1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
/*
uart_pty.c
Copyright 2008, 2009 Michel Pollet <buserror@gmail.com>
This file is part of simavr.
simavr is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
simavr is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with simavr. If not, see <http://www.gnu.org/licenses/>.
*/
#include "sim_network.h"
#include <stdlib.h>
#include <pthread.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <signal.h>
#ifdef __APPLE__
#include <util.h>
#else
#include <pty.h>
#endif
#include "uart_pty.h"
#include "avr_uart.h"
#include "sim_time.h"
#include "sim_hex.h"
DEFINE_FIFO(uint8_t,uart_pty_fifo);
//#define TRACE(_w) _w
#ifndef TRACE
#define TRACE(_w)
#endif
/*
* called when a byte is send via the uart on the AVR
*/
static void
uart_pty_in_hook(
struct avr_irq_t * irq,
uint32_t value,
void * param)
{
uart_pty_t * p = (uart_pty_t*)param;
TRACE(printf("uart_pty_in_hook %02x\n", value);)
uart_pty_fifo_write(&p->pty.in, value);
if (p->tap.s) {
if (p->tap.crlf && value == '\n')
uart_pty_fifo_write(&p->tap.in, '\r');
uart_pty_fifo_write(&p->tap.in, value);
}
}
// try to empty our fifo, the uart_pty_xoff_hook() will be called when
// other side is full
static void
uart_pty_flush_incoming(
uart_pty_t * p)
{
while (p->xon && !uart_pty_fifo_isempty(&p->pty.out)) {
TRACE(int r = p->pty.out.read;)
uint8_t byte = uart_pty_fifo_read(&p->pty.out);
TRACE(printf("uart_pty_flush_incoming send r %03d:%02x\n", r, byte);)
avr_raise_irq(p->irq + IRQ_UART_PTY_BYTE_OUT, byte);
if (p->tap.s) {
if (p->tap.crlf && byte == '\n')
uart_pty_fifo_write(&p->tap.in, '\r');
uart_pty_fifo_write(&p->tap.in, byte);
}
}
if (p->tap.s) {
while (p->xon && !uart_pty_fifo_isempty(&p->tap.out)) {
uint8_t byte = uart_pty_fifo_read(&p->tap.out);
if (p->tap.crlf && byte == '\r') {
uart_pty_fifo_write(&p->tap.in, '\n');
}
if (byte == '\n')
continue;
uart_pty_fifo_write(&p->tap.in, byte);
avr_raise_irq(p->irq + IRQ_UART_PTY_BYTE_OUT, byte);
}
}
}
avr_cycle_count_t
uart_pty_flush_timer(
struct avr_t * avr,
avr_cycle_count_t when,
void * param)
{
uart_pty_t * p = (uart_pty_t*)param;
uart_pty_flush_incoming(p);
/* always return a cycle NUMBER not a cycle count */
return p->xon ? when + avr_hz_to_cycles(p->avr, 1000) : 0;
}
/*
* Called when the uart has room in it's input buffer. This is called repeateadly
* if necessary, while the xoff is called only when the uart fifo is FULL
*/
static void
uart_pty_xon_hook(
struct avr_irq_t * irq,
uint32_t value,
void * param)
{
uart_pty_t * p = (uart_pty_t*)param;
TRACE(if (!p->xon) printf("uart_pty_xon_hook\n");)
p->xon = 1;
uart_pty_flush_incoming(p);
// if the buffer is not flushed, try to do it later
if (p->xon)
avr_cycle_timer_register(p->avr, avr_hz_to_cycles(p->avr, 1000),
uart_pty_flush_timer, param);
}
/*
* Called when the uart ran out of room in it's input buffer
*/
static void
uart_pty_xoff_hook(
struct avr_irq_t * irq,
uint32_t value,
void * param)
{
uart_pty_t * p = (uart_pty_t*)param;
TRACE(if (p->xon) printf("uart_pty_xoff_hook\n");)
p->xon = 0;
avr_cycle_timer_cancel(p->avr, uart_pty_flush_timer, param);
}
static void *
uart_pty_thread(
void * param)
{
uart_pty_t * p = (uart_pty_t*)param;
while (1) {
fd_set read_set, write_set;
int max = 0;
FD_ZERO(&read_set);
FD_ZERO(&write_set);
for (int ti = 0; ti < 2; ti++) if (p->port[ti].s) {
// read more only if buffer was flushed
if (p->port[ti].buffer_len == p->port[ti].buffer_done) {
FD_SET(p->port[ti].s, &read_set);
max = p->port[ti].s > max ? p->port[ti].s : max;
}
if (!uart_pty_fifo_isempty(&p->port[ti].in)) {
FD_SET(p->port[ti].s, &write_set);
max = p->port[ti].s > max ? p->port[ti].s : max;
}
}
// short, but not too short interval
struct timeval timo = { 0, 500 };
int ret = select(max+1, &read_set, &write_set, NULL, &timo);
if (!ret)
continue;
if (ret < 0)
break;
for (int ti = 0; ti < 2; ti++) if (p->port[ti].s) {
if (FD_ISSET(p->port[ti].s, &read_set)) {
ssize_t r = read(p->port[ti].s, p->port[ti].buffer,
