1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKmath *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2011-12 Stanford University and the Authors. *
* Authors: Matthew Millard *
* Contributors: Michael Sherman *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKmath.h"
// Include the private implementation class declaration for testing purposes;
// this is not part of the API.
#include "../src/BicubicSurface_Guts.h"
#include <cstdio>
#include <iostream>
#include <fstream>
using namespace SimTK;
using namespace std;
/**
This function computes a standard central difference dy/dx.
If extrap_endpoints is set to 1, then the derivative at the end points
is estimated by linearly extrapolating the dy/dx values beside the end points
@param x domain vector
@param y range vector
@param extrap_endpoints:(false) Endpoints of the returned vector will be zero,
because a central difference is undefined at
these endpoints
(true) Endpoints are computed by linearly
extrapolating using a first difference from
the neighboring 2 points
@returns dy/dx computed using central differences
*/
Vector getCentralDifference(Vector x, Vector y, bool extrap_endpoints) {
Vector dy(x.size());
Real dx1,dx2;
Real dy1,dy2;
int size = x.size();
for(int i=1; i<x.size()-1; i++){
dx1 = x(i)-x(i-1);
dx2 = x(i+1)-x(i);
dy1 = y(i)-y(i-1);
dy2 = y(i+1)-y(i);
dy(i)= 0.5*dy1/dx1 + 0.5*dy2/dx2;
}
if(extrap_endpoints == true){
dy1 = dy(2)-dy(1);
dx1 = x(2)-x(1);
dy(0) = dy(1) + (dy1/dx1)*(x(0)-x(1));
dy2 = dy(size-2)-dy(size-3);
dx2 = x(size-2)-x(size-3);
dy(size-1) = dy(size-2) + (dy2/dx2)*(x(size-1)-x(size-2));
}
return dy;
}
/**
Return the value, and set of first partial deriviatives of a 2D function f
that defines a surface f(x,y). There are 4 functions of choice, which
can be specified by the paramter fcnType
@param x : x argument of the function f(x,y)
@param y : y argument of the function f(x,y)
@param fcnType [0,1,2,3,4]. Chooses one of the following functions for
f(x,y):
fcnType = 0 :f(x,y) = 0;
fcnType = 1 :f(x,y) = 2*x + y
fcnType = 2 :f(x,y) = xy
fcnType = 3 :f(x,y) = cos( (3x^2+y^2)^0.5 )
fcnType = 4 : f(x,y) = 3x^2 + y^2
*/
Vector getAnalyticFunction(Real x, Real y, int fcnType){
Vector fdF(4);
fdF = -1;
switch(fcnType){
case 0: //f(x,y) = 0;
fdF = 0;
break;
case 1: //f(x,y) = 2*x + y
fdF(0) = 2*x + y; //f
fdF(1) = 2; //fx
fdF(2) = 1; //fy
fdF(3) = 0; //fxy
break;
case 2: //f(x,y) = xy
fdF(0) = x*y; //f
fdF(1) = y; //fx
fdF(2) = x; //fy
fdF(3) = 1; //fxy
break;
case 3: //f(x,y) = cos( (3x^2+y^2)^0.5 );
//f
fdF(0) = cos( sqrt((3*x*x + y*y)) );
//fx - exported from Maple (didn't trust myself not to make a typing mistake
fdF(1) = -0.3e1*x*sin( sqrt( (3*x*x + y*y)) ) * pow( (3*x*x + y*y + 1e-6), -0.1e1 / 0.2e1) ;
//fy
fdF(2) = -sin(sqrt( (3 * x * x + y * y))) * pow((3 * x * x + y * y + 1e-6), -0.1e1 / 0.2e1) * y;
//fxy
fdF(3) = -0.3e1 * cos(sqrt((3 * x * x + y * y)))/(3 * x * x + y * y + 1e-6) * y * x + 0.3e1 * sin(sqrt( (3 * x * x + y * y))) * pow( (3 * x * x + y * y + 1e-6), -0.3e1 / 0.2e1) * x * y;
break;
case 4: //f(x,y) = 3x^2 + y^2
fdF(0) = 3*x*x + y*y;
fdF(1) = 6*x;
fdF(2) = 2*y;
fdF(3) = 0;
break;
default:
cout << "Invalid fcnType in testBicubicSurface.cpp: getAnayticFunction";
}
return fdF;
}
/**
This function will generate a rectangular grid that spans from xmin to xmax
in size number of steps, and also from ymin to ymax in size number of steps.
Although the grid spacing can be different in the x and y dimensions, within
these dimensions the grids are equally spaced (by xDelta and yDelta).
An analytic function (chosen using the fcnType variable) is used to generate
f(x,y) values at each grid point. These values are used to initialize a
bicubic surface using the advanced test constructor that sets the partial
derivatives fx, fy, and fxy directly.
The values of the bicubic surface are evaluated at the grid points, we'll
call them knot points, and are asserted to be equal to the analytic function
at these values. Additionally, every grid is evaluated at its center, and
the value of the bicubic surface is asserted to be equal to the analytic
function at the mid point to within a tolerance. This tolerance is a function
of the grid size. This tolerance has been determined hueristically, so if you
try a new function and the test fails, look closely at the values to see if
its really failing or if the tolerance is just too tight.
@params xmin: the minimum value of the x,y grid in the x dimension
@params xmax: the maximum value of the x,y grid in the x dimension
@params ymin: the minimum value of the y grid in the y dimension
@params ymax: the maximum value of the y grid in the y dimension
@params size: the number of steps to take to go from xmin to xmax, and
ymin to ymax
@params fcnType: An integer value [0-4] that picks an analytical function
to use for comparision purposes.
