File: Constraint_Rod.cpp

package info (click to toggle)
simbody 3.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 46,740 kB
  • ctags: 40,639
  • sloc: cpp: 244,873; ansic: 18,235; makefile: 21; sh: 5
file content (425 lines) | stat: -rw-r--r-- 16,936 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/* -------------------------------------------------------------------------- *
 *                               Simbody(tm)                                  *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2007-14 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

/* Implementation of non-inline methods of the handle class Constraint::Rod, and
its implementation class Constraint::RodImpl. */

#include "SimTKcommon.h"
#include "simbody/internal/common.h"
#include "simbody/internal/Constraint.h"
#include "simbody/internal/Constraint_Rod.h"

#include "Constraint_RodImpl.h"
#include "SimbodyMatterSubsystemRep.h"

namespace SimTK {

//==============================================================================
//                                   ROD
//==============================================================================

SimTK_INSERT_DERIVED_HANDLE_DEFINITIONS(Constraint::Rod, Constraint::RodImpl, 
                                        Constraint);

Constraint::Rod::Rod(MobilizedBody& mobod_F, MobilizedBody& mobod_B, 
                     Real defaultRodLength)
:   Constraint(new RodImpl())
{
    SimTK_APIARGCHECK_ALWAYS(mobod_F.isInSubsystem() && mobod_B.isInSubsystem(),
        "Constraint::Rod","Rod",
        "Both mobilized bodies must already be in a SimbodyMatterSubsystem.");
    SimTK_APIARGCHECK_ALWAYS(mobod_F.isInSameSubsystem(mobod_B),
        "Constraint::Rod","Rod",
        "The two mobilized bodies to be connected must be in the same "
        "SimbodyMatterSubsystem.");
    SimTK_APIARGCHECK1_ALWAYS(defaultRodLength > 0,
        "Constraint::Rod","Rod",
        "The rod length (distance) was %g but must be greater than zero. "
        "Use Constraint::Ball to make two points coincident.",
        defaultRodLength);

    mobod_F.updMatterSubsystem().adoptConstraint(*this);

    updImpl().m_mobod_F         = updImpl().addConstrainedBody(mobod_F);
    updImpl().m_mobod_B         = updImpl().addConstrainedBody(mobod_B);
    updImpl().m_def_p_FSf       = Vec3(0); // Sf = Fo
    updImpl().m_def_p_BSb       = Vec3(0); // Sb = Bo
    updImpl().m_def_length      = defaultRodLength;
}

Constraint::Rod::Rod(MobilizedBody& mobod_F, const Vec3& station_F,
                     MobilizedBody& mobod_B, const Vec3& station_B, 
                     Real defaultRodLength)
:   Constraint(new RodImpl())
{
    SimTK_APIARGCHECK_ALWAYS(mobod_F.isInSubsystem() && mobod_B.isInSubsystem(),
        "Constraint::Rod","Rod",
        "Both mobilized bodies must already be in a SimbodyMatterSubsystem.");
    SimTK_APIARGCHECK_ALWAYS(mobod_F.isInSameSubsystem(mobod_B),
        "Constraint::Rod","Rod",
        "The two mobilized bodies to be connected must be in the same "
        "SimbodyMatterSubsystem.");
    SimTK_APIARGCHECK1_ALWAYS(defaultRodLength > 0,
        "Constraint::Rod","Rod",
        "The rod length (distance) was %g but must be greater than zero. "
        "Use Constraint::Ball to make two points coincident.",
        defaultRodLength);

    mobod_F.updMatterSubsystem().adoptConstraint(*this);

    updImpl().m_mobod_F         = updImpl().addConstrainedBody(mobod_F);
    updImpl().m_mobod_B         = updImpl().addConstrainedBody(mobod_B);
    updImpl().m_def_p_FSf       = station_F;
    updImpl().m_def_p_BSb       = station_B;
    updImpl().m_def_length      = defaultRodLength;
}

Constraint::Rod& Constraint::Rod::
setDefaultPointOnBody1(const Vec3& p1) {
    getImpl().invalidateTopologyCache();
    updImpl().m_def_p_FSf = p1;
    return *this;
}

Constraint::Rod& Constraint::Rod::
setDefaultPointOnBody2(const Vec3& p2) {
    getImpl().invalidateTopologyCache();
    updImpl().m_def_p_BSb = p2;
    return *this;
}

