1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2006-12 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/**@file
*
* Implementation of SimbodyMatterSubsystem, a concrete Subsystem.
*/
#include "SimTKcommon.h"
#include "simbody/internal/MobilizedBody.h"
#include "MobilizedBodyImpl.h"
#include "SimbodyMatterSubsystemRep.h"
class RigidBodyNode;
#include <string>
#include <iostream>
using std::cout;
using std::endl;
namespace SimTK {
/*static*/ bool
SimbodyMatterSubsystem::isInstanceOf(const Subsystem& s) {
return SimbodyMatterSubsystemRep::isA(s.getSubsystemGuts());
}
/*static*/ const SimbodyMatterSubsystem&
SimbodyMatterSubsystem::downcast(const Subsystem& s) {
assert(isInstanceOf(s));
return static_cast<const SimbodyMatterSubsystem&>(s);
}
/*static*/ SimbodyMatterSubsystem&
SimbodyMatterSubsystem::updDowncast(Subsystem& s) {
assert(isInstanceOf(s));
return static_cast<SimbodyMatterSubsystem&>(s);
}
const SimbodyMatterSubsystemRep&
SimbodyMatterSubsystem::getRep() const {
return SimTK_DYNAMIC_CAST_DEBUG<const SimbodyMatterSubsystemRep&>(getSubsystemGuts());
}
SimbodyMatterSubsystemRep&
SimbodyMatterSubsystem::updRep() {
return SimTK_DYNAMIC_CAST_DEBUG<SimbodyMatterSubsystemRep&>(updSubsystemGuts());
}
// Create Subsystem but don't associate it with any System. This isn't much
// use except for making std::vector's, which require a default constructor
// to be available.
SimbodyMatterSubsystem::SimbodyMatterSubsystem()
: Subsystem()
{
adoptSubsystemGuts(new SimbodyMatterSubsystemRep());
updRep().createGroundBody(); //TODO: handle this differently
}
SimbodyMatterSubsystem::SimbodyMatterSubsystem(MultibodySystem& mbs)
: Subsystem()
{
adoptSubsystemGuts(new SimbodyMatterSubsystemRep());
updRep().createGroundBody(); //TODO: handle this differently
mbs.setMatterSubsystem(*this);
}
MobilizedBodyIndex SimbodyMatterSubsystem::adoptMobilizedBody(MobilizedBodyIndex parent, MobilizedBody& child) {
return updRep().adoptMobilizedBody(parent,child);
}
const MobilizedBody& SimbodyMatterSubsystem::getMobilizedBody(MobilizedBodyIndex id) const {
return getRep().getMobilizedBody(id);
}
MobilizedBody& SimbodyMatterSubsystem::updMobilizedBody(MobilizedBodyIndex id) {
return updRep().updMobilizedBody(id);
}
const MobilizedBody::Ground& SimbodyMatterSubsystem::getGround() const {
return getRep().getGround();
}
MobilizedBody::Ground& SimbodyMatterSubsystem::updGround() {
return updRep().updGround();
}
bool SimbodyMatterSubsystem::getShowDefaultGeometry() const {
return getRep().getShowDefaultGeometry();
}
void SimbodyMatterSubsystem::setShowDefaultGeometry(bool show) {
updRep().setShowDefaultGeometry(show);
}
ConstraintIndex SimbodyMatterSubsystem::
adoptConstraint(Constraint& child) {return updRep().adoptConstraint(child);}
const Constraint& SimbodyMatterSubsystem::
getConstraint(ConstraintIndex id) const {return getRep().getConstraint(id);}
Constraint& SimbodyMatterSubsystem::
updConstraint(ConstraintIndex id) {return updRep().updConstraint(id);}
UnilateralContactIndex SimbodyMatterSubsystem::
adoptUnilateralContact(UnilateralContact* child)
{ return updRep().adoptUnilateralContact(child); }
int SimbodyMatterSubsystem::
getNumUnilateralContacts() const
{ return getRep().getNumUnilateralContacts(); }
const UnilateralContact& SimbodyMatterSubsystem::
getUnilateralContact(UnilateralContactIndex ix) const
{ return getRep().getUnilateralContact(ix); }
UnilateralContact& SimbodyMatterSubsystem::
updUnilateralContact(UnilateralContactIndex ix)
{ return updRep().updUnilateralContact(ix); }
StateLimitedFrictionIndex SimbodyMatterSubsystem::
adoptStateLimitedFriction(StateLimitedFriction* child)
{ return updRep().adoptStateLimitedFriction(child); }
int SimbodyMatterSubsystem::
getNumStateLimitedFrictions() const
{ return getRep().getNumStateLimitedFrictions(); }
const StateLimitedFriction& SimbodyMatterSubsystem::
getStateLimitedFriction(StateLimitedFrictionIndex ix) const
{ return getRep().getStateLimitedFriction(ix); }
StateLimitedFriction& SimbodyMatterSubsystem::
updStateLimitedFriction(StateLimitedFrictionIndex ix)
{ return updRep().updStateLimitedFriction(ix); }
//==============================================================================
// CALC ACCELERATION
//==============================================================================
//TODO: should allow zero-length force arrays to stand for zeroes.
void SimbodyMatterSubsystem::calcAcceleration
(const State& state,
const Vector& appliedMobilityForces,
const Vector_<SpatialVec>& appliedBodyForces,
Vector& udot,
Vector_<SpatialVec>& A_GB) const
{
SimTK_APIARGCHECK2_ALWAYS(
appliedMobilityForces.size()==getNumMobilities(),
"SimbodyMatterSubsystem", "calcAcceleration",
"Got %d appliedMobilityForces but there are %d mobilities.",
appliedMobilityForces.size(), getNumMobilities());
SimTK_APIARGCHECK2_ALWAYS(
appliedBodyForces.size()==getNumBodies(),
"SimbodyMatterSubsystem", "calcAcceleration",
"Got %d appliedBodyForces but there are %d bodies (including Ground).",
appliedBodyForces.size(), getNumBodies());
Vector_<Vec3> appliedParticleForces; // TODO
// Create a dummy acceleration cache to hold the result.
const SBModelCache& mc = getRep().getModelCache(state);
const SBInstanceCache& ic = getRep().getInstanceCache(state);
SBTreeAccelerationCache tac;
SBConstrainedAccelerationCache cac;
tac.allocate(getRep().topologyCache, mc, ic);
cac.allocate(getRep().topologyCache, mc, ic);
Vector qdotdot; // unwanted return value
Vector multipliers(getNMultipliers(state)); // unwanted return value
Vector udotErr(getNUDotErr(state)); // unwanted return value
getRep().calcLoopForwardDynamicsOperator(state,
appliedMobilityForces, appliedParticleForces, appliedBodyForces,
tac, cac, udot, qdotdot, multipliers, udotErr);
A_GB = tac.bodyAccelerationInGround;
}
//==============================================================================
// CALC ACCELERATION IGNORING CONSTRAINTS
//==============================================================================
//TODO: should allow zero-length force arrays to stand for zeroes.
void SimbodyMatterSubsystem::calcAccelerationIgnoringConstraints
(const State& state,
const Vector& appliedMobilityForces,
const Vector_<SpatialVec>& appliedBodyForces,
Vector& udot, // output only; returns pres. accels
Vector_<SpatialVec>& A_GB) const
{
SimTK_APIARGCHECK2_ALWAYS(
appliedMobilityForces.size()==getNumMobilities(),
"SimbodyMatterSubsystem", "calcAccelerationIgnoringConstraints",
"Got %d appliedMobilityForces but there are %d mobilities.",
appliedMobilityForces.size(), getNumMobilities());
SimTK_APIARGCHECK2_ALWAYS(
appliedBodyForces.size()==getNumBodies(),
"SimbodyMatterSubsystem", "calcAccelerationIgnoringConstraints",
"Got %d appliedBodyForces but there are %d bodies (including Ground).",
appliedBodyForces.size(), getNumBodies());
Vector netHingeForces(getNumMobilities()); // unwanted side effects
Array_<SpatialVec,MobilizedBodyIndex> abForcesZ(getNumBodies());
Array_<SpatialVec,MobilizedBodyIndex> abForcesZPlus(getNumBodies());
Vector tau;
Vector qdotdot;
const SBDynamicsCache& dc = getRep().getDynamicsCache(state);
getRep().calcTreeAccelerations(state,
appliedMobilityForces, appliedBodyForces, dc.presUDotPool,
netHingeForces, abForcesZ, abForcesZPlus,
A_GB, udot, qdotdot, tau);
}
//==============================================================================
// CALC RESIDUAL FORCE IGNORING CONSTRAINTS
//==============================================================================
// This is inverse dynamics.
// This just checks the arguments, arranges for contiguous vectors to work
// with if necessary, and then calls the implementation method.
void SimbodyMatterSubsystem::calcResidualForceIgnoringConstraints
(const State& state,
const Vector& appliedMobilityForces,
const Vector_<SpatialVec>& appliedBodyForcesInG,
const Vector& knownUdot,
Vector& residualMobilityForces) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies();
const int nu = rep.getNU(state);
SimTK_APIARGCHECK2_ALWAYS(
appliedMobilityForces.size()==0 || appliedMobilityForces.size()==nu,
"SimbodyMatterSubsystem", "calcResidualForceIgnoringConstraints",
"Got %d appliedMobilityForces but there are %d mobilities.",
appliedMobilityForces.size(), nu);
SimTK_APIARGCHECK2_ALWAYS(
appliedBodyForcesInG.size()==0 || appliedBodyForcesInG.size()==nb,
"SimbodyMatterSubsystem", "calcResidualForceIgnoringConstraints",
"Got %d appliedBodyForces but there are %d bodies (including Ground).",
appliedBodyForcesInG.size(), nb);
SimTK_APIARGCHECK2_ALWAYS(
knownUdot.size()==0 || knownUdot.size()==nu,
"SimbodyMatterSubsystem", "calcResidualForceIgnoringConstraints",
"Got %d knownUdots but there are %d mobilities.",
knownUdot.size(), nu);
residualMobilityForces.resize(nu);
// Assume at first that all Vectors are contiguous.
const Vector* cmobForces = &appliedMobilityForces;
const Vector_<SpatialVec>* cbodyForces = &appliedBodyForcesInG;
const Vector* cudot = &knownUdot;
Vector* cresid = &residualMobilityForces;
bool needToCopyBack = false;
// We'll allocate these or not as needed.