@params flag_verbosePrint: false: print only the maximum error at the
knot points, mid points and the
tolerance used at the assertions
true: Additionally print the values of f, fx,
fy, and fxy at the knots and the mid
points if there are less than 10 steps
@params flag_matlabcompre: true: Will print
@returns nothing
*/
void testBicubicAgainstAnalyticFcn(Real xmin, Real xmax, Real ymin,
Real ymax, int size, int fcnType, bool flag_verbosePrint,
bool flag_matlabcompare){
Real deltaX,deltaY;
deltaX = (xmax-xmin)/(size-1);
deltaY = (ymax-ymin)/(size-1);
//Generate initialization data
// two constant spaced vectors & height matrix & first derivatives to initialize the grid
Vector x(size), y(size);
Matrix z(size,size),zx(size,size),zy(size,size),zxy(size,size);
//Generate test data to evaluate the error of the surface interpolation at the mid
//point of each grid square. The `M' stands for mid-point
Vector xM(size-1), yM(size-1);
Matrix zM(size-1,size-1),zMx(size-1,size-1),zMy(size-1,size-1),zMxy(size-1,size-1);
for (int i = 0; i < size; i++) {
x(i) = xmin + ((Real)i)*deltaX;
y(i) = ymin + ((Real)i)*deltaY;
if(i<size-1){
xM(i) = xmin + deltaX/(Real)2 + ((Real)i)*deltaX;
yM(i) = ymin + deltaY/(Real)2 + ((Real)i)*deltaY;
}
}
switch(fcnType){
case 0:
cout << "Testing bicubic surface against: f(x,y) = 0" <<endl;
break;
case 1:
cout << "Testing bicubic surface against: f(x,y) = 2*x+y" <<endl;
break;
case 2:
cout << "Testing bicubic surface against: f(x,y) = x*y" <<endl;
break;
case 3:
cout << "Testing bicubic surface against: f(x,y) = cos( (3*x^2 + y^2)^0.5 ) " <<endl;
break;
case 4:
cout << "Testing bicubic surface against: f(x,y) = 3*x^2 + y^2 " <<endl;
break;
}
Vector fdF(4);
Vector fdFM(4);
fdF = 0;
fdFM= 0;
for(int i=0; i<size;i++){
for(int j=0; j<size; j++){
fdF = getAnalyticFunction(x(i),y(j),fcnType);
//printf("i:%d, j:%d, x:%f, y:%f, f:%f, fx:%f, fy:%f, fxy:%f\n",i,j,x(i),y(j),fdF(0),fdF(1),fdF(2),fdF(3));
z(i,j) = fdF(0);
zx(i,j) = fdF(1);
zy(i,j) = fdF(2);
zxy(i,j) = fdF(3);
if( i < size-1 && j < size-1){
fdFM = getAnalyticFunction(xM(i),yM(j),fcnType);
zM(i,j) = fdFM(0);
zMx(i,j) = fdFM(1);
zMy(i,j) = fdFM(2);
zMxy(i,j) = fdFM(3);
}
}
}
//Initialize the Bicubic Surface
Real smoothness = 0.0;
BicubicSurface bcs(x, y, z, zx, zy, zxy);
const BicubicSurface::Guts& bcsg = bcs.getGuts();
BicubicFunction bcsf(bcs);
if(flag_verbosePrint == true && size <= 10){
cout << "\n\nx:\n" << bcsg.getx() << endl;
cout << "\n\ny:\n" << bcsg.gety() << endl;
cout << "\n\nff:\n" << bcsg.getff() << endl;
}
//Test it at the knot points, mid grid and compute the error
Vector errV(4); //Knot point error vector: f,fx,fy,fxy error
Vector errVM(4);//Mid grid error vector: f,fx,fy,fxy error
Vector bcsV(4); //Spline surface values at the knots
Vector bcsMV(4); //Spline surface values at the midpoints
Vector XY(2); //XY value at the knot points;
Vector XYM(2); //XY value at mid grid;
const int ifxy[] = {1,0};
const int ifxx[] = {0,0};
const int ifyy[] = {1,1};
const int ifxxx[] = {0,0,0};
const int ifxxy[] = {0,0,1};
const int ifyyy[] = {1,1,1};
const int ifxyy[] = {1,1,0};
Array_<int> fx(1); //Arguments required to get the correct derivative
Array_<int> fy(1); // from the calcDerivatie interface
Array_<int> fxy(ifxy,ifxy+2);
Array_<int> fxx(ifxx,ifxx+2);
Array_<int> fyy(ifyy,ifyy+2);
Array_<int> fxxx(ifxxx,ifxxx+3);
Array_<int> fyyy(ifyyy,ifyyy+3);
Array_<int> fxxy(ifxxy,ifxxy+3);
Array_<int> fxyy(ifxyy,ifxyy+3);
fx[0] =0;
fy[0] =1;
errV = 0;
errVM = 0;
Matrix fk(size,size),fxk(size,size),fyk(size,size);
Matrix fxyk(size,size),fxxk(size,size),fyyk(size,size);
Matrix fxxyk(size,size),fxyyk(size,size);
Matrix fxxxk(size,size),fyyyk(size,size);
Matrix fMk(size-1,size-1),fxMk(size-1,size-1),fyMk(size-1,size-1);
Matrix fxyMk(size-1,size-1),fxxMk(size-1,size-1),fyyMk(size-1,size-1);
Matrix fxxyMk(size-1,size-1),fxyyMk(size-1,size-1);
Matrix fxxxMk(size-1,size-1),fyyyMk(size-1,size-1);
for(int i=0; i<size; i++){
for(int j=0; j<size; j++){
XY(0)=x(i);
XY(1)=y(j);
fk(i,j) = bcsf.calcValue(XY);
fxk(i,j) = bcsf.calcDerivative(fx,XY);
fyk(i,j) = bcsf.calcDerivative(fy,XY);
fxyk(i,j) = bcsf.calcDerivative(fxy,XY);
fxxk(i,j) = bcsf.calcDerivative(fxx,XY);
fyyk(i,j) = bcsf.calcDerivative(fyy,XY);
fxxxk(i,j) = bcsf.calcDerivative(fxxx,XY);
fyyyk(i,j) = bcsf.calcDerivative(fyyy,XY);
fxxyk(i,j) = bcsf.calcDerivative(fxxy,XY);
fxyyk(i,j) = bcsf.calcDerivative(fxyy,XY);
if( errV(0) < abs(fk(i,j) - z(i,j)) )
errV(0) = abs(fk(i,j) - z(i,j));
if( errV(1) < abs(fxk(i,j) - zx(i,j)) )
errV(1) = abs(fxk(i,j) - zx(i,j));
if( errV(2) < abs(fyk(i,j) - zy(i,j)) )
errV(2) = abs(fyk(i,j) - zy(i,j));
if( errV(3) < abs(fxyk(i,j) - zxy(i,j)) )
errV(3) = abs(fxyk(i,j) - zxy(i,j));
/*if(abs(errV(0)) > 1e-4 ){