Constraint::Rod& Constraint::Rod::
setDefaultRodLength(Real length) {
    getImpl().invalidateTopologyCache();
    updImpl().m_def_length = length;
    return *this;
}

const Constraint::Rod& Constraint::Rod:: 
setPointOnBody1(State& state, const Vec3& point) const {
    getImpl().updParameters(state).m_p_FSf = point;
    return *this;
}
const Constraint::Rod& Constraint::Rod:: 
setPointOnBody2(State& state, const Vec3& point) const {
    getImpl().updParameters(state).m_p_BSb = point;
    return *this;
}
const Constraint::Rod& Constraint::Rod:: 
setRodLength(State& state, Real rodLength) const {
    getImpl().updParameters(state).m_length = rodLength;
    return *this;
}

const Vec3& Constraint::Rod::getPointOnBody1(const State& state) const
{   return getImpl().getParameters(state).m_p_FSf; }
const Vec3& Constraint::Rod::getPointOnBody2(const State& state) const
{   return getImpl().getParameters(state).m_p_BSb; }
Real Constraint::Rod::getRodLength(const State& state) const
{   return getImpl().getParameters(state).m_length; }

const MobilizedBody& Constraint::Rod::getMobilizedBody1() const {
    const RodImpl& impl = getImpl();
    return impl.getMobilizedBodyFromConstrainedBody(impl.m_mobod_F);
}
const MobilizedBody& Constraint::Rod::getMobilizedBody2() const {
    const RodImpl& impl = getImpl();
    return impl.getMobilizedBodyFromConstrainedBody(impl.m_mobod_B);
}
MobilizedBodyIndex Constraint::Rod::getBody1MobilizedBodyIndex() const {
    const RodImpl& impl = getImpl();
    return impl.getMobilizedBodyIndexOfConstrainedBody(impl.m_mobod_F);
}
MobilizedBodyIndex Constraint::Rod::getBody2MobilizedBodyIndex() const {
    const RodImpl& impl = getImpl();
    return impl.getMobilizedBodyIndexOfConstrainedBody(impl.m_mobod_B);
}

const Vec3& Constraint::Rod::getDefaultPointOnBody1() const {
    return getImpl().m_def_p_FSf;
}
const Vec3& Constraint::Rod::getDefaultPointOnBody2() const {
    return getImpl().m_def_p_BSb;
}
Real Constraint::Rod::getDefaultRodLength() const {
    return getImpl().m_def_length;
}

Real Constraint::Rod::getPositionError(const State& s) const {
    Real perr;
    getImpl().getPositionErrors(s, 1, &perr);
    return perr;
}

Real Constraint::Rod::getVelocityError(const State& s) const {
    Real pverr;
    getImpl().getVelocityErrors(s, 1, &pverr);
    return pverr;
}

Real Constraint::Rod::getAccelerationError(const State& s) const {
    Real pvaerr;
    getImpl().getAccelerationErrors(s, 1, &pvaerr);
    return pvaerr;
}

Real Constraint::Rod::getMultiplier(const State& s) const {
    Real mult;
    getImpl().getMultipliers(s, 1, &mult);
    return mult;
}

// The multiplier is the force on body 2 along the line from point 1 to
// point 2, which would be positive in compression. But multipliers have the
// opposite sign from applied forces, so the multiplier is positive when the
// rod is in tension. Hence we can just return it as the tension.
Real Constraint::Rod::getRodTension(const State& s) const {
    return getMultiplier(s);
}

UnitVec3 Constraint::Rod::findRodOrientationInG(const State& s) const {
    const RodImpl& impl = getImpl();
    const RodImpl::PositionCache& pc = 
        impl.ensurePositionCacheRealized(s);

    const MobilizedBody& mobod_A = impl.getAncestorMobilizedBody();
    if (mobod_A.isGround())
        return pc.Cz_A; // == Cz_G

    const Transform& X_GA = mobod_A.getBodyTransform(s);

    return X_GA.R() * pc.Cz_A;  // 15 flops
}

Real Constraint::Rod::findLengthViolation(const State& s) const {
    const RodImpl& impl = getImpl();

    const RodImpl::Parameters& params = impl.getParameters(s);
    const Vec3&       p_FSf  = params.m_p_FSf;
    const Vec3&       p_BSb  = params.m_p_BSb;
    const Real        length = params.m_length;

    const MobilizedBody& bodyF =
        impl.getMobilizedBodyFromConstrainedBody(impl.m_mobod_F);
    const MobilizedBody& bodyB =
        impl.getMobilizedBodyFromConstrainedBody(impl.m_mobod_B);

    const Vec3 p_FSb = bodyB.findStationLocationInAnotherBody(s,p_BSb,bodyF);
    const Vec3 p_SfSb_F = p_FSb - p_FSf;
    return p_SfSb_F.norm() - length;
}