sizeof(p->port[ti].buffer)-1);
p->port[ti].buffer_len = r;
p->port[ti].buffer_done = 0;
TRACE(if (!p->port[ti].tap)
hdump("pty recv", p->port[ti].buffer, r);)
}
if (p->port[ti].buffer_done < p->port[ti].buffer_len) {
// write them in fifo
while (p->port[ti].buffer_done < p->port[ti].buffer_len &&
!uart_pty_fifo_isfull(&p->port[ti].out)) {
int index = p->port[ti].buffer_done++;
TRACE(int wi = p->port[ti].out.write;)
uart_pty_fifo_write(&p->port[ti].out,
p->port[ti].buffer[index]);
TRACE(printf("w %3d:%02x (%d/%d) %s\n",
wi, p->port[ti].buffer[index],
p->port[ti].out.read,
p->port[ti].out.write,
p->xon ? "XON" : "XOFF");)
}
}
if (FD_ISSET(p->port[ti].s, &write_set)) {
uint8_t buffer[512];
// write them in fifo
uint8_t * dst = buffer;
while (!uart_pty_fifo_isempty(&p->port[ti].in) &&
dst < (buffer + sizeof(buffer)))
*dst++ = uart_pty_fifo_read(&p->port[ti].in);
size_t len = dst - buffer;
TRACE(size_t r =) write(p->port[ti].s, buffer, len);
TRACE(if (!p->port[ti].tap) hdump("pty send", buffer, r);)
}
}
/* DO NOT call this, this create a concurency issue with the
* FIFO that can't be solved cleanly with a memory barrier
uart_pty_flush_incoming(p);
*/
}
return NULL;
}
static const char * irq_names[IRQ_UART_PTY_COUNT] = {
[IRQ_UART_PTY_BYTE_IN] = "8<uart_pty.in",
[IRQ_UART_PTY_BYTE_OUT] = "8>uart_pty.out",
};
void
uart_pty_init(
struct avr_t * avr,
uart_pty_t * p)
{
memset(p, 0, sizeof(*p));
p->avr = avr;
p->irq = avr_alloc_irq(&avr->irq_pool, 0, IRQ_UART_PTY_COUNT, irq_names);
avr_irq_register_notify(p->irq + IRQ_UART_PTY_BYTE_IN, uart_pty_in_hook, p);
int hastap = (getenv("SIMAVR_UART_TAP") && atoi(getenv("SIMAVR_UART_TAP"))) ||
(getenv("SIMAVR_UART_XTERM") && atoi(getenv("SIMAVR_UART_XTERM"))) ;
for (int ti = 0; ti < 1 + hastap; ti++) {
int m, s;
if (openpty(&m, &s, p->port[ti].slavename, NULL, NULL) < 0) {
fprintf(stderr, "%s: Can't create pty: %s", __FUNCTION__, strerror(errno));
return ;
}
struct termios tio;
tcgetattr(m, &tio);
cfmakeraw(&tio);
tcsetattr(m, TCSANOW, &tio);
p->port[ti].s = m;
p->port[ti].tap = ti != 0;
p->port[ti].crlf = ti != 0;
printf("uart_pty_init %s on port *** %s ***\n",
ti == 0 ? "bridge" : "tap", p->port[ti].slavename);
}
pthread_create(&p->thread, NULL, uart_pty_thread, p);
}
void
uart_pty_stop(
uart_pty_t * p)
{
puts(__func__);
pthread_kill(p->thread, SIGINT);
for (int ti = 0; ti < 2; ti++)
if (p->port[ti].s)
close(p->port[ti].s);
void * ret;
pthread_join(p->thread, &ret);
}
void
uart_pty_connect(
uart_pty_t * p,
char uart)
{
// disable the stdio dump, as we are sending binary there
uint32_t f = 0;
avr_ioctl(p->avr, AVR_IOCTL_UART_GET_FLAGS(uart), &f);
f &= ~AVR_UART_FLAG_STDIO;
avr_ioctl(p->avr, AVR_IOCTL_UART_SET_FLAGS(uart), &f);
avr_irq_t * src = avr_io_getirq(p->avr, AVR_IOCTL_UART_GETIRQ(uart), UART_IRQ_OUTPUT);
avr_irq_t * dst = avr_io_getirq(p->avr, AVR_IOCTL_UART_GETIRQ(uart), UART_IRQ_INPUT);
avr_irq_t * xon = avr_io_getirq(p->avr, AVR_IOCTL_UART_GETIRQ(uart), UART_IRQ_OUT_XON);
avr_irq_t * xoff = avr_io_getirq(p->avr, AVR_IOCTL_UART_GETIRQ(uart), UART_IRQ_OUT_XOFF);
if (src && dst) {
avr_connect_irq(src, p->irq + IRQ_UART_PTY_BYTE_IN);
avr_connect_irq(p->irq + IRQ_UART_PTY_BYTE_OUT, dst);
}
if (xon)
avr_irq_register_notify(xon, uart_pty_xon_hook, p);
if (xoff)
avr_irq_register_notify(xoff, uart_pty_xoff_hook, p);
for (int ti = 0; ti < 1; ti++) if (p->port[ti].s) {
char link[128];
sprintf(link, "/tmp/simavr-uart%s%c", ti == 1 ? "tap" : "", uart);
unlink(link);
if (symlink(p->port[ti].slavename, link) != 0) {
fprintf(stderr, "WARN %s: Can't create %s: %s", __func__, link, strerror(errno));
} else {
printf("%s: %s now points to %s\n", __func__, link, p->port[ti].slavename);
}
}
if (getenv("SIMAVR_UART_XTERM") && atoi(getenv("SIMAVR_UART_XTERM"))) {
char cmd[256];
sprintf(cmd, "xterm -e picocom -b 115200 %s >/dev/null 2>&1 &",
p->tap.slavename);
system(cmd);
} else
printf("note: export SIMAVR_UART_XTERM=1 and install picocom to get a terminal\n");
}
|