printf("Analytic (x,y),f,fx,fy,fxy: (%g,%g),%g, %g, %g, %g\n",
x(i),y(j),z(i,j),zx(i,j),zy(i,j),zxy(i,j));
printf("Approx. (x,y),f,fx,fy,fxy: (%g,%g),%g, %g, %g, %g\n\n",
x(i),y(j),fk(i,j),fxk(i,j),fyk(i,j),fxyk(i,j));
bcs.setDebug(true);
}*/
if(i<size-1 && j<size-1){
XYM(0)=xM(i);
XYM(1)=yM(j);
fMk(i,j) = bcsf.calcValue(XYM);
fxMk(i,j) = bcsf.calcDerivative(fx,XYM);
fyMk(i,j) = bcsf.calcDerivative(fy,XYM);
fxyMk(i,j) = bcsf.calcDerivative(fxy,XYM);
fxxMk(i,j) = bcsf.calcDerivative(fxx,XYM);
fyyMk(i,j) = bcsf.calcDerivative(fyy,XYM);
fxxxMk(i,j) = bcsf.calcDerivative(fxxx,XYM);
fyyyMk(i,j) = bcsf.calcDerivative(fyyy,XYM);
fxxyMk(i,j) = bcsf.calcDerivative(fxxy,XYM);
fxyyMk(i,j) = bcsf.calcDerivative(fxyy,XYM);
if( errVM(0) < abs(fMk(i,j) - zM(i,j)) )
errVM(0) = abs(fMk(i,j) - zM(i,j));
if( errVM(1) < abs(fxMk(i,j) - zMx(i,j)) )
errVM(1) = abs(fxMk(i,j) - zMx(i,j));
if( errVM(2) < abs(fyMk(i,j) - zMy(i,j)) )
errVM(2) = abs(fyMk(i,j) - zMy(i,j));
if( errVM(3) < abs(fxyMk(i,j) - zMxy(i,j)) )
errVM(3) = abs(fxyMk(i,j) - zMxy(i,j));
}
}
}
if(flag_verbosePrint == true && size <= 10){
cout << "\n\n Err f (@knot, calc):\n" << fk-z << endl;
cout << "\n\n Err fx (@knot, calc):\n" << fxk -zx << endl;
cout << "\n\n Err fy (@knot, calc):\n" << fyk -zy << endl;
cout << "\n\n Err fxy (@knot, calc):\n" << fxyk -zxy << endl;
if(flag_matlabcompare == true){
cout << "\n\n x (@knot):\n" << x << endl;
cout << "\n\n x (@knot):\n" << y << endl;
cout << "\n\n f (@knot, calc):\n" << fk << endl;
cout << "\n\n fx (@knot, calc):\n" << fxk << endl;
cout << "\n\n fy (@knot, calc):\n" << fyk << endl;
cout << "\n\n fxy (@knot, calc):\n" << fxyk << endl;
cout << "\n\n fxx (@knot, calc):\n" << fxxk << endl;
cout << "\n\n fyy (@knot, calc):\n" << fyyk << endl;
cout << "\n\n fxxx (@knot, calc):\n" << fxxxk << endl;
cout << "\n\n fyyy (@knot, calc):\n" << fyyyk << endl;
cout << "\n\n fxxy (@knot, calc):\n" << fxxyk << endl;
cout << "\n\n fxyy (@knot, calc):\n" << fxyyk << endl;
cout << "\n\n x (@mid):\n" << xM << endl;
cout << "\n\n y (@mid):\n" << yM << endl;
cout << "\n\n f (@mid, calc):\n" << fMk << endl;
cout << "\n\n fx (@mid, calc):\n" << fxMk << endl;
cout << "\n\n fy (@mid, calc):\n" << fyMk << endl;
cout << "\n\n fxy (@mid, calc):\n" << fxyMk << endl;
cout << "\n\n fxx (@mid, calc):\n" << fxxMk << endl;
cout << "\n\n fyy (@mid, calc):\n" << fyyMk << endl;
cout << "\n\n fxxx (@mid, calc):\n" << fxxxMk << endl;
cout << "\n\n fyyy (@mid, calc):\n" << fyyyMk << endl;
cout << "\n\n fxxy (@mid, calc):\n" << fxxyMk << endl;
cout << "\n\n fxyy (@mid, calc):\n" << fxyyMk << endl;
}
}
Real mid_tol = (1e-1)*(deltaX/2+deltaY/2);
Real knot_tol = 0;
if(flag_verbosePrint == true){
printf(" Smoothness set to : %f\n", smoothness);
printf(" f: err@knots %f, err@mid %f\n",errV(0),errVM(0));
printf(" fx: err@knots %f, err@mid %f\n",errV(1),errVM(1));
printf(" fy: err@knots %f, err@mid %f\n",errV(2),errVM(2));
printf(" fxy:err@knots %f, err@mid %f\n\n",errV(3),errVM(3));
printf(" Test tolerance for f(x,y) @knots : %f, @mid: %f\n\n",
knot_tol,mid_tol);
cout<< " First derivatives are not tested because these derivatives" << endl;
cout<< " shouldn't match: the bicubic interpolation estimates" << endl;
cout<< " these derivatives using the derivative of a natural" << endl;
cout<< " cubic spline" << endl;
}
//See if the values for f, fx, fy and fxy match the knot points
//exactly
SimTK_TEST_EQ(fk,z);
SimTK_TEST_EQ(fxk,zx);
SimTK_TEST_EQ(fyk,zy);
SimTK_TEST_EQ_TOL(fxyk,zxy,1e-10);
//See if the maximum error at the mid points are acceptable
SimTK_TEST_EQ_TOL(errVM(0),0,mid_tol);
}
/**
This function will construct a single bicubic surface patch that goes from xmin,ymin
to xmax, ymax. A series of points within this patch will be computed using the bicubic
interpolation method, and the coefficients will be checked to ensure that the
relationship between the 16 coefficients, aV, and the 16 corner conditions, fV, are
related to eachother through the endpoint conditions that define a bicubic surface
interpolation (http://en.wikipedia.org/wiki/Bicubic_interpolation)
fV = A*aV
aV: [a00, a10 a20 a30,
a01 a11 a21 a31,
a02 a12 a22 a32,
a03 a13 a23 a33]^T
fV:[f(0,0) f(1,0) f(0,1) f(1,1)
fx(0,0) fx(1,0) fx(0,1) fx(1,1)
fy(0,0) fy(1,0) fy(0,1) fy(1,1)
fxy(0,0) fxy(1,0) fxy(0,1) fxy(1,1)]
A is a 16x16 matrix that defines the relationship between the polynomial that enforces
the conditions that the polynomial has the same values and partial derivatives as the
function at the corners. To see this matrix in detail refer to the wikipedia page,
or to the code below. Note that A^(-1) is the one that is shown in the wikipedia page,
where as the one in the test code is a hand derived version of A.
