime;
}
void startShowHours(uint8_t timeout /*= 4 * TICK_SECOND*/)
{
if (timer[delay_DisplayChange].delay != TICK_TIMER_DISABLED)
tick_timer_reset(delay_DisplayChange, timeout);
state = (state & ~0xf) | state_ShowHour;
}
void updateTimer();
void sleepTimer();
void wakeTimer();
int startTimer();
int stopTimer();
void resetTimer();
void sleepTimer()
{
state = state_Sleep;
tick_timer_reset(delay_Second, 0);
tick_timer_reset(delay_Update, 0);
pwmSet(0xff); // stop the LEDs completely
}
void wakeTimer()
{
stopTimerCount = 0;
if (state == state_Sleep) {
startShowTime();
tick_timer_reset(delay_Second, TICK_SECOND);
tick_timer_reset(delay_Update, 1);
pwmSet(pwmRunning);
updateTimer();
} else
pwmSet(pwmRunning);
}
int startTimer()
{
if (state & state_IncrementTime)
return 0;
wakeTimer();
tick_timer_reset(delay_Second, TICK_SECOND);
tick_timer_reset(delay_Update, 1);
state |= state_IncrementTime;
return 1;
}
int stopTimer()
{
wakeTimer();
if (!(state & state_IncrementTime))
return 0;
state &= ~state_IncrementTime;
stopTimerCount = 0;
tick_timer_reset(delay_StopFade, 10 * TICK_SECOND);
return 1;
}
void resetTimer()
{
wakeTimer();
startShowTime();
tick_timer_reset(delay_Second, TICK_SECOND);
tick_timer_reset(delay_Update, 1);
for (uint8_t bi = 0; bi < d_MAX; bi++)
decimal[bi] = 0;
}
void updateTimer()
{
if (OCR0A == 0xff) // if the display is off, don't update anything
return;
if (!(state & state_IncrementTime) || timer[delay_Second].delay <= 2) {
switch (state & ~state_IncrementTime) {
case state_ShowTime:
digits[1] |= 0x80;
digits[2] |= 0x80;
break;
case state_ShowHour:
if (state & state_IncrementTime)
digits[0] |= 0x80;
break;
}
}
cli();
// interupts are stopped here, so there is no race condition
int restart = spi.out == spi.in;
for (uint8_t bi = 0; bi < 4; bi++)
spi.b[spi.out++] = digits[bi];
if (restart)
spi_start();
sei();
}
void updateTimerDisplay()
{
do {
switch (state & ~state_IncrementTime) {
case state_ShowTime: {
if (decimalChanged & (1 << d_hour)) {
startShowHours(4 * TICK_SECOND);
break;
}
decimalChanged = 0;
for (uint8_t bi = 0; bi < 4; bi++)
digits[bi] = digits2led[decimal[bi]];
if (!(state & state_IncrementTime)) {
digits[1] |= 0x80;
digits[2] |= 0x80;
}
} break;
case state_ShowHour: {
if (tick_timer_fired(delay_DisplayChange)) {
decimalChanged = 1;
startShowTime();
break;
}
decimalChanged = 0;
for (uint8_t bi = 0; bi < 4; bi++)
digits[bi] = 0;
if (decimal[d_100hour]) {
digits[3] = digits2led[decimal[d_100hour]];
digits[2] = digits2led[decimal[d_10hour]];
digits[1] = digits2led[decimal[d_hour]];
} else if (decimal[d_10hour]) {
digits[3] = digits2led[decimal[d_10hour]];
digits[2] = digits2led[decimal[d_hour]];
} else {
digits[2] = digits2led[decimal[d_hour]];
}
digits[0] = 116; // 'h'
} break;
// case state_Sleep: {
/* nothing to do */
// } break;
}
} while (decimalChanged);
}
/*
* Called every seconds to update the visuals
*/
void second_timer_callback(struct tick_t *t)
{