Vector contig_mobForces, contig_udot, contig_resid;
Vector_<SpatialVec> contig_bodyForces;
if (!appliedMobilityForces.hasContiguousData()) {
contig_mobForces.resize(nu); // contiguous memory
contig_mobForces(0, nu) = appliedMobilityForces; // copy, no reallocation
cmobForces = (const Vector*)&contig_mobForces;
}
if (!appliedBodyForcesInG.hasContiguousData()) {
contig_bodyForces.resize(nb); // contiguous memory
contig_bodyForces(0, nb) = appliedBodyForcesInG; // copy, no reallocation
cbodyForces = (const Vector_<SpatialVec>*)&contig_bodyForces;
}
if (!knownUdot.hasContiguousData()) {
contig_udot.resize(nu); // contiguous memory
contig_udot(0, nu) = knownUdot; // copy, no reallocation
cudot = (const Vector*)&contig_udot;
}
if (!residualMobilityForces.hasContiguousData()) {
contig_resid.resize(nu); // contiguous memory
cresid = (Vector*)&contig_resid;
needToCopyBack = true;
}
Vector_<SpatialVec> A_GB(nb); // temp for unwanted result
rep.calcTreeResidualForces(state,
*cmobForces, *cbodyForces, *cudot,
A_GB, *cresid);
if (needToCopyBack)
residualMobilityForces = *cresid;
}
//==============================================================================
// CALC RESIDUAL FORCE
//==============================================================================
// This is inverse dynamics with constraints.
void SimbodyMatterSubsystem::calcResidualForce
(const State& state,
const Vector& appliedMobilityForces,
const Vector_<SpatialVec>& appliedBodyForcesInG,
const Vector& knownUdot,
const Vector& knownLambda,
Vector& residualMobilityForces) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies();
const int nu = rep.getNU(state);
const int m = rep.getNMultipliers(state);
SimTK_APIARGCHECK2_ALWAYS(
appliedMobilityForces.size()==0 || appliedMobilityForces.size()==nu,
"SimbodyMatterSubsystem", "calcResidualForce",
"Got %d appliedMobilityForces but there are %d mobilities.",
appliedMobilityForces.size(), nu);
SimTK_APIARGCHECK2_ALWAYS(
appliedBodyForcesInG.size()==0 || appliedBodyForcesInG.size()==nb,
"SimbodyMatterSubsystem", "calcResidualForce",
"Got %d appliedBodyForces but there are %d bodies (including Ground).",
appliedBodyForcesInG.size(), nb);
SimTK_APIARGCHECK2_ALWAYS(
knownUdot.size()==0 || knownUdot.size()==nu,
"SimbodyMatterSubsystem", "calcResidualForce",
"Got %d knownUdots but there are %d mobilities.",
knownUdot.size(), nu);
SimTK_APIARGCHECK2_ALWAYS(
knownLambda.size()==0 || knownLambda.size()==m,
"SimbodyMatterSubsystem", "calcResidualForce",
"Got %d knownLambdas but there are %d constraint equations.",
knownUdot.size(), m);
if (knownLambda.size() == 0) { // no constraint forces
// Call above method instead.
calcResidualForceIgnoringConstraints(state,
appliedMobilityForces, appliedBodyForcesInG, knownUdot,
residualMobilityForces);
return;
}
// There are some lambdas, so calculate the forces they produce, with
// the result going in newly-allocated contiguous storage. We have to
// negate lambda to make the constraint forces have the sign of applied
// forces; we'll do that into a contiguous Vector also.
Vector_<SpatialVec> bodyForcesInG(nb);
Vector mobilityForces(nu);
Vector negLambda = -knownLambda;
rep.calcConstraintForcesFromMultipliers(state, negLambda,
bodyForcesInG, mobilityForces);
// Now add in the applied forces, and call the unconstrained routine.
if (appliedBodyForcesInG.size())
bodyForcesInG += appliedBodyForcesInG;
if (appliedMobilityForces.size())
mobilityForces += appliedMobilityForces;
calcResidualForceIgnoringConstraints(state,
mobilityForces, bodyForcesInG, knownUdot,
residualMobilityForces);
}
//==============================================================================
// MULTIPLY BY M
//==============================================================================
// Check arguments, copy in/out of contiguous Vectors if necessary, call the
// implementation method to calculate f = M*a.
void SimbodyMatterSubsystem::multiplyByM(const State& state,
const Vector& a,
Vector& Ma) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nu = rep.getNU(state);
SimTK_ERRCHK2_ALWAYS(a.size() == nu,
"SimbodyMatterSubsystem::multiplyByMInv()",
"Argument 'a' had length %d but should have the same length"
" as the number of mobilities (generalized speeds u) %d.",
a.size(), nu);
Ma.resize(nu);
if (nu==0) return;
// Assume at first that both Vectors are contiguous.
const Vector* ca = &a;
Vector* cMa = &Ma;
bool needToCopyBack = false;
// We'll allocate these or not as needed.
Vector contig_a, contig_Ma;
if (!a.hasContiguousData()) {
contig_a.resize(nu); // contiguous memory
contig_a(0, nu) = a; // copy, prevent reallocation
ca = (const Vector*)&contig_a;
}
if (!Ma.hasContiguousData()) {
contig_Ma.resize(nu); // contiguous memory
cMa = (Vector*)&contig_Ma;
needToCopyBack = true;
}
rep.multiplyByM(state, *ca, *cMa);
if (needToCopyBack)
Ma = *cMa;
}
//==============================================================================
// MULTIPLY BY M INV
//==============================================================================
// Check arguments, copy in/out of contiguous Vectors if necessary, call the
// implementation method to calculate a = M^-1*v.
void SimbodyMatterSubsystem::multiplyByMInv(const State& state,
const Vector& v,
Vector& MInvV) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nu = rep.getNU(state);
SimTK_ERRCHK2_ALWAYS(v.size() == nu,
"SimbodyMatterSubsystem::multiplyByMInv()",
"Argument 'v' had length %d but should have the same length"
" as the number of mobilities (generalized speeds u) %d.",
v.size(), nu);
MInvV.resize(nu);
if (nu==0) return;
// Assume at first that both Vectors are contiguous.
const Vector* cv = &v;
Vector* cMInvV = &MInvV;
bool needToCopyBack = false;
// We'll allocate these or not as needed.
Vector contig_v, contig_MInvV;
if (!v.hasContiguousData()) {
contig_v.resize(nu); // contiguous memory
contig_v(0, nu) = v; // copy, prevent reallocation
cv = (const Vector*)&contig_v;
}
if (!MInvV.hasContiguousData()) {
contig_MInvV.resize(nu); // contiguous memory
cMInvV = (Vector*)&contig_MInvV;
needToCopyBack = true;
}
rep.multiplyByMInv(state, *cv, *cMInvV);
if (needToCopyBack)
MInvV = *cMInvV;
}
void SimbodyMatterSubsystem::calcM(const State& s, Matrix& M) const
{ getRep().calcM(s, M); }
void SimbodyMatterSubsystem::calcMInv(const State& s, Matrix& MInv) const
{ getRep().calcMInv(s, MInv); }
// Note: the implementation methods that generate matrices do *not* require
// contiguous storage, so we can just forward to them with no preliminaries.
void SimbodyMatterSubsystem::calcProjectedMInv(const State& s,
Matrix& GMInvGt) const
{ getRep().calcGMInvGt(s, GMInvGt); }
void SimbodyMatterSubsystem::
solveForConstraintImpulses(const State& state,
const Vector& deltaV,
Vector& impulse) const
{ getRep().solveForConstraintImpulses(state,deltaV,impulse); }
void SimbodyMatterSubsystem::calcG(const State& s, Matrix& G) const
{ getRep().calcPVA(s, true, true, true, G); }
void SimbodyMatterSubsystem::calcGTranspose(const State& s, Matrix& Gt) const
{ getRep().calcPVATranspose(s, true, true, true, Gt); }
void SimbodyMatterSubsystem::calcPq(const State& s, Matrix& Pq) const
{ getRep().calcPq(s,Pq); }
void SimbodyMatterSubsystem::calcPqTranspose(const State& s, Matrix& Pqt) const
{ getRep().calcPqTranspose(s,Pqt); }
// OBSOLETE
void SimbodyMatterSubsystem::
calcPNInv(const State& s, Matrix& PNInv) const {
return getRep().calcHolonomicConstraintMatrixPNInv(s,PNInv);
}
void SimbodyMatterSubsystem::
calcP(const State& s, Matrix& P) const {
return getRep().calcHolonomicVelocityConstraintMatrixP(s,P);
}
void SimbodyMatterSubsystem::
calcPt(const State& s, Matrix& Pt) const {
return getRep().calcHolonomicVelocityConstraintMatrixPt(s,Pt);
}
//==============================================================================
// MULTIPLY BY G TRANSPOSE
//==============================================================================
// Check arguments, copy in/out of contiguous Vectors if necessary, call the
// implementation method to calculate f = ~G*lambda.
void SimbodyMatterSubsystem::
multiplyByGTranspose(const State& s,
const Vector& lambda,
Vector& f) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const SBInstanceCache& ic = rep.getInstanceCache(s);
// Global problem dimensions.
const int mHolo = ic.totalNHolonomicConstraintEquationsInUse;
const int mNonholo = ic.totalNNonholonomicConstraintEquationsInUse;
const int mAccOnly = ic.totalNAccelerationOnlyConstraintEquationsInUse;
const int m = mHolo+mNonholo+mAccOnly;
const int nu = rep.getNU(s);
SimTK_ERRCHK2_ALWAYS(lambda.size() == m,
"SimbodyMatterSubsystem::multiplyByGTranspose()",
"Argument 'lambda' had length %d but should have the same length"
" as the total number of active constraint equations m=%d.",
lambda.size(), m);
f.resize(nu);
if (nu==0) return;
if (m==0) {f.setToZero(); return;}
// Assume at first that both Vectors are contiguous.
const Vector* clambda = λ
Vector* cf = &f;
bool needToCopyBack = false;
// We'll allocate these or not as needed.
Vector contig_lambda, contig_f;
if (!lambda.hasContiguousData()) {
contig_lambda.resize(m); // contiguous memory
contig_lambda(0, m) = lambda; // copy, prevent reallocation
clambda = (const Vector*)&contig_lambda;
}
if (!f.hasContiguousData()) {
contig_f.resize(nu); // contiguous memory
cf = (Vector*)&contig_f;
needToCopyBack = true;
}
rep.multiplyByPVATranspose(s, true, true, true, *clambda, *cf);
if (needToCopyBack)
f = *cf;
}
//==============================================================================
// MULTIPLY BY Pq TRANSPOSE
//==============================================================================
// Check arguments, copy in/out of contiguous Vectors if necessary, call the
// implementation method to calculate fq = ~Pq*lambdap.
void SimbodyMatterSubsystem::
multiplyByPqTranspose(const State& s,
const Vector& lambdap,
Vector& fq) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const SBInstanceCache& ic = rep.getInstanceCache(s);
// Global problem dimensions.
const int mp = ic.totalNHolonomicConstraintEquationsInUse;
const int nq = rep.getNQ(s);
SimTK_ERRCHK2_ALWAYS(lambdap.size() == mp,
"SimbodyMatterSubsystem::multiplyByPqTranspose()",
"Argument 'lambdap' had length %d but should have had the same length"
" as the number of active position (holonomic) constraint equations"
" mp=%d.", lambdap.size(), mp);
fq.resize(nq);
if (nq==0) return;
if (mp==0) {fq.setToZero(); return;}
// Assume at first that both Vectors are contiguous.
const Vector* clambdap = &lambdap;
Vector* cfq = &fq;
bool needToCopyBack = false;
// We'll allocate these or not as needed.