@params xmin: the minimum value of the x,y grid in the x dimension
@params xmax: the maximum value of the x,y grid in the x dimension
@params ymin: the minimum value of the y grid in the y dimension
@params ymax: the maximum value of the y grid in the y dimension
@params fcnType: An integer value [0-4] that picks an analytical function
to use for comparision purposes.
@params smoothness: A value of 0 will make sure the patch goes through the
desired points exactly. A value between 0 and 1 will
relax the surface.
@returns nothing
*/
void testBicubicCoefficients(Real xmin,Real xmax,Real ymin, Real ymax,
int fcnType, Real smoothness){
int size = 4;
const Real A[] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0,
0, 0, 0, 0, 0, 1, 2, 3, 0, 2, 4, 6, 0, 3, 6, 9};
/*Ok we need at least a 4x4 grid to use the default bicubic surface
interpolation because the constructor forms the partial derivatives
using natural cubic splines. Natural cubic splines require at least
4 knot points to be defined.
*/
Vector xV(size), yV(size), xeV(2*size-1), yeV(2*size-1);
Matrix zM(size,size);
Vector tmpV(size);
Vec<16> fT, aV, fV, fVerr;
Mat<16,16> AM(A), ATest;
//Initialize the grid
for(int i=0; i<size; i++){
xV(i) = xmin + i*(xmax-xmin)/((Real)size-1.0);
yV(i) = xmin + i*(ymax-ymin)/((Real)size-1.0);
}
for(int i=0; i<size;i++){
for(int j=0; j<size; j++){
tmpV = getAnalyticFunction(xV(i),yV(j),fcnType);
zM(i,j) = tmpV(0);
}
}
//Create the bicubic surface using the regular constuctor
BicubicSurface bcs(xV, yV, zM, smoothness);
const BicubicSurface::Guts& bcsg = bcs.getGuts();
//Initialize the grid to evaluate the surface at the knots and at
//the midpoints
for(int i=0; i<(2*size-1); i++){
xeV(i) = xmin + i*(xmax-xmin)/((Real)(2*size)-1.0);
yeV(i) = ymin + i*(ymax-ymin)/((Real)(2*size)-1.0);
}
//Evaluate the surface at the knot points, and at the
//mid grid points and test if fV = A*aV holds
Vec2 aXY;
for(int i=0; i<(2*size-1); i++){
for(int j=0; j<(2*size-1); j++){
aXY = Vec2(xeV(i), yeV(j));
fV = bcsg.getPatchFunctionVector(aXY);
aV = bcsg.getPatchBicubicCoefficients(aXY);
fT = AM*aV;
fVerr = fV-fT;
//printf(" (%d,%d) ",i,j);
//cout << fVerr.norm() << endl;
//Due to the relatively large number of floating point
//operations required, the tolerance needs to be 1e-12
SimTK_TEST_EQ_TOL(fV,fT,1e-12);
}
}
}
/**
This function will check that numerical derivatives of fx, fy, fxy, fxx,
fyy, fxyy, fxxy, fxxx and fyyy match the values that the Bicubic surface
function are returning. In addition, the surfaces that are defined by fx,
fy, fxy, fxx, and fyy will be tested by continuity. Continuity is checked
by moving a distance away from the knot point, computing the local derivative
at the point along the direction towards the knot point, and then linearly
extrapolating back to the knot point. If the linear extrapolation (of f, fx
fy, fxy, fxx or fyy) matches the value of the function (f, fx, fy, fxy, fxx
or fyy) at the knot point closely, then we can have some confidence that the
surface is continuous. I say confidence rather than certaintity because for
certaintity we'd have to take the limit as that distance approches zero, and
that doesn't make sense in floating point.
@params xmin: the minimum value of the x,y grid in the x dimension
@params xmax: the maximum value of the x,y grid in the x dimension
@params ymin: the minimum value of the y grid in the y dimension
@params ymax: the maximum value of the y grid in the y dimension
@params fcnType: An integer value [0-4] that picks an analytical function
to use for comparision purposes.
@params smoothness: A value of 0 will make sure the patch goes through the
desired points exactly. A value between 0 and 1 will
relax the surface.