//==============================================================================
//                                ROD IMPL
//==============================================================================

// The default point location and rod length parameters may be overridden by 
// setting a discrete variable in the state. Also, we want to cache expensive
// position- and velocity-level calculations since they will be reused 
// repeatedly. We allocate the state resources here.
void Constraint::RodImpl::
realizeTopologyVirtual(State& state) const {
    m_parametersIx = getMyMatterSubsystemRep().
        allocateDiscreteVariable(state, Stage::Position, 
            new Value<Parameters>(Parameters(m_def_p_FSf,  m_def_p_BSb, 
                                             m_def_length)));

    m_posCacheIx = getMyMatterSubsystemRep().
        allocateLazyCacheEntry(state, Stage::Position, 
            new Value<PositionCache>());

    m_velCacheIx = getMyMatterSubsystemRep().
        allocateLazyCacheEntry(state, Stage::Velocity, 
            new Value<VelocityCache>());
}

const Constraint::RodImpl::Parameters& Constraint::RodImpl::
getParameters(const State& state) const {
    return Value<Parameters>::downcast
       (getMyMatterSubsystemRep().getDiscreteVariable(state,m_parametersIx));
}

Constraint::RodImpl::Parameters& Constraint::RodImpl::
updParameters(State& state) const {
    return Value<Parameters>::updDowncast
       (getMyMatterSubsystemRep().updDiscreteVariable(state,m_parametersIx));
}

const Constraint::RodImpl::PositionCache& Constraint::RodImpl::
getPositionCache(const State& state) const {
    return Value<PositionCache>::downcast
       (getMyMatterSubsystemRep().getCacheEntry(state,m_posCacheIx));
}

Constraint::RodImpl::PositionCache& Constraint::RodImpl::
updPositionCache(const State& state) const {
    return Value<PositionCache>::updDowncast
       (getMyMatterSubsystemRep().updCacheEntry(state,m_posCacheIx));
}

const Constraint::RodImpl::VelocityCache& Constraint::RodImpl::
getVelocityCache(const State& state) const {
    return Value<VelocityCache>::downcast
       (getMyMatterSubsystemRep().getCacheEntry(state,m_velCacheIx));
}

Constraint::RodImpl::VelocityCache& Constraint::RodImpl::
updVelocityCache(const State& state) const {
    return Value<VelocityCache>::updDowncast
       (getMyMatterSubsystemRep().updCacheEntry(state,m_velCacheIx));
}

// This costs about 72 flops.
const Constraint::RodImpl::PositionCache& Constraint::RodImpl::
ensurePositionCacheRealized(const State& s) const {
    if (getMyMatterSubsystemRep().isCacheValueRealized(s, m_posCacheIx))
        return getPositionCache(s);

    const Parameters& params = getParameters(s);
    const Vec3&       p_FSf  = params.m_p_FSf;
    const Vec3&       p_BSb  = params.m_p_BSb;
    const Real        length = params.m_length;

    PositionCache& pc = updPositionCache(s);

    const Transform&  X_AF = getBodyTransformFromState(s, m_mobod_F);
    const Transform&  X_AB = getBodyTransformFromState(s, m_mobod_B);
    const Vec3& p_AF = X_AF.p();
    const Vec3& p_AB = X_AB.p();

    pc.p_FSf_A = X_AF.R() * p_FSf;            // exp. in A, 15 flops
    const Vec3 p_ASf = X_AF.p() + pc.p_FSf_A; // meas. from Ao, 3 flops

    pc.p_BSb_A = X_AB.R() * p_BSb;            // exp. in A, 15 flops
    const Vec3 p_ASb = X_AB.p() + pc.p_BSb_A; // meas. from Ao, 3 flops

    pc.p_SfSb_A = p_ASb - p_ASf;  // vec from Sf to Sb, exp. in A, 3 flops
    pc.r = pc.p_SfSb_A.norm();    // ~20 flops
    pc.oor = 1/pc.r;              // ~10 flops (might be Infinity)

    // Assume non-singular.
    pc.Cz_A = UnitVec3(pc.p_SfSb_A * pc.oor, true); // 3 flops
    pc.isSingular = false;
    if (pc.r < TinyReal) {
        pc.isSingular = true;
        pc.Cz_A = X_AF.z(); // arbitrary
    }

    getMyMatterSubsystemRep().markCacheValueRealized(s, m_posCacheIx);
    return pc;
}