Vector contig_lambdap, contig_fq;
if (!lambdap.hasContiguousData()) {
contig_lambdap.resize(mp); // contiguous memory
contig_lambdap(0, mp) = lambdap; // copy, prevent reallocation
clambdap = (const Vector*)&contig_lambdap;
}
if (!fq.hasContiguousData()) {
contig_fq.resize(nq); // contiguous memory
cfq = (Vector*)&contig_fq;
needToCopyBack = true;
}
rep.multiplyByPqTranspose(s, *clambdap, *cfq);
if (needToCopyBack)
fq = *cfq;
}
//==============================================================================
// MULTIPLY BY G
//==============================================================================
// Check arguments, copy in/out of contiguous Vectors if necessary, call the
// implementation method.
void SimbodyMatterSubsystem::
multiplyByG(const State& s,
const Vector& ulike,
const Vector& bias,
Vector& Gulike) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const SBInstanceCache& ic = rep.getInstanceCache(s);
// Global problem dimensions.
const int mHolo = ic.totalNHolonomicConstraintEquationsInUse;
const int mNonholo = ic.totalNNonholonomicConstraintEquationsInUse;
const int mAccOnly = ic.totalNAccelerationOnlyConstraintEquationsInUse;
const int m = mHolo+mNonholo+mAccOnly;
const int nu = rep.getNU(s);
SimTK_ERRCHK2_ALWAYS(ulike.size() == nu,
"SimbodyMatterSubsystem::multiplyByG()",
"Argument 'ulike' had length %d but should have the same length"
" as the total number of mobilities nu=%d.", ulike.size(), nu);
SimTK_ERRCHK2_ALWAYS(bias.size() == m,
"SimbodyMatterSubsystem::multiplyByG()",
"Argument 'bias' had length %d but should have the same length"
" as the total number of constraint equations m=%d.", bias.size(), m);
Gulike.resize(m);
if (m==0) return;
// Assume at first that all Vectors are contiguous.
const Vector* culike = &ulike;
const Vector* cbias = &bias;
Vector* cGulike = &Gulike;
bool needToCopyBack = false;
// We'll allocate these or not as needed.
Vector contig_ulike, contig_bias, contig_Gulike;
if (!ulike.hasContiguousData()) {
contig_ulike.resize(nu); // contiguous memory
contig_ulike(0, nu) = ulike; // copy, prevent reallocation
culike = (const Vector*)&contig_ulike;
}
if (!bias.hasContiguousData()) {
contig_bias.resize(m); // contiguous memory
contig_bias(0, m) = bias; // copy, prevent reallocation
cbias = (const Vector*)&contig_bias;
}
if (!Gulike.hasContiguousData()) {
contig_Gulike.resize(m); // contiguous memory
cGulike = (Vector*)&contig_Gulike;
needToCopyBack = true;
}
rep.multiplyByPVA(s, true, true, true, *cbias, *culike, *cGulike);
if (needToCopyBack)
Gulike = *cGulike;
}
//==============================================================================
// CALC BIAS FOR MULTIPLY BY G
//==============================================================================
// Here we just make sure that we have a contiguous array for the result and
// then call the implementation method.
void SimbodyMatterSubsystem::
calcBiasForMultiplyByG(const State& state,
Vector& bias) const
{
const SBInstanceCache& ic = getRep().getInstanceCache(state);
// Global problem dimensions.
const int mHolo = ic.totalNHolonomicConstraintEquationsInUse;
const int mNonholo = ic.totalNNonholonomicConstraintEquationsInUse;
const int mAccOnly = ic.totalNAccelerationOnlyConstraintEquationsInUse;
const int m = mHolo+mNonholo+mAccOnly;
bias.resize(m);
if (m==0) return;
if (bias.hasContiguousData()) {
getRep().calcBiasForMultiplyByPVA(state, true, true, true, bias);
} else {
Vector tmpbias(m); // contiguous
getRep().calcBiasForMultiplyByPVA(state, true, true, true, tmpbias);
bias = tmpbias;
}
}
//==============================================================================
// CALC BIAS FOR ACCELERATION CONSTRAINTS
//==============================================================================
// Here we just make sure that we have a contiguous array for the result and
// then call the implementation method.
void SimbodyMatterSubsystem::
calcBiasForAccelerationConstraints(const State& state,
Vector& bias) const
{
const SBInstanceCache& ic = getRep().getInstanceCache(state);
// Global problem dimensions.
const int mHolo = ic.totalNHolonomicConstraintEquationsInUse;
const int mNonholo = ic.totalNNonholonomicConstraintEquationsInUse;
const int mAccOnly = ic.totalNAccelerationOnlyConstraintEquationsInUse;
const int m = mHolo+mNonholo+mAccOnly;
bias.resize(m);
if (m==0) return;
if (bias.hasContiguousData()) {
getRep().calcBiasForAccelerationConstraints(state,true,true,true,bias);
} else {
Vector tmpbias(m); // contiguous
getRep().calcBiasForAccelerationConstraints(state,true,true,true,tmpbias);
bias = tmpbias;
}
}
//==============================================================================
// MULTIPLY BY Pq
//==============================================================================
// Check arguments, copy in/out of contiguous Vectors if necssary, call the
// implementation method.
void SimbodyMatterSubsystem::
multiplyByPq(const State& s,
const Vector& qlike,
const Vector& biasp,
Vector& PqXqlike) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const SBInstanceCache& ic = rep.getInstanceCache(s);
// Problem dimensions.
const int mp = ic.totalNHolonomicConstraintEquationsInUse;
const int nq = rep.getNQ(s);
SimTK_ERRCHK2_ALWAYS(qlike.size() == nq,
"SimbodyMatterSubsystem::multiplyByPq()",
"Argument 'qlike' had length %d but should have been the same length"
" as the total number of generalized coordinates nq=%d.",
qlike.size(), nq);
SimTK_ERRCHK2_ALWAYS(biasp.size() == mp,
"SimbodyMatterSubsystem::multiplyByPq()",
"Argument 'biasp' had length %d but should have been the same length"
" as the total number of position (holonomic) constraint"
" equations mp=%d.", biasp.size(), mp);
PqXqlike.resize(mp);
if (mp==0) return;
// Assume at first that all Vectors are contiguous.
const Vector* cqlike = &qlike;
const Vector* cbiasp = &biasp;
Vector* cPqXqlike = &PqXqlike;
bool needToCopyBack = false;
// We'll allocate these or not as needed.
Vector contig_qlike, contig_biasp, contig_PqXqlike;
if (!qlike.hasContiguousData()) {
contig_qlike.resize(nq); // contiguous memory
contig_qlike(0, nq) = qlike; // copy, prevent reallocation
cqlike = (const Vector*)&contig_qlike;
}
if (!biasp.hasContiguousData()) {
contig_biasp.resize(mp); // contiguous memory
contig_biasp(0, mp) = biasp; // copy, prevent reallocation
cbiasp = (const Vector*)&contig_biasp;
}
if (!PqXqlike.hasContiguousData()) {
contig_PqXqlike.resize(mp); // contiguous memory
cPqXqlike = (Vector*)&contig_PqXqlike;
needToCopyBack = true;
}
rep.multiplyByPq(s, *cbiasp, *cqlike, *cPqXqlike);
if (needToCopyBack)
PqXqlike = *cPqXqlike;
}
//==============================================================================
// CALC BIAS FOR MULTIPLY BY Pq
//==============================================================================
// The bias term is the same for P as for Pq because you can view the
// position error first derivative as either
// pverr = Pq * qdot + Pt
// or pverr = P * u + Pt
// since Pq = P*N^-1. Either way the bias term is just Pt (or c(t,q)).
void SimbodyMatterSubsystem::
calcBiasForMultiplyByPq(const State& state,
Vector& biasp) const
{
const SBInstanceCache& ic = getRep().getInstanceCache(state);
// Problem dimension.
const int mp = ic.totalNHolonomicConstraintEquationsInUse;
biasp.resize(mp);
if (mp==0) return;
if (biasp.hasContiguousData()) {
// Just ask for P's bias term.
getRep().calcBiasForMultiplyByPVA(state, true, false, false, biasp);
} else {
Vector tmpbias(mp); // contiguous
getRep().calcBiasForMultiplyByPVA(state, true, false, false, tmpbias);
biasp = tmpbias;
}
}
//==============================================================================
// CALC Gt -- OBSOLETE, use calcGTranspose()
//==============================================================================
void SimbodyMatterSubsystem::
calcGt(const State& s, Matrix& Gt) const {
const SimbodyMatterSubsystemRep& rep = getRep();
const int mHolo = rep.getNumHolonomicConstraintEquationsInUse(s);
const int mNonholo = rep.getNumNonholonomicConstraintEquationsInUse(s);
const int mAccOnly = rep.getNumAccelerationOnlyConstraintEquationsInUse(s);
const int m = mHolo+mNonholo+mAccOnly;
const int nu = rep.getNU(s);
Gt.resize(nu,m);
if (m==0 || nu==0)
return;
// Fill in all the columns of Gt
rep.calcHolonomicVelocityConstraintMatrixPt(s, Gt(0, 0, nu, mHolo));
rep.calcNonholonomicConstraintMatrixVt (s, Gt(0, mHolo, nu, mNonholo));
rep.calcAccelerationOnlyConstraintMatrixAt (s, Gt(0, mHolo+mNonholo, nu, mAccOnly));
}
//==============================================================================
// CALC BODY ACCELERATION FROM UDOT
//==============================================================================
// Here we implement the zero-length udot, which is interpreted as an all-zero
// udot meaning that only coriolis accelerations contribute. Otherwise, we
// arrange to have contiguous input and output vectors to work with if the
// supplied arguments won't do, then invoke the implementation method.
void SimbodyMatterSubsystem::
calcBodyAccelerationFromUDot(const State& state,
const Vector& knownUDot,
Vector_<SpatialVec>& A_GB) const
{
// Interpret 0-length knownUDot as nu all-zero udots.
if (knownUDot.size() == 0) {
// Acceleration is just the coriolis acceleration.
const SBTreeVelocityCache& vc = getRep().getTreeVelocityCache(state);
const Array_<SpatialVec>& tca = vc.totalCoriolisAcceleration;
const Vector_<SpatialVec>
AC_GB(tca.size(), (const Real*)tca.begin(), true); // shallow ref
A_GB = AC_GB;
return;
}
const int nu = getNumMobilities();
SimTK_ERRCHK2_ALWAYS(knownUDot.size() == nu,
"SimbodyMatterSubsystem::calcBodyAccelerationFromUDot()",
"Length of knownUDot argument was %d but should have been either"
" zero or the same as the number of mobilities nu=%d.\n",
knownUDot.size(), nu);
const int nb = getNumBodies();
A_GB.resize(nb);
// If the arguments use contiguous memory we'll work in place, otherwise
// we'll work in contiguous temporaries and copy back.