@params verbosePrint: true: will print all of the detailed results for the
derivative comparisons, and the continuity
checks
@returns nothing
*/
void testBicubicConsistencyContinuity(Real xmin, Real xmax, Real ymin,
Real ymax, int fcnType, Real smoothness, bool verbosePrint){
int size = 4;
Real minstep = min((xmax-xmin),(ymax-ymin));
Real dh = (minstep/(Real)size)/100.0;
Vector xV(size), yV(size),dxV(4),dyV(4), tmpV(4), aXY(2);
Matrix zM(size,size);
//Initialize the 4x4 grid with a non-even grid spacing
Real spacingX =1*(xmax-xmin)/((Real)size-1.0);
Real spacingY =1*(ymax-ymin)/((Real)size-1.0);
for(int i=0; i<size; i++){
xV(i) = xmin + i*(xmax-xmin)/((Real)size-1.0);
yV(i) = xmin + i*(ymax-ymin)/((Real)size-1.0);
}
//Adjust the interior points a little bit to make
//the spacing of the grid non-even. This will test
//that BicubicSurface correctly handling the stretching
//of each individual patch correctly.
for(int i=1; i<size-1;i++){
xV(i) = xV(i) + 0.1*spacingX*pow(-1.0,i);
yV(i) = yV(i) + 0.1*spacingY*pow(-1.0,i);
}
if(verbosePrint==true){
cout << "X Spacing: " << xV << endl;
cout << "Y Spacing: " << yV << endl;
}
for(int i=0; i<size;i++){
for(int j=0; j<size; j++){
tmpV = getAnalyticFunction(xV(i),yV(j),fcnType);
zM(i,j) = tmpV(0);
}
}
//Create the bicubic surface
BicubicSurface bcs(xV, yV, zM, smoothness);
BicubicFunction bcsf(bcs);
//Initialize the vectors dxV and dyV to be near an interior knot
//with the inner patch a distance h away from the knot point
//and the second patch a distance h+dx away from the knot point
int tsize = 17;
Real tsizeh = floor((Real)tsize/2.0);
Matrix meshX(tsize,tsize), meshY(tsize,tsize);
aXY(0) = xV(1);
aXY(1) = yV(1);
//Set up all of the partial derivative vectors required for the bench mark
Array_<int> derivX(1);
Array_<int> derivY(1);
Array_<int> derivXY(2);
Array_<int> derivXX(2);
Array_<int> derivYY(2);
Array_<int> derivXXY(3);
Array_<int> derivXYY(3);
Array_<int> derivXXX(3);
Array_<int> derivYYY(3);
Array_<int> deriv4X(4);
Array_<int> deriv4Y(4);
derivX[0] = 0;
derivY[0] = 1;
derivXY[0]= 0;
derivXY[1]= 1;
derivXX[0]= 0;
derivXX[1]= 0;
derivYY[0]= 1;
derivYY[1]= 1;
derivXXY[0]= 0;
derivXXY[1]= 0;
derivXXY[2]= 1;
derivXYY[0]= 0;
derivXYY[1]= 1;
derivXYY[2]= 1;
derivXXX[0]= 0;
derivXXX[1]= 0;
derivXXX[2]= 0;
derivYYY[0]= 1;
derivYYY[1]= 1;
derivYYY[2]= 1;
for(int i=0;i<4;i++){
deriv4X[i]=0;
deriv4Y[i]=1;
}
//Function computed derivatives
Matrix bcsF(tsize,tsize), bcsFx(tsize,tsize), bcsFy(tsize,tsize);
Matrix bcsFxy(tsize,tsize), bcsFxx(tsize,tsize), bcsFyy(tsize,tsize);
Matrix bcsFxxy(tsize,tsize), bcsFxyy(tsize,tsize), bcsFxxx(tsize,tsize);
Matrix bcsFyyy(tsize,tsize), bcsF4x(tsize,tsize), bcsF4y(tsize,tsize);
//Numerically computed derivatives
Matrix numFx(tsize,tsize), numFy(tsize,tsize);
Matrix numFxy(tsize,tsize), numFxx(tsize,tsize), numFyy(tsize,tsize);
Matrix numFxxy(tsize,tsize), numFxyy(tsize,tsize), numFxxx(tsize,tsize);
Matrix numFyyy(tsize,tsize);
aXY(0) = xV(1);
aXY(1) = yV(1);
//Sample the surface about aXY over a 17x17 grid
for(int i=0;i<tsize;i++){
for(int j=0;j<tsize;j++){
meshX(i,j) = (xV(1) - tsizeh*dh) + dh*i;
meshY(i,j) = (yV(1) - tsizeh*dh) + dh*j;
aXY(0) = meshX(i,j);
aXY(1) = meshY(i,j);
bcsF(i,j) = bcsf.calcValue(aXY);
bcsFx(i,j)= bcsf.calcDerivative(derivX,aXY);
bcsFy(i,j)= bcsf.calcDerivative(derivY,aXY);
bcsFxy(i,j)= bcsf.calcDerivative(derivXY,aXY);
bcsFxx(i,j)= bcsf.calcDerivative(derivXX,aXY);
bcsFyy(i,j)= bcsf.calcDerivative(derivYY,aXY);
bcsFxxy(i,j)= bcsf.calcDerivative(derivXXY,aXY);
bcsFxyy(i,j)= bcsf.calcDerivative(derivXYY,aXY);
bcsFxxx(i,j)= bcsf.calcDerivative(derivXXX,aXY);
bcsFyyy(i,j)= bcsf.calcDerivative(derivYYY,aXY);
//Should be zero, just testing.