t->delay = TICK_SECOND;
if (state & state_IncrementTime) {
pwmSet(pwmRunning);
decimalInc();
} else {
if (tick_timer_fired(delay_StopFade)) {
stopTimerCount++;
if (stopTimerCount >= STANDBY_DELAY) {
if (OCR0A < 0xff) {
if ((stopTimerCount & 0xf) == 0) // very gradualy fade out to zero (notch every 8 secs)
OCR0A++;
} else
sleepTimer(); // this will stop the one second timer
} else {
if (OCR0A != pwmStopped) {
if (OCR0A > pwmStopped)
OCR0A--;
else
OCR0A++;
}
}
}
}
updateTimerDisplay();
}
/*
* Called every tick, to push the four bytes of the counter into the shift registers
*/
void update_timer_callback(struct tick_t *t)
{
t->delay = 1;
updateTimer();
}
static void updateKeyValues()
{
uint8_t keyValue = (PINB & 3) | ((PINC & 1) << 2);
for (uint8_t ki = 0; ki < KEY_MAX; ki++)
if ((keyValue & (1 << ki)) != (lastKeyValue & (1 << ki)))
keyDebounce[ki] = 0;
lastKeyValue = keyValue;
}
// pin change interupt
ISR(PCINT0_vect) { updateKeyValues(); }
ISR(PCINT1_vect) { updateKeyValues(); }
int main(void)
{
PORTD = 0;
DDRD = 0xff;
// set power reduction register, disable everything we don't need
PRR = (1 << PRTWI) | (1 << PRTIM1) | (1 << PRUSART0) | (1 << PRADC);
DDRB = ~3; PORTB = 3; // pullups on PB0/PB1
DDRC = ~1; PORTC = 1; // pullups on PC0
PCMSK0 = (1 << PCINT1) | (1 << PCINT0); // enable interupt for these pins
PCMSK1 = (1 << PCINT8); // enable interupt for these pins
PCICR = (1 << PCIE0) | (1 << PCIE1); // PCIE0 enable pin interupt PCINT7..0.
tick_init();
startShowHours(4 * TICK_SECOND);
timer[delay_Second].callback = second_timer_callback;
timer[delay_Update].callback = update_timer_callback;
second_timer_callback(&timer[delay_Second]); // get started
update_timer_callback(&timer[delay_Update]); // get started
startTimer();
updateKeyValues();
keyState = lastKeyValue;
SET_SRESET();
spi_init();
pwmInit();
sei();
for (;;) { /* main event loop */
/* If our internal ideal of which keys are down is different from the one that has been
updated via the interrupts, we start counting. If the 'different' key(s) stays the same for
50ms, we declare it an 'event' and update the internal key state
*/
if (keyState != lastKeyValue) {
for (uint8_t ki = 0; ki < KEY_MAX; ki++)
if ((keyState & (1 << ki)) != (lastKeyValue & (1 << ki))) {
if (keyDebounce[ki] < 50) {
keyDebounce[ki]++;
if (keyDebounce[ki] == 50) {
keyEvent |= (1 << ki);
keyState = (keyState & ~(1 << ki)) | (lastKeyValue & (1 << ki));
}
}
}
/*
* if a Key changed state, let's check it out
*/
if (keyEvent) {
if ((keyEvent & (1 << KEY_START)) && (keyState & (1 << KEY_START)) == 0) {
if (!startTimer())
startShowHours(4 * TICK_SECOND);
}
if ((keyEvent & (1 << KEY_STOP)) && (keyState & (1 << KEY_STOP)) == 0) {
if (!stopTimer())
startShowHours(4 * TICK_SECOND);
}
if ((keyEvent & (1 << KEY_RESET)) && (keyState & (1 << KEY_RESET)) == 0) {
resetTimer();
}
keyEvent = 0;
updateTimerDisplay();
updateTimer();
}
delay_ms(1);
} else {
sleep_mode();
}
}
return 0;
}
|