Vector udotspace; // allocate only if we need to
Vector_<SpatialVec> Aspace;
const Vector* udotp;
Vector_<SpatialVec>* Ap;
if (knownUDot.hasContiguousData()) {
udotp = &knownUDot;
} else {
udotspace.resize(nu); // contiguous memory
udotspace(0, nu) = knownUDot; // prevent reallocation
udotp = (const Vector*)&udotspace;
}
bool needToCopyBack = false;
if (A_GB.hasContiguousData()) {
Ap = &A_GB;
} else {
Aspace.resize(nb); // contiguous memory
Ap = &Aspace;
needToCopyBack = true;
}
getRep().calcBodyAccelerationFromUDot(state, *udotp, *Ap);
if (needToCopyBack)
A_GB = *Ap;
}
//==============================================================================
// MULTIPLY BY N, NInv, NDot
//==============================================================================
// These methods arrange for contiguous Vectors if necessary, then call the
// implementation method.
void SimbodyMatterSubsystem::multiplyByN
(const State& s, bool matrixOnRight, const Vector& in, Vector& out) const
{
const bool inIsContig=in.hasContiguousData();
const bool outIsContig=out.hasContiguousData();
if (inIsContig && outIsContig) {
getRep().multiplyByN(s,matrixOnRight,in,out);
return;
}
Vector inSpace, outSpace; // allocate if needed
const Vector* inp = inIsContig ? &in : (const Vector*)&inSpace;
Vector* outp = outIsContig ? &out : &outSpace;
if (!inIsContig) {
inSpace.resize(in.size());
inSpace(0, in.size()) = in; // prevent reallocation
}
getRep().multiplyByN(s,matrixOnRight,*inp,*outp);
if (!outIsContig)
out = *outp;
}
void SimbodyMatterSubsystem::multiplyByNInv
(const State& s, bool matrixOnRight, const Vector& in, Vector& out) const
{
const bool inIsContig=in.hasContiguousData();
const bool outIsContig=out.hasContiguousData();
if (inIsContig && outIsContig) {
getRep().multiplyByNInv(s,matrixOnRight,in,out);
return;
}
Vector inSpace, outSpace; // allocate if needed
const Vector* inp = inIsContig ? &in : (const Vector*)&inSpace;
Vector* outp = outIsContig ? &out : &outSpace;
if (!inIsContig) {
inSpace.resize(in.size());
inSpace(0, in.size()) = in; // prevent reallocation
}
getRep().multiplyByNInv(s,matrixOnRight,*inp,*outp);
if (!outIsContig)
out = *outp;
}
void SimbodyMatterSubsystem::multiplyByNDot
(const State& s, bool matrixOnRight, const Vector& in, Vector& out) const
{
const bool inIsContig=in.hasContiguousData();
const bool outIsContig=out.hasContiguousData();
if (inIsContig && outIsContig) {
getRep().multiplyByNDot(s,matrixOnRight,in,out);
return;
}
Vector inSpace, outSpace; // allocate if needed
const Vector* inp = inIsContig ? &in : (const Vector*)&inSpace;
Vector* outp = outIsContig ? &out : &outSpace;
if (!inIsContig) {
inSpace.resize(in.size());
inSpace(0, in.size()) = in; // prevent reallocation
}
getRep().multiplyByNDot(s,matrixOnRight,*inp,*outp);
if (!outIsContig)
out = *outp;
}
//==============================================================================
// JACOBIAN METHODS
//==============================================================================
//------------------------------------------------------------------------------
// MULTIPLY BY SYSTEM JACOBIAN
//------------------------------------------------------------------------------
// Ensure that we have contiguous storage and then call the underlying method.
void SimbodyMatterSubsystem::multiplyBySystemJacobian
(const State& s, const Vector& u, Vector_<SpatialVec>& Ju) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies(), nu = rep.getNumMobilities();
SimTK_ERRCHK2_ALWAYS(u.size() == nu,
"SimbodyMatterSubsystem::multiplyBySystemJacobian()",
"The supplied u-space Vector had length %d; expected %d.",u.size(),nu);
const bool uIsContig = u.hasContiguousData();
const bool JuIsContig = Ju.hasContiguousData();
Vector u_contig; Vector_<SpatialVec> Ju_contig; // allocate only if needed
const Vector* up = uIsContig ? &u : (const Vector*)&u_contig;
Vector_<SpatialVec>* Jup = JuIsContig ? &Ju : &Ju_contig;
if (!uIsContig) {
u_contig.resize(nu);
u_contig(0, nu) = u; // prevent reallocation
}
rep.multiplyBySystemJacobian(s, *up, *Jup);
if (!JuIsContig)
Ju = Ju_contig;
}
//------------------------------------------------------------------------------
// MULTIPLY BY SYSTEM JACOBIAN TRANSPOSE
//------------------------------------------------------------------------------
void SimbodyMatterSubsystem::multiplyBySystemJacobianTranspose
(const State& s, const Vector_<SpatialVec>& F_G, Vector& f) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies(), nu = rep.getNumMobilities();
SimTK_ERRCHK2_ALWAYS(F_G.size() == nb,
"SimbodyMatterSubsystem::multiplyBySystemJacobianTranspose()",
"The supplied spatial forces vector had length %d; expected %d.",
F_G.size(),nb);
const bool F_GIsContig = F_G.hasContiguousData();
const bool fIsContig = f.hasContiguousData();
Vector_<SpatialVec> F_G_contig; Vector f_contig; // allocate only if needed
const Vector_<SpatialVec>* F_Gp = F_GIsContig ?
&F_G : (const Vector_<SpatialVec>*)&F_G_contig;
Vector* fp = fIsContig ? &f : &f_contig;
if (!F_GIsContig) {
F_G_contig.resize(nb);
F_G_contig(0, nb) = F_G; // prevent reallocation
}
rep.multiplyBySystemJacobianTranspose(s, *F_Gp, *fp);
if (!fIsContig)
f = f_contig;
}
//------------------------------------------------------------------------------
// CALC SYSTEM JACOBIAN (spatial)
//------------------------------------------------------------------------------
// Calculate J as an nb X n matrix of SpatialVecs, by repeated calls
// to J*u with u=0 except one u[i]=1. Cost is 12*n*(nb+n).
// If the output matrix J_G isn't contiguous we have to allocate an nb-length
// temporary and perform an extra copy from there into J_G.
void SimbodyMatterSubsystem::calcSystemJacobian
(const State& state,
Matrix_<SpatialVec>& J_G) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies(), nu = rep.getNumMobilities();
J_G.resize(nb,nu);
Vector u(nu, Real(0));
// If J_G is contiguous we can generate results directly into its columns.
if (J_G.hasContiguousData()) {
for (int j=0; j<nu; ++j) {
VectorView_<SpatialVec> col = J_G(j);
u[j] = 1; rep.multiplyBySystemJacobian(state,u,col); u[j] = 0;
}
return;
}
// J_G is non-contiguous so generate results into a temporary column and
// copy back.
Vector_<SpatialVec> Ju(nb);
for (int j=0; j<nu; ++j) {
u[j] = 1; rep.multiplyBySystemJacobian(state,u,Ju); u[j] = 0;
VectorView_<SpatialVec> col = J_G(j);
col = Ju;
}
}
//------------------------------------------------------------------------------
// CALC SYSTEM JACOBIAN (scalars)
//------------------------------------------------------------------------------
// Alternate signature that returns a system Jacobian as a 6*nb X n Matrix
// rather than as an nb X n matrix of spatial vectors. Note that we
// don't know whether the output matrix has contiguous rows, columns or
// neither; we'll always work with a contiguous temporary here and copy back.
void SimbodyMatterSubsystem::calcSystemJacobian
(const State& state,
Matrix& J_G) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies(), nu = rep.getNumMobilities();
J_G.resize(6*nb,nu); // we don't know how this is stored
Vector u(nu, Real(0));
Vector_<SpatialVec> Ju(nb); // temp Ju=J_G*u
for (int j=0; j<nu; ++j) {
u[j] = 1; rep.multiplyBySystemJacobian(state,u,Ju); u[j] = 0;
VectorView col = J_G(j); // 6*nb long; maybe not contiguous!
int nxt = 0; // index into col
for (MobilizedBodyIndex mbx(0); mbx < nb; ++mbx) {
const SpatialVec& V = Ju[mbx];
for (int k=0; k<3; ++k) col[nxt++] = V[0][k]; // w
for (int k=0; k<3; ++k) col[nxt++] = V[1][k]; // v
}
}
}
//------------------------------------------------------------------------------
// CALC BIAS FOR SYSTEM JACOBIAN (spatial)
//------------------------------------------------------------------------------
// This is just a synonym for getTotalCoriolisAcceleration(). No flops since
// we already computed this.
void SimbodyMatterSubsystem::calcBiasForSystemJacobian
(const State& state,
Vector_<SpatialVec>& JDotu) const
{
// Just return the coriolis acceleration.
const SBTreeVelocityCache& vc = getRep().getTreeVelocityCache(state);
const Array_<SpatialVec,MobilizedBodyIndex>& tca =
vc.totalCoriolisAcceleration;
const Vector_<SpatialVec>
AC_GB(tca.size(), (const Real*)tca.begin(), true); // shallow ref
JDotu = AC_GB;
}
//------------------------------------------------------------------------------
// CALC BIAS FOR SYSTEM JACOBIAN (scalar)
//------------------------------------------------------------------------------
// Same as above but unpack into 6*nb vector rather nb spatial vecs.
void SimbodyMatterSubsystem::calcBiasForSystemJacobian
(const State& state,
Vector& JDotu) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies(), nu = rep.getNumMobilities();
const SBTreeVelocityCache& vc = rep.getTreeVelocityCache(state);
const Array_<SpatialVec,MobilizedBodyIndex>& tca =
vc.totalCoriolisAcceleration;
JDotu.resize(6*nb); // Might not be contiguous
int nxt = 0; // index into JDotu
for (MobilizedBodyIndex mbx(0); mbx < nb; ++mbx) {
const SpatialVec& A = tca[mbx];
for (int k=0; k<3; ++k) JDotu[nxt++] = A[0][k]; // b (angular accel)
for (int k=0; k<3; ++k) JDotu[nxt++] = A[1][k]; // a
}
}
//------------------------------------------------------------------------------
// MULTIPLY BY STATION JACOBIAN
//------------------------------------------------------------------------------
// We want v_GS = J_GS*u, the linear velocity of nt station tasks Si in Ground
// induced by the given generalized speeds. Station Si is on body Bi and is
// given by the Bi-frame vector p_BiS. We can easily calculate V_GB = J_GB*u,
// the spatial velocity of *all* the mobilized bodies. Then for each station
// task,
// v_GSi = v_GBi + w_GBi X p_BiS_G
// where p_BiS_G is p_BiS re-expressed in Ground.
//
// Cost is 27*nt + 12*(nb+nu) flops.