bcsF4x(i,j) = bcsf.calcDerivative(deriv4X,aXY);
bcsF4y(i,j) = bcsf.calcDerivative(deriv4Y,aXY);
}
}
//Now compute the equivalent numerical derivatives using
//central differences on the values in bcsF
for(int i=0;i<tsize;i++){
numFx(i) = getCentralDifference(meshX(i), bcsF(i), true);
numFxx(i) = getCentralDifference(meshX(i), numFx(i), true);
numFxxx(i) = getCentralDifference(meshX(i), numFxx(i), true);
numFy[i] = ~getCentralDifference(~meshY[i], ~bcsF[i], true);
numFyy[i] = ~getCentralDifference(~meshY[i], ~numFy[i], true);
numFyyy[i] = ~getCentralDifference(~meshY[i], ~numFyy[i], true);
}
for(int i=0;i<tsize;i++){
numFxy[i] = ~getCentralDifference(~meshY[i], ~numFx[i], true);
numFxxy[i] = ~getCentralDifference(~meshY[i], ~numFxx[i], true);
}
for(int i=0;i<tsize;i++){
numFxyy[i] = ~getCentralDifference(~meshY[i], ~numFxy[i], true);
}
Real tol1 = dh;
Real tol2 = dh*10;
Real tol3 = dh*100;
Vector dirXY(2);
for(int i=3;i<tsize-3;i++){
for(int j=3;j<tsize-3;j++){
//1. Now compare the inner 10x10 numerical values
// for each of the derivatives to the values computed
// by the bicubic function
if(verbosePrint==true){
printf("\n\nCheck Derivatives (i,j): %d, %d", i,j);
printf("\nbcs: fx:%f fy:%f" , bcsFx(i,j),bcsFy(i,j));
printf("\nnum: fx:%f fy:%f" , numFx(i,j),numFy(i,j));
printf("\n\n|bcs: fxy:%f fxx:%f fyy:%f ",
bcsFxy(i,j), bcsFxx(i,j), bcsFyy(i,j));
printf("\nnum: fxy:%f fxx:%f fyy:%f ",
numFxy(i,j), numFxx(i,j), numFyy(i,j));
printf("\n\n|bcs: fxxy:%f fxyy:%f fxxx:%f fyyy:%f",
bcsFxxy(i,j), bcsFxyy(i,j), bcsFxxx(i,j), bcsFyyy(i,j));
printf("\nnum: fxxy:%f fxyy:%f fxxx:%f fyyy:%f",
numFxxy(i,j), numFxyy(i,j), numFxxx(i,j), numFyyy(i,j));
}
SimTK_TEST_EQ_TOL(bcsFx(i,j),numFx(i,j),tol1);
SimTK_TEST_EQ_TOL(bcsFy(i,j),numFy(i,j),tol1);
SimTK_TEST_EQ_TOL(bcsFxy(i,j),numFxy(i,j),tol2);
SimTK_TEST_EQ_TOL(bcsFxx(i,j),numFxx(i,j),tol2);
SimTK_TEST_EQ_TOL(bcsFyy(i,j),numFyy(i,j),tol2);
/*The numerical 3rd derivatives will not match at the boundaries
between patches. They are discontinuous in this region in the
formulation, and make the numerical derivatives around these
boundaries poorly estimated.*/
//2. Continuity testing:
//Test that a linear extrapolation from the current location
//to the knot point matches the value of the knot point
if(j != tsizeh || i != tsizeh){
dirXY(0) = meshX(i,j)-meshX(8,8);
dirXY(1) = meshY(i,j)-meshY(8,8);
Real dist = pow(dirXY(0)*dirXY(0) + dirXY(1)*dirXY(1),0.5);
//Test for surface continuity
Real f0 = bcsF(i,j) -(bcsFx(i,j)*dirXY(0)
+ bcsFy(i,j)*dirXY(1));
Real err0 =f0-bcsF(8,8);
Real errR0= abs(err0)/( abs(bcsF(8,8)) + 1e-10);
//Test for fx derivative continuity
Real f1x = bcsFx(i,j) -(bcsFxx(i,j)*dirXY(0));
Real err1x =f1x-bcsFx(8,8);
Real errR1x= abs(err1x)/( abs(bcsFx(8,8)) + 1e-10);
//Test for fy derivative continity
Real f1y = bcsFy(i,j) -(bcsFyy(i,j)*dirXY(1));
Real err1y =f1y-bcsFy(8,8);
Real errR1y= abs(err1y)/( abs(bcsFy(8,8)) + 1e-10);
//Test for fxx derivative continuity
Real f2x = bcsFxx(i,j) -(bcsFxxx(i,j)*dirXY(0));
Real err2x =f2x-bcsFxx(8,8);
Real errR2x= abs(err2x)/( abs(bcsFxx(8,8)) + 1e-10);
//Test for fyy derivative continuity
Real f2y = bcsFyy(i,j) -(bcsFyyy(i,j)*dirXY(1));
Real err2y =f2y-bcsFyy(8,8);
Real errR2y= abs(err2y)/( abs(bcsFyy(8,8)) + 1e-10);
//Test for fxy derivative continuity
Real fxy = bcsFxy(i,j) -(bcsFxxy(i,j)*dirXY(0) + bcsFxyy(i,j)*dirXY(1));
Real errxy =fxy-bcsFxy(8,8);
Real errRxy= abs(errxy)/( abs(bcsFxy(8,8)) + 1e-10);
if(verbosePrint==true){
printf("\n\nCheck Continuity (i,j): %d, %d", i,j);
printf("\nf(x,y) : %f num f : %f errR: %f"
, bcsF(8,8), f0, errR0);
printf("\nfx(x,y) : %f num fx : %f errR: %f"
, bcsFx(8,8), f1x, errR1x);
printf("\nfy(x,y) : %f num fx : %f errR: %f"
, bcsFy(8,8), f1y, errR1y);
printf("\nfxx(x,y): %f num fxx: %f errR: %f"
, bcsFxx(8,8),f2x, errR2x);
printf("\nfyy(x,y): %f num fyy: %f errR: %f"
, bcsFyy(8,8),f2y, errR2y);
printf("\nfxy(x,y): %f num fxy: %f errR: %f"
, bcsFxy(8,8),fxy, errRxy);
}
SimTK_TEST_EQ_TOL(errR0,0, dh);
SimTK_TEST_EQ_TOL(errR1x,0,dh*5);
SimTK_TEST_EQ_TOL(errR1y,0,dh*5);
SimTK_TEST_EQ_TOL(errR2x,0,dh*5);
SimTK_TEST_EQ_TOL(errR2y,0,dh*5);
SimTK_TEST_EQ_TOL(errRxy,0,dh*10);
}
}
}
}
/**
This test function will create a bicubic surface and then test that
a version of this surface initialized using the copy constructor and
the equal operator returns the same values over the surface as the original
*/
void testCopyConstEqOp(){
int fcnType = 4;
Real xmin = 0;
Real xmax = 2*Pi;
Real ymin = 0;
Real ymax = Pi;
Real smoothness = 0.1;
int size = 4;
Real minstep = min((xmax-xmin),(ymax-ymin));
Real dh = (minstep/(Real)size)/100.0;
Vector xV(size), yV(size),dxV(4),dyV(4), tmpV(4), aXY(2);
Matrix zM(size,size);
//Initialize the 4x4 grid with a non-even grid spacing
Real spacingX =1*(xmax-xmin)/((Real)size-1.0);
Real spacingY =1*(ymax-ymin)/((Real)size-1.0);
for(int i=0; i<size; i++){
xV(i) = xmin + i*(xmax-xmin)/((Real)size-1.0);
yV(i) = xmin + i*(ymax-ymin)/((Real)size-1.0);
}
//Adjust the interior points a little bit to make
//the spacing of the grid non-even. This will test
//that BicubicSurface correctly handling the stretching
//of each individual patch correctly.