// This costs about 57 flops if position info has already been calculated,
// otherwise we also pay for ensurePositionCacheRealized().
const Constraint::RodImpl::VelocityCache& 
Constraint::RodImpl::
ensureVelocityCacheRealized(const State& s) const {
    if (getMyMatterSubsystemRep().isCacheValueRealized(s, m_velCacheIx))
        return getVelocityCache(s);

    const PositionCache& pc = ensurePositionCacheRealized(s);
    VelocityCache& vc = updVelocityCache(s);

    const UnitVec3& Cz_A = pc.Cz_A;

    const SpatialVec& V_AF = getBodyVelocityFromState(s, m_mobod_F);
    const Vec3&       w_AF = V_AF[0];
    const Vec3&       v_AF = V_AF[1];
    const SpatialVec& V_AB = getBodyVelocityFromState(s, m_mobod_B);
    const Vec3&       w_AB = V_AB[0];
    const Vec3&       v_AB = V_AB[1];

    // These are d/dt_A p_FSf and d/dt_A p_BSb
    const Vec3 wX_p_FSf_A = w_AF % pc.p_FSf_A;      // 9 flops
    const Vec3 wX_p_BSb_A = w_AB % pc.p_BSb_A;      // 9 flops
    const Vec3 v_ASf = v_AF + wX_p_FSf_A;           // 3 flops
    const Vec3 v_ASb = v_AB + wX_p_BSb_A;           // 3 flops
    vc.pd_SfSb_A = v_ASb - v_ASf;                   // 3 flops

    // These are the Coriolis accelerations of Sf and Sb, needed later.
    vc.wXwX_p_FSf_A = w_AF % wX_p_FSf_A;            // 9 flops
    vc.wXwX_p_BSb_A = w_AB % wX_p_BSb_A;            // 9 flops

    // Calculate d/dt_A Cz.
    vc.Czd_A = pc.isSingular 
        ? w_AF % Cz_A // rare
        : pc.oor*(vc.pd_SfSb_A - (~vc.pd_SfSb_A*Cz_A)*Cz_A); // 12 flops

    getMyMatterSubsystemRep().markCacheValueRealized(s, m_velCacheIx);
    
    return vc;
}

void Constraint::RodImpl::calcDecorativeGeometryAndAppendVirtual
   (const State& s, Stage stage, Array_<DecorativeGeometry>& geom) const
{
    if (!getMyMatterSubsystemRep().getShowDefaultGeometry())
        return;

    // We can't generate the endpoint artwork until we know the end point 
    // stations, which could be as late as Stage::Position.
    if (stage == Stage::Position) {
        const Parameters& params = getParameters(s);
        const Vec3&       p_FSf  = params.m_p_FSf;
        const Vec3&       p_BSb  = params.m_p_BSb;
        const Real        length = params.m_length;

        const MobilizedBodyIndex body1 = 
            getMobilizedBodyIndexOfConstrainedBody(m_mobod_F);
        const MobilizedBodyIndex body2 = 
            getMobilizedBodyIndexOfConstrainedBody(m_mobod_B);

        // Draw a blue point at the point on body F.
        geom.push_back(DecorativePoint(p_FSf)
                            .setColor(Green).setScaleFactors(Vec3(2))
                            .setLineThickness(3)
                            .setBodyId(body1));

        // Draw a purple point at the point on body B.
        geom.push_back(DecorativePoint(p_BSb)
                            .setColor(Orange).setScaleFactors(Vec3(2))
                            .setLineThickness(3)
                            .setBodyId(body2));

        const Vec3 p_GP1 = getMobilizedBodyFromConstrainedBody(m_mobod_F)
                              .findStationLocationInGround(s, p_FSf);
        const Vec3 p_GP2 = getMobilizedBodyFromConstrainedBody(m_mobod_B)
                              .findStationLocationInGround(s, p_BSb);

        const Vec3 p_P1P2 = p_GP2 - p_GP1;
        const Real d = p_P1P2.norm();

        if (d >= SignificantReal) {
            const Vec3 endPoint = p_GP1 + length * p_P1P2/d;
            geom.push_back(DecorativeLine(p_GP1, endPoint)
                                            .setColor(Gray)
                                            .setLineThickness(3)
                                            .setBodyId(GroundIndex));
        }
    }

}


} // namespace SimTK