//
// It is OK for the input u and output JSu vectors to be non-contiguous.
void SimbodyMatterSubsystem::multiplyByStationJacobian
(const State& state,
const Array_<MobilizedBodyIndex>& onBodyB, // task body
const Array_<Vec3>& p_BS, // task station
const Vector& u,
Vector_<Vec3>& JSu) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies(), nu = rep.getNumMobilities();
SimTK_ERRCHK2_ALWAYS(u.size() == nu,
"SimbodyMatterSubsystem::multiplyByStationJacobian()",
"The supplied u-space Vector had length %d; expected %d.",u.size(),nu);
const int nt = (int)onBodyB.size(); // number of tasks
SimTK_ERRCHK2_ALWAYS(p_BS.size() == nt,
"SimbodyMatterSubsystem::multiplyByStationJacobian()",
"The given number of task bodies (%d) and station tasks (%d) must "
"be the same.", nt, (int)p_BS.size());
// First use the System Jacobian to obtain spatial velocities for *all*
// mobilized body frames, at a cost of 12*(nb+nu) flops.
Vector_<SpatialVec> Ju(nb); // temp Ju=J_G*u (contiguous)
if (u.hasContiguousData())
rep.multiplyBySystemJacobian(state,u,Ju);
else {
Vector contig_u(nu); // contiguous data
contig_u(0,nu) = u; // no reallocation
rep.multiplyBySystemJacobian(state,contig_u,Ju);
}
// Then for each station task, determine its linear velocity at a cost of
// 27 flops per task.
JSu.resize(nt);
for (int task=0; task < nt; ++task) {
const MobilizedBodyIndex mobodx = onBodyB[task];
SimTK_INDEXCHECK(mobodx, nb,
"SimbodyMatterSubsystem::multiplyByStationJacobian()");
const MobilizedBody& mobod = rep.getMobilizedBody(mobodx);
const Vec3 p_BS_G =
mobod.expressVectorInGroundFrame(state, p_BS[task]); // 15 flops
const SpatialVec& V_GB = Ju[mobodx];
const SpatialVec V_GS = shiftVelocityBy(V_GB, p_BS_G); // 12 flops
JSu[task] = V_GS[1]; // return linear velocity only
}
}
//------------------------------------------------------------------------------
// MULTIPLY BY STATION JACOBIAN TRANSPOSE
//------------------------------------------------------------------------------
// We want f = ~J_GS*f_GS, the generalized forces produced by applying
// translational task force vectors f_GSi to stations Si. Each station Si is on
// body Bi and is given by the Bi-frame vector p_BiSi. We can easily calculate
// f = ~J_GB*F_GB for task body origins, so we shift the task forces there
// with F_GBi=[p_BiSi_G X f_GSi, f_GSi].
// It is OK if f_GS and/or f are not contiguous.
// Cost is 30nt + 18nb + 11nu.
void SimbodyMatterSubsystem::multiplyByStationJacobianTranspose
(const State& state,
const Array_<MobilizedBodyIndex>& onBodyB,
const Array_<Vec3>& p_BS,
const Vector_<Vec3>& f_GS,
Vector& f) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies(), nu = rep.getNumMobilities();
const int nt = (int)onBodyB.size(); // number of tasks
SimTK_ERRCHK3_ALWAYS(p_BS.size() == nt && f_GS.size() == nt,
"SimbodyMatterSubsystem::multiplyByStationJacobianTranspose()",
"The given number of task bodies (%d), task stations (%d), and "
"applied task forces (%d) must all be the same.",
nt, (int)p_BS.size(), (int)f_GS.size());
f.resize(nu); // might not be contiguous
const bool fIsContig = f.hasContiguousData();
Vector f_contig; // will get allocated only if used below
Vector* fp = fIsContig ? &f : &f_contig;
// Need an array putting a spatial force on *every* body.
Vector_<SpatialVec> F_G(nb); F_G.setToZero();
// Collect the applied task forces into F_G.
for (int task=0; task < nt; ++task) {
const MobilizedBodyIndex mobodx = onBodyB[task];
SimTK_INDEXCHECK(mobodx, nb,
"SimbodyMatterSubsystem::multiplyByStationJacobianTranspose()");
const MobilizedBody& mobod = rep.getMobilizedBody(mobodx);
const Vec3 p_BS_G =
mobod.expressVectorInGroundFrame(state, p_BS[task]); // 15 flops
F_G[mobodx] += SpatialVec(p_BS_G % f_GS[task], f_GS[task]); // 15 flops
}
rep.multiplyBySystemJacobianTranspose(state,F_G,*fp); // 18nb+11nu flops
if (!fIsContig)
f = f_contig; // copy result out
}
//------------------------------------------------------------------------------
// CALC STATION JACOBIAN (spatial)
//------------------------------------------------------------------------------
// Cost is 3*nt*(14 + 18nb + 11n) flops.
// Each subsequent multiply by JS_G*u would be 3*nt*(2n-1)~=6*nt*n flops.
void SimbodyMatterSubsystem::calcStationJacobian
(const State& state,
const Array_<MobilizedBodyIndex>& onBodyB,
const Array_<Vec3>& p_BS,
Matrix_<Vec3>& JS_G) const // nt X nu Vec3s
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies(), nu = rep.getNumMobilities();
const int nt = (int)onBodyB.size(); // number of tasks
SimTK_ERRCHK2_ALWAYS(p_BS.size() == nt,
"SimbodyMatterSubsystem::calcStationJacobian()",
"The given number of task bodies (%d) and station tasks (%d) must "
"be the same.", nt, (int)p_BS.size());
// Calculate J=dvdu where v is linear velocity of task stations p_BS.
// (This is nt half-rows of J.)
JS_G.resize(nt,nu);
// We're assuming that 3*nt << nu so that it is cheaper to calculate ~JS
// than JS, using ~J*F rather than J*u.
// TODO: check dimensions and use whichever method is cheaper.
Vector_<SpatialVec> F_G(nb); F_G.setToZero();
Vector col(nu); // temporary to hold column of ~J_G
for (int task=0; task < nt; ++task) {
const MobilizedBodyIndex mobodx = onBodyB[task];
SimTK_INDEXCHECK(mobodx, nb,
"SimbodyMatterSubsystem::calcStationJacobian()");
const MobilizedBody& mobod = rep.getMobilizedBody(mobodx);
const Vec3 p_BS_G =
mobod.expressVectorInGroundFrame(state, p_BS[task]); // 15 flops
// Calculate the 3 rows of JS corresponding to this task.
RowVectorView_<Vec3> row = JS_G[task];
SpatialVec& Fb = F_G[mobodx]; // the only one we'll change
for (int i=0; i < 3; ++i) {
Fb[1][i] = 1;
Fb[0] = p_BS_G % Fb[1]; // r X F (9 flops)
rep.multiplyBySystemJacobianTranspose(state,F_G,col);// 18nb+11nu flops
for (int r=0; r < nu; ++r) row[r][i] = col[r];
Fb[1][i] = 0;
Fb[0] = 0;
}
}
}
//------------------------------------------------------------------------------
// CALC STATION JACOBIAN (scalar)
//------------------------------------------------------------------------------
// Alternate signature that returns a station Jacobian as a 3*nt X nu Matrix
// rather than as an nt X nu Matrix of Vec3s.
void SimbodyMatterSubsystem::calcStationJacobian
(const State& state,
const Array_<MobilizedBodyIndex>& onBodyB,
const Array_<Vec3>& p_BS,
Matrix& JS_G) const // 3*nt X nu Vec3s
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies(), nu = rep.getNumMobilities();
const int nt = (int)onBodyB.size(); // number of tasks
SimTK_ERRCHK2_ALWAYS(p_BS.size() == nt,
"SimbodyMatterSubsystem::calcStationJacobian()",
"The specified number of task bodies (%d) and station tasks (%d) must "
"be the same.", nt, (int)p_BS.size());
// Calculate J=dvdu where v is linear velocity of p_BS.
// (This is nt rows of J.)
JS_G.resize(3*nt,nu);
// We're assuming that 3*nt << nu so that it is cheaper to calculate ~JS
// than JS, using ~J*F rather than J*u.
// TODO: check dimensions and use whichever method is cheaper.
Vector_<SpatialVec> F_G(nb); F_G.setToZero();
Vector col(nu); // contiguous temporary to hold column of ~J_G
for (int task=0; task < nt; ++task) {
const MobilizedBodyIndex mobodx = onBodyB[task];
SimTK_INDEXCHECK(mobodx, nb,
"SimbodyMatterSubsystem::calcStationJacobian()");
const MobilizedBody& mobod = rep.getMobilizedBody(mobodx);
const Vec3 p_BS_G =
mobod.expressVectorInGroundFrame(state, p_BS[task]); // 15 flops
// Calculate the 3 rows of JS corresponding to this task.
SpatialVec& Fb = F_G[mobodx]; // the only one we'll change
for (int i=0; i < 3; ++i) {
Fb[1][i] = 1;
Fb[0] = p_BS_G % Fb[1]; // r X F (9 flops)
rep.multiplyBySystemJacobianTranspose(state,F_G,col);// 18nb+11nu flops
JS_G[3*task + i] = ~col;
Fb[1][i] = 0;
Fb[0] = 0;
}
}
}
//------------------------------------------------------------------------------
// CALC BIAS FOR STATION JACOBIAN (spatial)
//------------------------------------------------------------------------------
// Just get the total Coriolis acceleration for each task body and shift it to
// the task station S. Cost is 48*nt flops.