for(int i=1; i<size-1;i++){
xV(i) = xV(i) + 0.1*spacingX*pow(-1.0,i);
yV(i) = yV(i) + 0.1*spacingY*pow(-1.0,i);
}
/*if(verbosePrint==true){
cout << "X Spacing: " << xV << endl;
cout << "Y Spacing: " << yV << endl;
}*/
for(int i=0; i<size;i++){
for(int j=0; j<size; j++){
tmpV = getAnalyticFunction(xV(i),yV(j),fcnType);
zM(i,j) = tmpV(0);
}
}
//Create the bicubic surface
BicubicSurface bcs(xV, yV, zM, smoothness);
BicubicSurface bcsCC(bcs);
BicubicSurface bcsEQOP;
bcsEQOP = bcs;
// Extract the implementation objects so we can look at the internals.
const BicubicSurface::Guts& bcsg = bcs.getGuts();
const BicubicSurface::Guts& bcsCCg = bcsCC.getGuts();
const BicubicSurface::Guts& bcsEQOPg = bcsEQOP.getGuts();
// These should all be the same underlying object, and the reference
// count should be 3.
SimTK_TEST(&bcsCCg == &bcsg);
SimTK_TEST(&bcsEQOPg == &bcsg);
SimTK_TEST(bcsg.getReferenceCount() == 3);
// Create Function objects referencing the surface(s).
BicubicFunction bcsf(bcs);
BicubicFunction bcsCCf(bcs);
BicubicFunction bcsEQOPf(bcs);
// Reference count should now be 6.
SimTK_TEST(bcsg.getReferenceCount() == 6);
// These tests are meaningless now if the above ones succeed, since
// obviously if they are the same object they will produce the same info!
//Just to be extra sure, we'll actually check some values
//computed from each of these different surfaces as well
Real deltaX = (xmax-xmin)/15;
Real deltaY = (ymax-ymin)/15;
Array_<int> dX(1);
Array_<int> dY(1);
Array_<int> dXY(2);
Array_<int> dXX(2);
Array_<int> dYY(2);
Array_<int> dXXY(3);
Array_<int> dXYY(3);
Array_<int> dXXX(3);
Array_<int> dYYY(3);
Array_<int> d4X(4);
Array_<int> d4Y(4);
dX[0] = 0;
dY[0] = 1;
dXY[0]= 0;
dXY[1]= 1;
dXX[0]= 0;
dXX[1]= 0;
dYY[0]= 1;
dYY[1]= 1;
dXXY[0]= 0;
dXXY[1]= 0;
dXXY[2]= 1;
dXYY[0]= 0;
dXYY[1]= 1;
dXYY[2]= 1;
dXXX[0]= 0;
dXXX[1]= 0;
dXXX[2]= 0;
dYYY[0]= 1;
dYYY[1]= 1;
dYYY[2]= 1;
for(int i=0;i<16;i++){
aXY(0) = xmin + i*deltaX;
for(int j=0;j<16;j++){
aXY(1) = ymin + j*deltaY;
SimTK_TEST_EQ(bcsf.calcValue(aXY), bcsCCf.calcValue(aXY));
SimTK_TEST_EQ(bcsf.calcValue(aXY),bcsEQOPf.calcValue(aXY));
SimTK_TEST_EQ(bcsf.calcDerivative(dX,aXY), bcsCCf.calcDerivative(dX,aXY));
SimTK_TEST_EQ(bcsf.calcDerivative(dX,aXY),bcsEQOPf.calcDerivative(dX,aXY));
SimTK_TEST_EQ(bcsf.calcDerivative(dY,aXY), bcsCCf.calcDerivative(dY,aXY));
SimTK_TEST_EQ(bcsf.calcDerivative(dY,aXY),bcsEQOPf.calcDerivative(dY,aXY));
SimTK_TEST_EQ(bcsf.calcDerivative(dXY,aXY), bcsCCf.calcDerivative(dXY,aXY));
SimTK_TEST_EQ(bcsf.calcDerivative(dXY,aXY),bcsEQOPf.calcDerivative(dXY,aXY));
SimTK_TEST_EQ(bcsf.calcDerivative(dXXY,aXY), bcsCCf.calcDerivative(dXXY,aXY));
SimTK_TEST_EQ(bcsf.calcDerivative(dXXY,aXY),bcsEQOPf.calcDerivative(dXXY,aXY));
SimTK_TEST_EQ(bcsf.calcDerivative(dXYY,aXY), bcsCCf.calcDerivative(dXYY,aXY));
SimTK_TEST_EQ(bcsf.calcDerivative(dXYY,aXY),bcsEQOPf.calcDerivative(dXYY,aXY));
SimTK_TEST_EQ(bcsf.calcDerivative(dXXX,aXY), bcsCCf.calcDerivative(dXXX,aXY));
SimTK_TEST_EQ(bcsf.calcDerivative(dXXX,aXY),bcsEQOPf.calcDerivative(dXXX,aXY));
SimTK_TEST_EQ(bcsf.calcDerivative(dYYY,aXY), bcsCCf.calcDerivative(dYYY,aXY));
SimTK_TEST_EQ(bcsf.calcDerivative(dYYY,aXY),bcsEQOPf.calcDerivative(dYYY,aXY));
}
}
}
void testHint() {
const Real xData[4] = { .1, 1, 2, 10 };
const Real yData[5] = { -3, -2, 0, 1, 3 };
const Real fData[] = { 1, 2, 3, 4, 5,
1.1, 2.1, 3.1, 4.1, 5.1,
1, 2, 3, 4, 5,
1.2, 2.2, 3.2, 4.2, 5.2 };
const Vector x(4, xData);
const Vector y(5, yData);
const Matrix f(4,5, fData);
BicubicSurface surf(x, y, f, 0); // not smoothed
SimTK_TEST(surf.getNumAccesses() == 0);
BicubicSurface::PatchHint hint;
Real val = surf.calcValue(Vec2(.5, .5), hint);
SimTK_TEST(surf.getNumAccesses() == 1);
val = surf.calcValue(Vec2(.5, .5), hint); // should be free
SimTK_TEST(surf.getNumAccesses() == 2);
SimTK_TEST(surf.getNumAccessesSamePoint() == 1);
val = surf.calcValue(Vec2(.50001, .50002), hint);
SimTK_TEST(surf.getNumAccessesSamePatch() == 1);
val = surf.calcValue(Vec2(1.5, -1), hint);
SimTK_TEST(surf.getNumAccessesNearbyPatch() == 1);
// This should report "same patch" rather than "same point" because
// derivative info hasn't been calculated yet.