void SimbodyMatterSubsystem::calcBiasForStationJacobian
(const State& state,
const Array_<MobilizedBodyIndex>& onBodyB, // nt task bodies
const Array_<Vec3>& p_BS, // nt task stations
Vector_<Vec3>& JSDotu) const // nt of these
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies();
const int nt = (int)onBodyB.size(); // number of tasks
SimTK_ERRCHK2_ALWAYS(p_BS.size() == nt,
"SimbodyMatterSubsystem::calcBiasForStationJacobian()",
"The specified number of task bodies (%d) and station tasks (%d) must "
"be the same.", nt, (int)p_BS.size());
const SBTreeVelocityCache& vc = rep.getTreeVelocityCache(state);
JSDotu.resize(nt);
for (int task=0; task < nt; ++task) {
const MobilizedBodyIndex mobodx = onBodyB[task];
SimTK_INDEXCHECK(mobodx, nb,
"SimbodyMatterSubsystem::calcBiasForStationJacobian()");
const MobilizedBody& mobod = rep.getMobilizedBody(mobodx);
const Vec3 p_BS_G =
mobod.expressVectorInGroundFrame(state, p_BS[task]); // 15 flops
const SpatialVec& A_GB = vc.totalCoriolisAcceleration[mobodx];
const Vec3& w_GB = mobod.getBodyAngularVelocity(state);
const SpatialVec A_GS = shiftAccelerationBy(A_GB, w_GB, p_BS_G);
// 33 flops
JSDotu[task] = A_GS[1]; // linear acceleration only
}
}
//------------------------------------------------------------------------------
// CALC BIAS FOR STATION JACOBIAN (scalar)
//------------------------------------------------------------------------------
void SimbodyMatterSubsystem::calcBiasForStationJacobian
(const State& state,
const Array_<MobilizedBodyIndex>& onBodyB, // nt task bodies
const Array_<Vec3>& p_BS, // nt task stations
Vector& JSDotu) const // 3*nt
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies();
const int nt = (int)onBodyB.size(); // number of tasks
SimTK_ERRCHK2_ALWAYS(p_BS.size() == nt,
"SimbodyMatterSubsystem::calcBiasForStationJacobian()",
"The given number of task bodies (%d) and station tasks (%d) must "
"be the same.", nt, (int)p_BS.size());
const SBTreeVelocityCache& vc = rep.getTreeVelocityCache(state);
JSDotu.resize(3*nt); // might not be contiguous
for (int task=0; task < nt; ++task) {
const MobilizedBodyIndex mobodx = onBodyB[task];
SimTK_INDEXCHECK(mobodx, nb,
"SimbodyMatterSubsystem::calcBiasForStationJacobian()");
const MobilizedBody& mobod = rep.getMobilizedBody(mobodx);
const Vec3 p_BS_G =
mobod.expressVectorInGroundFrame(state, p_BS[task]); // 15 flops
const SpatialVec& A_GB = vc.totalCoriolisAcceleration[mobodx];
const Vec3& w_GB = mobod.getBodyAngularVelocity(state);
const SpatialVec A_GS = shiftAccelerationBy(A_GB, w_GB, p_BS_G);
// 33 flops
const Vec3& a_GS = A_GS[1]; // linear acceleration only
for (int k=0; k<3; ++k) JSDotu[3*task+k] = a_GS[k];
}
}
//------------------------------------------------------------------------------
// MULTIPLY BY FRAME JACOBIAN
//------------------------------------------------------------------------------
// We want V_GA = J_GA*u, the spatial velocity of nt task frames Ai in
// Ground induced by the given generalized speeds. Frames A are fixed on bodies
// B and would be given by the transform X_BA, except the result depends only
// on A's origin position p_BA (==p_BoAo) because angular velocity is the same
// for all frames fixed to the same body. We can easily calculate V_GB = J_GB*u,
// the spatial velocities at each body B's origin Bo. Then
// V_GAi = [w_GAi, v_GAi] = [w_GBi, v_GBi + w_GBi X p_BiAi_G]
// where p_BiAi_G is p_BiAi re-expressed in Ground.
//
// Cost is 27*nt + 12*(nb+nu) flops.
void SimbodyMatterSubsystem::multiplyByFrameJacobian
(const State& state,
const Array_<MobilizedBodyIndex>& onBodyB,
const Array_<Vec3>& p_BA,
const Vector& u,
Vector_<SpatialVec>& JFu) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies(), nu = rep.getNumMobilities();
const int nt = (int)onBodyB.size(); // number of tasks
SimTK_ERRCHK2_ALWAYS(u.size() == nu,
"SimbodyMatterSubsystem::multiplyByFrameJacobian()",
"The supplied u-space Vector had length %d; expected %d.",u.size(),nu);
SimTK_ERRCHK2_ALWAYS(p_BA.size() == nt,
"SimbodyMatterSubsystem::multiplyByFrameJacobian()",
"The given number of task bodies (%d) and frame tasks (%d) must "
"be the same.", nt, (int)p_BA.size());
// First use the System Jacobian to obtain spatial velocities for *all*
// mobilized body frames, at a cost of 12*(nb+nu) flops.
Vector_<SpatialVec> Ju(nb); // temp Ju=J_G*u (contiguous)
if (u.hasContiguousData())
rep.multiplyBySystemJacobian(state,u,Ju);
else {
Vector contig_u(nu); // contiguous data
contig_u(0,nu) = u; // no reallocation
rep.multiplyBySystemJacobian(state,contig_u,Ju);
}
// Then for each frame task, determine its linear velocity at a cost of
// 27 flops per task.
JFu.resize(nt); // OK if not contiguous
for (int task=0; task < nt; ++task) {
const MobilizedBodyIndex mobodx = onBodyB[task];
SimTK_INDEXCHECK(mobodx, nb,
"SimbodyMatterSubsystem::multiplyByFrameJacobian()");
const MobilizedBody& mobod = rep.getMobilizedBody(mobodx);
const Vec3 p_BA_G =
mobod.expressVectorInGroundFrame(state, p_BA[task]); // 15 flops
const SpatialVec& V_GB = Ju[mobodx];
JFu[task] = shiftVelocityBy(V_GB, p_BA_G); // 12 flops
}
}
//------------------------------------------------------------------------------
// MULTIPLY BY FRAME JACOBIAN TRANSPOSE
//------------------------------------------------------------------------------
// We want f = ~J_GA*F_GA, the generalized forces produced by applying spatial
// force vectors F_GAi=[t_G,f_GAi] at Aio, the origin of task frame Ai, which
// is fixed to some body Bi. Frame Ai would be given by transform X_BAi, but the
// result depends only on Ai's origin location p_BiAi (==p_BioAio) since a
// torque is the same wherever it is applied. We can easily calculate
// fb = ~J_GB*F_GB so we shift each F_GAi to Bi via
// F_GBi = [t_G + p_BiAi_G X f_GAi, f_GAi].
// Cost is 33nt + 18nb + 11nu.
void SimbodyMatterSubsystem::multiplyByFrameJacobianTranspose
(const State& state,
const Array_<MobilizedBodyIndex>& onBodyB,
const Array_<Vec3>& p_BA,
const Vector_<SpatialVec>& F_GA,
Vector& f) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies(), nu = rep.getNumMobilities();
const int nt = (int)onBodyB.size(); // number of tasks
SimTK_ERRCHK3_ALWAYS(p_BA.size() == nt && F_GA.size() == nt,
"SimbodyMatterSubsystem::multiplyByFrameJacobianTranspose()",
"The given number of task bodies (%d), task stations (%d), and "
"applied task forces (%d) must all be the same.",
nt, (int)p_BA.size(), (int)F_GA.size());
f.resize(nu); // might not be contiguous
const bool fIsContig = f.hasContiguousData();
Vector f_contig; // will get allocated only if used below
Vector* fp = fIsContig ? &f : &f_contig;
// Need an array putting a spatial force on each body.
Vector_<SpatialVec> F_G(nb); F_G.setToZero();
// Collect the applied task forces into F_G.
for (int task=0; task < nt; ++task) {
const MobilizedBodyIndex mobodx = onBodyB[task];
SimTK_INDEXCHECK(mobodx, nb,
"SimbodyMatterSubsystem::multiplyByFrameJacobianTranspose()");
const MobilizedBody& mobod = rep.getMobilizedBody(mobodx);
const Vec3 p_BA_G =
mobod.expressVectorInGroundFrame(state, p_BA[task]); // 15 flops
const SpatialVec& F_GAi = F_GA[task];
F_G[mobodx] += SpatialVec(F_GAi[0] + p_BA_G % F_GAi[1], // 18 flops
F_GAi[1]);
}
rep.multiplyBySystemJacobianTranspose(state,F_G,*fp); // 18nb+11nu flops
if (!fIsContig)
f = f_contig; // copy result out
}
//------------------------------------------------------------------------------
// CALC FRAME JACOBIAN (spatial)
//------------------------------------------------------------------------------
// Cost is 42*nt + 6*(18nb + 11nu) flops.
// Each subsequent multiply by JF_G*u would be 12*nu-6 flops.
void SimbodyMatterSubsystem::calcFrameJacobian
(const State& state,
const Array_<MobilizedBodyIndex>& onBodyB,
const Array_<Vec3>& p_BA,
Matrix_<SpatialVec>& JF_G) const
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies(); // includes ground
const int nu = rep.getNumMobilities();
const int nt = (int)onBodyB.size(); // number of tasks
SimTK_ERRCHK2_ALWAYS(p_BA.size() == nt,
"SimbodyMatterSubsystem::calcFrameJacobian()",
"The given number of task bodies (%d) and frame tasks (%d) must "
"be the same.", nt, (int)p_BA.size());
// Calculate J=dVdu where V is spatial velocity of task frames A.
// (This is nt rows of J.)
JF_G.resize(nt,nu);
// We're assuming that 6*nt << nu so that it is cheaper to calculate ~JF
// than JF, using ~J*F rather than J*u.
// TODO: check dimensions and use whichever method is cheaper.
Vector_<SpatialVec> F_G(nb); F_G.setToZero();
Vector col(nu); // temporary to hold column of ~J_G
for (int task=0; task < nt; ++task) {
const MobilizedBodyIndex mobodx = onBodyB[task];
SimTK_INDEXCHECK(mobodx, nb,
"SimbodyMatterSubsystem::calcFrameJacobian()");
const MobilizedBody& mobod = rep.getMobilizedBody(mobodx);
const Vec3 p_BA_G =
mobod.expressVectorInGroundFrame(state, p_BA[task]); // 15 flops
// Calculate the 6 rows of JS corresponding to this task.
RowVectorView_<SpatialVec> row = JF_G[task];
SpatialVec& Fb = F_G[mobodx]; // the only one we'll change
// Rotational part.
for (int i=0; i < 3; ++i) {
Fb[0][i] = 1;
rep.multiplyBySystemJacobianTranspose(state,F_G,col);// 18nb+11nu flops
for (int r=0; r < nu; ++r) row[r][0][i] = col[r];
Fb[0][i] = 0;
}
// Translational part.
for (int i=0; i < 3; ++i) {
Fb[1][i] = 1;
Fb[0] = p_BA_G % Fb[1]; // r X F (9 flops)
rep.multiplyBySystemJacobianTranspose(state,F_G,col);// 18nb+11nu flops
for (int r=0; r < nu; ++r) row[r][1][i] = col[r];
Fb[1][i] = 0;
Fb[0] = 0;
}
}
}
//------------------------------------------------------------------------------
// CALC FRAME JACOBIAN (scalar)
//------------------------------------------------------------------------------
// Alternate signature that returns a frame Jacobian as a 6*nt x n Matrix
// rather than as a Matrix of SpatialVecs.
// Cost is 42*nt + 6*(18*nb + 11*n)
void SimbodyMatterSubsystem::calcFrameJacobian
(const State& state,
const Array_<MobilizedBodyIndex>& onBodyB,
const Array_<Vec3>& p_BA,
Matrix& JF_G) const // 6*nt X n
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies(); // includes ground
const int nu = rep.getNumMobilities();
const int nt = (int)onBodyB.size(); // number of tasks
SimTK_ERRCHK2_ALWAYS(p_BA.size() == nt,
"SimbodyMatterSubsystem::calcFrameJacobian()",
"The given number of task bodies (%d) and frame tasks (%d) must "
"be the same.", nt, (int)p_BA.size());
// Calculate J=dVdu where V is spatial velocity of task frames A.
// (This is 6*nt rows of the scalar matrix form of J.)
JF_G.resize(6*nt,nu);
// We're assuming that 6*nt << nu so that it is cheaper to calculate ~JF
// than JF, using ~J*F rather than J*u.
// TODO: check dimensions and use whichever method is cheaper.
Vector_<SpatialVec> F_G(nb); F_G.setToZero();
Vector col(nu); // temporary to hold column of ~J_G
for (int task=0; task < nt; ++task) {
const MobilizedBodyIndex mobodx = onBodyB[task];
SimTK_INDEXCHECK(mobodx, nb,
"SimbodyMatterSubsystem::calcFrameJacobian()");
const MobilizedBody& mobod = rep.getMobilizedBody(mobodx);
const Vec3 p_BA_G =
mobod.expressVectorInGroundFrame(state, p_BA[task]); // 15 flops
// Calculate the 6 rows of JS corresponding to this task.
SpatialVec& Fb = F_G[mobodx]; // the only one we'll change
// Rotational part.
for (int i=0; i < 3; ++i) {
Fb[0][i] = 1;
rep.multiplyBySystemJacobianTranspose(state,F_G,col);// 18nb+11nu flops
JF_G[6*task + i] = ~col;
Fb[0][i] = 0;
}
// Translational part.
for (int i=0; i < 3; ++i) {
Fb[1][i] = 1;
Fb[0] = p_BA_G % Fb[1]; // r X F (9 flops)
rep.multiplyBySystemJacobianTranspose(state,F_G,col);// 18nb+11nu flops
JF_G[6*task + 3 + i] = ~col;
Fb[1][i] = 0;
Fb[0] = 0;
}
}
}
//------------------------------------------------------------------------------
// CALC BIAS FOR FRAME JACOBIAN (spatial)
//------------------------------------------------------------------------------
// Just get the total Coriolis acceleration for this body and shift it to
// the A frame origin Ao.
// Cost is 48*nt.
void SimbodyMatterSubsystem::calcBiasForFrameJacobian
(const State& state,
const Array_<MobilizedBodyIndex>& onBodyB, // nt task bodies
const Array_<Vec3>& p_BA, // nt task frames
Vector_<SpatialVec>& JFDotu) const // nt of these
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies();
const int nt = (int)onBodyB.size(); // number of tasks
SimTK_ERRCHK2_ALWAYS(p_BA.size() == nt,
"SimbodyMatterSubsystem::calcBiasForFrameJacobian()",
"The given number of task bodies (%d) and frame tasks (%d) must "
"be the same.", nt, (int)p_BA.size());
const SBTreeVelocityCache& vc = rep.getTreeVelocityCache(state);
JFDotu.resize(nt);
for (int task=0; task < nt; ++task) {
const MobilizedBodyIndex mobodx = onBodyB[task];
SimTK_INDEXCHECK(mobodx, nb,
"SimbodyMatterSubsystem::calcBiasForFrameJacobian()");
const MobilizedBody& mobod = rep.getMobilizedBody(mobodx);
const Vec3 p_BA_G =
mobod.expressVectorInGroundFrame(state, p_BA[task]); // 15 flops
const SpatialVec& A_GB = vc.totalCoriolisAcceleration[mobodx];
const Vec3& w_GB = mobod.getBodyAngularVelocity(state);
const SpatialVec A_GA = shiftAccelerationBy(A_GB, w_GB, p_BA_G);
// 33 flops
JFDotu[task] = A_GA; // linear acceleration only
}
}
//------------------------------------------------------------------------------
// CALC BIAS FOR FRAME JACOBIAN (scalar)
//------------------------------------------------------------------------------
// Just get the total Coriolis acceleration for this body and shift it to
// the A frame origin Ao.
// Cost is 48*nt.
void SimbodyMatterSubsystem::calcBiasForFrameJacobian
(const State& state,
const Array_<MobilizedBodyIndex>& onBodyB, // nt task bodies
const Array_<Vec3>& p_BA, // nt task frames
Vector& JFDotu) const // 6*nt
{
const SimbodyMatterSubsystemRep& rep = getRep();
const int nb = rep.getNumBodies();
const int nt = (int)onBodyB.size(); // number of tasks
SimTK_ERRCHK2_ALWAYS(p_BA.size() == nt,
"SimbodyMatterSubsystem::calcBiasForFrameJacobian()",
"The given number of task bodies (%d) and frame tasks (%d) must "
"be the same.", nt, (int)p_BA.size());
const SBTreeVelocityCache& vc = rep.getTreeVelocityCache(state);
JFDotu.resize(6*nt); // might not be contiguous
for (int task=0; task < nt; ++task) {
const MobilizedBodyIndex mobodx = onBodyB[task];
SimTK_INDEXCHECK(mobodx, nb,
"SimbodyMatterSubsystem::calcBiasForFrameJacobian()");
const MobilizedBody& mobod = rep.getMobilizedBody(mobodx);
const Vec3 p_BA_G =
mobod.expressVectorInGroundFrame(state, p_BA[task]); // 15 flops
const SpatialVec& A_GB = vc.totalCoriolisAcceleration[mobodx];
const Vec3& w_GB = mobod.getBodyAngularVelocity(state);
const SpatialVec A_GA = shiftAccelerationBy(A_GB, w_GB, p_BA_G);
// 33 flops
for (int k=0; k<3; ++k) JFDotu[6*task+k] = A_GA[0][k];
for (int k=0; k<3; ++k) JFDotu[6*task+3+k] = A_GA[1][k];
}
}
//==============================================================================
// MISC OPERATORS
//==============================================================================
void SimbodyMatterSubsystem::calcCompositeBodyInertias
(const State& s, Array_<SpatialInertia,MobilizedBodyIndex>& R) const
{ getRep().calcCompositeBodyInertias(s,R); }
void SimbodyMatterSubsystem::calcTreeEquivalentMobilityForces
(const State& s, const Vector_<SpatialVec>& bodyForces,
Vector& mobForces) const
{ getRep().calcTreeEquivalentMobilityForces(s,bodyForces,mobForces); }
Real SimbodyMatterSubsystem::calcKineticEnergy(const State& s) const
{ return getRep().calcKineticEnergy(s); }
void SimbodyMatterSubsystem::calcMobilizerReactionForces
(const State& s, Vector_<SpatialVec>& forces) const
{ getRep().calcMobilizerReactionForces(s, forces); }
const Vector& SimbodyMatterSubsystem::
getMotionMultipliers(const State& s) const
{ return getRep().getMotionMultipliers(s); }
Vector SimbodyMatterSubsystem::
calcMotionErrors(const State& s, const Stage& stage) const
{ return getRep().calcMotionErrors(s,stage); }
void SimbodyMatterSubsystem::
findMotionForces(const State& s,
Vector& mobilityForces) const
{ getRep().findMotionForces(s, mobilityForces); }
const Vector& SimbodyMatterSubsystem::
getConstraintMultipliers(const State& s) const
{ return getRep().getConstraintMultipliers(s); }
void SimbodyMatterSubsystem::
findConstraintForces(const State& s,
Vector_<SpatialVec>& bodyForcesInG,
Vector& mobilityForces) const
{ getRep().findConstraintForces(s, bodyForcesInG, mobilityForces); }
Real SimbodyMatterSubsystem::
calcMotionPower(const State& s) const
{ return getRep().calcMotionPower(s); }
Real SimbodyMatterSubsystem::
calcConstraintPower(const State& s) const
{ return getRep().calcConstraintPower(s); }
void SimbodyMatterSubsystem::
calcConstraintForcesFromMultipliers(const State& s,
const Vector& lambda,
Vector_<SpatialVec>& bodyForcesInG,
Vector& mobilityForces) const
{ getRep().calcConstraintForcesFromMultipliers
(s,lambda,bodyForcesInG,mobilityForces); }
void SimbodyMatterSubsystem::
calcMobilizerReactionForcesUsingFreebodyMethod
(const State& s, Vector_<SpatialVec>& forces) const
{ getRep().calcMobilizerReactionForcesUsingFreebodyMethod(s, forces); }
void SimbodyMatterSubsystem::calcQDot(const State& s,
const Vector& u,
Vector& qdot) const
{
getRep().calcQDot(s, u, qdot);
}
void SimbodyMatterSubsystem::calcQDotDot(const State& s,
const Vector& udot,
Vector& qdotdot) const
{
getRep().calcQDotDot(s, udot, qdotdot);
}
// Topological info. Note the lack of a State argument.
int SimbodyMatterSubsystem::getNumBodies() const {return getRep().getNumBodies();}
int SimbodyMatterSubsystem::getNumMobilities() const {return getRep().getNumMobilities();}
int SimbodyMatterSubsystem::getNumConstraints() const {return getRep().getNumConstraints();}
int SimbodyMatterSubsystem::getNumParticles() const {return getRep().getNumParticles();}
int SimbodyMatterSubsystem::getTotalQAlloc() const {return getRep().getTotalQAlloc();}
// Modeling info.