Array_<int> deriv1(1, 1), deriv2(2, 0); // fy, fxx
val = surf.calcDerivative(deriv2, Vec2(1.5, -1), hint);
SimTK_TEST(surf.getNumAccessesSamePatch() == 2);
// When 2nd deriv info is calculated we get 1st deriv also. So now
// we should get "same point" even though we haven't asked for this yet.
val = surf.calcDerivative(deriv1, Vec2(1.5, -1), hint);
SimTK_TEST(surf.getNumAccessesSamePoint() == 2);
}
int main() {
//Evaluate the bicubic surface interpolation against an analytical
//function. Throw an error if the values of the function are different
//at the knot points, or different within tolerance at the mid grid points
SimTK_START_TEST("Testing Bicubic Interpolation");
SimTK_SUBTEST(testHint);
cout << "\n---------------------------------------------"<< endl;
cout<< "\n\nANALYTICAL FUNCTION COMPARISON:" << endl;
testBicubicAgainstAnalyticFcn(0.0, 1.0, 0.0, 1.0,9,0,false,false);
testBicubicAgainstAnalyticFcn(0.0, 1.0, 0.0, 1.0,9,1,false,false);
testBicubicAgainstAnalyticFcn(0.0, 1.0, 0.0, 1.0,9,2,false,false);
testBicubicAgainstAnalyticFcn(0.0, 1.0, 0.0, 1.0,9,3,false,false);
testBicubicAgainstAnalyticFcn(0.0, 1.0, 0.0, 1.0,9,4,false,false);
printf("\n\n*Test Passed*. Constructor with x,y,f,fx,fy,fxy specified,"
" \n\tSmoothness parameter %f tested\n"
"\tAdditional smoothness parameters not tested because"
"\n\tsurface will not pass through the knot points",Real(0));
cout << "\n---------------------------------------------"<< endl;
cout << "\n---------------------------------------------"<< endl;
cout << "\n\nBICUBIC COEFFICIENT VALIDATION:" << endl;
cout << " Testing that the bicubic interpolation coefficients" <<endl;
cout << " are being solved correctly by asserting fV - A*aV = 0"<<endl;
testBicubicCoefficients( 0.0, 1.0, 0.0, 1.0, 3, 0.0);
testBicubicCoefficients( 0.0, 1.0, 0.0, 1.0, 3, 0.5);
printf("\n\n*Test Passed*. Constructor with x,y,f specified,"
" \n\tSmoothness parameter %f and %f tested",(Real)0.0,(Real)0.5);
cout << "\n---------------------------------------------"<< endl;
cout << "\n\n---------------------------------------------"<< endl;
cout << "\n\nBICUBIC DERIVATIVE & CONTINUITY TESTING:" <<endl;
cout << " 1. Derivative are tested for consistency by ensuring that" << endl;
cout << " numerical derivatives of f(x,y) match values returned " << endl;
cout << " by the function." << endl;
cout << " Partial derivatives tested: fx,fy,fxy,fxx,fyy" << endl;
cout << "\n 2. Continuity is tested by asserting that a linear extrapolation" << endl;
cout << " from a a point near a knot is equal to the value of the surface" << endl;
cout << " of f(x,y) at the knot. Surfaces tested f, fx, fy, fxy, fxx, fyy." << endl;
testBicubicConsistencyContinuity( 0.0, 1.0, 0.0, 1.0, 3, 0.0, false);
testBicubicConsistencyContinuity( 0.0, 1.0, 0.0, 1.0, 3, 0.5, false);
printf("\n\n*Test Passed*. Constructor with x,y,f specified,"
" \n\tSmoothness parameter %f and %f tested",(Real)0.0,(Real)0.5);
cout << "\n---------------------------------------------"<< endl;
cout << "\n\n---------------------------------------------"<< endl;
cout << "\n\nCOPY CONSTRUCTOR AND = OPERATOR TESTING:" <<endl;
cout <<" Tested by using the copy contructor and equal operator" << endl;
cout <<" and comparing the values of the internally stored matrices" << endl;
cout <<" of x,y,f,fx,fy,fxy between the different surfaces, and then" <<endl;
cout <<" comparing values of f,fx,fy,fxy,fxx,fyy,fxyy,fxxy,fxxx,fyyy" <<endl;
cout <<" between the different surface objects across the patch"<<endl;
testCopyConstEqOp();
cout <<" *Test Passed*." << endl;
cout << "\n---------------------------------------------"<< endl;
SimTK_END_TEST();
}
|