void SimbodyMatterSubsystem::setUseEulerAngles(State& s, bool useAngles) const
{ getRep().setUseEulerAngles(s,useAngles); }
void SimbodyMatterSubsystem::setConstraintIsDisabled(State& s, ConstraintIndex constraint, bool disabled) const
{ getRep().setConstraintIsDisabled(s,constraint,disabled); }
bool SimbodyMatterSubsystem::getUseEulerAngles(const State& s) const
{ return getRep().getUseEulerAngles(s); }
bool SimbodyMatterSubsystem::isConstraintDisabled(const State& s, ConstraintIndex constraint) const
{ return getRep().isConstraintDisabled(s,constraint); }
void SimbodyMatterSubsystem::convertToEulerAngles(const State& inputState, State& outputState) const
{ return getRep().convertToEulerAngles(inputState, outputState); }
void SimbodyMatterSubsystem::convertToQuaternions(const State& inputState, State& outputState) const
{ return getRep().convertToQuaternions(inputState, outputState); }
void SimbodyMatterSubsystem::normalizeQuaternions(State& state) const {
Vector dummy; // no error estimate to correct
getRep().normalizeQuaternions(state, dummy);
}
int SimbodyMatterSubsystem::getNumQuaternionsInUse(const State& s) const {
return getRep().getNumQuaternionsInUse(s);
}
bool SimbodyMatterSubsystem::isUsingQuaternion(const State& s, MobilizedBodyIndex body) const {
return getRep().isUsingQuaternion(s, body);
}
QuaternionPoolIndex SimbodyMatterSubsystem::getQuaternionPoolIndex(const State& s, MobilizedBodyIndex body) const {
return getRep().getQuaternionPoolIndex(s, body);
}
const SpatialVec&
SimbodyMatterSubsystem::getMobilizerCoriolisAcceleration(const State& s, MobilizedBodyIndex body) const {
return getRep().getMobilizerCoriolisAcceleration(s,body);
}
const SpatialVec&
SimbodyMatterSubsystem::getTotalCoriolisAcceleration(const State& s, MobilizedBodyIndex body) const {
return getRep().getTotalCoriolisAcceleration(s,body);
}
const SpatialVec&
SimbodyMatterSubsystem::getGyroscopicForce(const State& s, MobilizedBodyIndex body) const {
return getRep().getGyroscopicForce(s,body);
}
const SpatialVec&
SimbodyMatterSubsystem::getMobilizerCentrifugalForces(const State& s, MobilizedBodyIndex body) const {
return getRep().getMobilizerCentrifugalForces(s,body);
}
const SpatialVec&
SimbodyMatterSubsystem::getTotalCentrifugalForces(const State& s, MobilizedBodyIndex body) const {
return getRep().getTotalCentrifugalForces(s,body);
}
const Vector&
SimbodyMatterSubsystem::getAllParticleMasses(const State& s) const {
return getRep().getAllParticleMasses(s);
}
Vector& SimbodyMatterSubsystem::updAllParticleMasses(State& s) const {
return getRep().updAllParticleMasses(s);
}
const Vector_<Vec3>&
SimbodyMatterSubsystem::getAllParticleLocations(const State& s) const {
return getRep().getAllParticleLocations(s);
}
const Vector_<Vec3>&
SimbodyMatterSubsystem::getAllParticleVelocities(const State& s) const {
return getRep().getAllParticleVelocities(s);
}
const Vector_<Vec3>&
SimbodyMatterSubsystem::getAllParticleAccelerations(const State& s) const {
return getRep().getAllParticleAccelerations(s);
}
void SimbodyMatterSubsystem::addInStationForce(const State& s, MobilizedBodyIndex body, const Vec3& stationInB,
const Vec3& forceInG, Vector_<SpatialVec>& bodyForces) const
{
assert(bodyForces.size() == getRep().getNumBodies());
const Rotation& R_GB = getRep().getBodyTransform(s,body).R();
bodyForces[body] += SpatialVec((R_GB*stationInB) % forceInG, forceInG);
}
void SimbodyMatterSubsystem::realizeCompositeBodyInertias(const State& s) const {
getRep().realizeCompositeBodyInertias(s);
}
void SimbodyMatterSubsystem::realizeArticulatedBodyInertias(const State& s) const {
getRep().realizeArticulatedBodyInertias(s);
}
void SimbodyMatterSubsystem::invalidateCompositeBodyInertias(const State& s) const {
getRep().invalidateCompositeBodyInertias(s);
}
void SimbodyMatterSubsystem::invalidateArticulatedBodyInertias(const State& s) const {
getRep().invalidateArticulatedBodyInertias(s);
}
const Array_<QIndex>& SimbodyMatterSubsystem::
getFreeQIndex(const State& state) const
{ return getRep().getFreeQIndex(state); }
const Array_<UIndex>& SimbodyMatterSubsystem::
getFreeUIndex(const State& state) const
{ return getRep().getFreeUIndex(state); }
const Array_<UIndex>& SimbodyMatterSubsystem::
getFreeUDotIndex(const State& state) const
{ return getRep().getFreeUDotIndex(state); }
const Array_<UIndex>& SimbodyMatterSubsystem::
getKnownUDotIndex(const State& state) const
{ return getRep().getKnownUDotIndex(state); }
void SimbodyMatterSubsystem::
packFreeQ(const State& s, const Vector& allQ, Vector& packedFreeQ) const
{ getRep().packFreeQ(s,allQ,packedFreeQ); }
void SimbodyMatterSubsystem::
unpackFreeQ(const State& s, const Vector& packedFreeQ, Vector& unpackedFreeQ) const
{ getRep().unpackFreeQ(s,packedFreeQ,unpackedFreeQ); }
void SimbodyMatterSubsystem::
packFreeU(const State& s, const Vector& allU, Vector& packedFreeU) const
{ getRep().packFreeU(s,allU,packedFreeU); }
void SimbodyMatterSubsystem::
unpackFreeU(const State& s, const Vector& packedFreeU, Vector& unpackedFreeU) const
{ getRep().unpackFreeU(s,packedFreeU,unpackedFreeU); }
const SpatialInertia&
SimbodyMatterSubsystem::getCompositeBodyInertia(const State& s, MobilizedBodyIndex mbx) const {
return getRep().getCompositeBodyInertias(s)[mbx]; // will lazy-evaluate if necessary
}
const ArticulatedInertia&
SimbodyMatterSubsystem::getArticulatedBodyInertia(const State& s, MobilizedBodyIndex mbx) const {
return getRep().getArticulatedBodyInertias(s)[mbx]; // will lazy-evaluate if necessary
}
void SimbodyMatterSubsystem::addInBodyTorque(const State& s, MobilizedBodyIndex body, const Vec3& torqueInG,
Vector_<SpatialVec>& bodyForces) const
{
assert(bodyForces.size() == getRep().getNumBodies());
bodyForces[body][0] += torqueInG; // no force
}
void SimbodyMatterSubsystem::addInMobilityForce(const State& s, MobilizedBodyIndex body, MobilizerUIndex which, Real d,
Vector& mobilityForces) const
{
assert(mobilityForces.size() == getRep().getNumMobilities());
UIndex uStart; int nu; getRep().findMobilizerUs(s,body,uStart,nu);
assert(0 <= which && which < nu);
mobilityForces[uStart+which] += d;
}
Vector_<Vec3>& SimbodyMatterSubsystem::updAllParticleLocations(State& s) const {
return getRep().updAllParticleLocations(s);
}
Vector_<Vec3>& SimbodyMatterSubsystem::updAllParticleVelocities(State& s) const {
return getRep().updAllParticleVelocities(s);
}
/// Calculate the total system mass.
/// TODO: this should be precalculated.
Real SimbodyMatterSubsystem::calcSystemMass(const State& s) const {
Real mass = 0;
for (MobilizedBodyIndex b(1); b < getNumBodies(); ++b)
mass += getMobilizedBody(b).getBodyMassProperties(s).getMass();
return mass;
}
// Return the location r_OG_C of the system mass center C, measured from the ground
// origin OG, and expressed in Ground.
Vec3 SimbodyMatterSubsystem::calcSystemMassCenterLocationInGround(const State& s) const {
Real mass = 0;
Vec3 com = Vec3(0);
for (MobilizedBodyIndex b(1); b < getNumBodies(); ++b) {
const MassProperties& MB_OB_B = getMobilizedBody(b).getBodyMassProperties(s);
const Transform& X_GB = getMobilizedBody(b).getBodyTransform(s);
const Real mb = MB_OB_B.getMass();
const Vec3 r_OG_CB = X_GB * MB_OB_B.getMassCenter();
mass += mb;
com += mb * r_OG_CB; // weighted by mass
}
if (mass != 0)
com /= mass;
return com;
}
// Return total system mass, mass center location measured from the Ground origin,
// and system inertia taken about the Ground origin, expressed in Ground.
MassProperties SimbodyMatterSubsystem::calcSystemMassPropertiesInGround(const State& s) const {
Real mass = 0;
Vec3 com = Vec3(0);
Inertia I = Inertia(0);
for (MobilizedBodyIndex b(1); b < getNumBodies(); ++b) {
const MassProperties& MB_OB_B = getMobilizedBody(b).getBodyMassProperties(s);
const Transform& X_GB = getMobilizedBody(b).getBodyTransform(s);
const MassProperties MB_OG_G = MB_OB_B.calcTransformedMassProps(~X_GB);
const Real mb = MB_OG_G.getMass();
mass += mb;
com += mb * MB_OG_G.getMassCenter();
I += mb * MB_OG_G.getUnitInertia();
}
if (mass != 0)
com /= mass;
return MassProperties(mass, com, I);
}
// Return the system inertia matrix taken about the system center of mass,
// expressed in Ground.
Inertia SimbodyMatterSubsystem::calcSystemCentralInertiaInGround(const State& s) const {
const MassProperties M_OG_G = calcSystemMassPropertiesInGround(s);
return M_OG_G.calcCentralInertia();
}
// Return the velocity V_G_C = d/dt r_OG_C of the system mass center C in the Ground frame G,
// expressed in G.
Vec3 SimbodyMatterSubsystem::calcSystemMassCenterVelocityInGround(const State& s) const {
Real mass = 0;
Vec3 comv = Vec3(0);
for (MobilizedBodyIndex b(1); b < getNumBodies(); ++b) {
const MassProperties& MB_OB_B = getMobilizedBody(b).getBodyMassProperties(s);
const Vec3 v_G_CB = getMobilizedBody(b).findStationVelocityInGround(s, MB_OB_B.getMassCenter());
const Real mb = MB_OB_B.getMass();
mass += mb;
comv += mb * v_G_CB; // weighted by mass
}
if (mass != 0)
comv /= mass;
return comv;
}
// Return the acceleration A_G_C = d^2/dt^2 r_OG_C of the system mass center C in
// the Ground frame G, expressed in G.
Vec3 SimbodyMatterSubsystem::calcSystemMassCenterAccelerationInGround(const State& s) const {
Real mass = 0;
Vec3 coma = Vec3(0);
for (MobilizedBodyIndex b(1); b < getNumBodies(); ++b) {
const MassProperties& MB_OB_B = getMobilizedBody(b).getBodyMassProperties(s);
const Vec3 a_G_CB = getMobilizedBody(b).findStationAccelerationInGround(s, MB_OB_B.getMassCenter());
const Real mb = MB_OB_B.getMass();
mass += mb;
coma += mb * a_G_CB; // weighted by mass
}
if (mass != 0)
coma /= mass;
return coma;
}
// Return the momentum of the system as a whole (angular, linear) measured
// in the ground frame, taken about the ground origin and expressed in ground.
// (The linear component is independent of the "about" point.)
SpatialVec SimbodyMatterSubsystem::calcSystemMomentumAboutGroundOrigin(const State& s) const {
SpatialVec mom(Vec3(0), Vec3(0));
for (MobilizedBodyIndex b(1); b < getNumBodies(); ++b) {
const SpatialVec mom_CB_G = getMobilizedBody(b).calcBodyMomentumAboutBodyMassCenterInGround(s);
const Vec3& Iw = mom_CB_G[0];
const Vec3& mv = mom_CB_G[1];
const Vec3 r = getMobilizedBody(b).findMassCenterLocationInGround(s);
mom[0] += (Iw + r % mv); // add central angular momentum plus contribution from mass center location
mom[1] += mv; // just add up central linear momenta
}
return mom;
}
// Return the momentum of the system as a whole (angular, linear) measured
// in the ground frame, taken about the current system center of mass
// location and expressed in ground.
// (The linear component is independent of the "about" point.)
SpatialVec SimbodyMatterSubsystem::calcSystemCentralMomentum(const State& s) const {
SpatialVec mom(Vec3(0), Vec3(0));
Real mtot = 0; // system mass
Vec3 com(0); // system mass center
for (MobilizedBodyIndex b(1); b < getNumBodies(); ++b) {
const MobilizedBody& mobod = getMobilizedBody(b);
const Real m = mobod.getBodyMass(s);
const Vec3 CB_G = mobod.findMassCenterLocationInGround(s);
mtot += m;
com += m * CB_G;
const SpatialVec mom_CB_G = mobod.calcBodyMomentumAboutBodyMassCenterInGround(s);
const Vec3& Iw = mom_CB_G[0];
const Vec3& mv = mom_CB_G[1];
mom[0] += (Iw + CB_G % mv); // add central angular momentum plus contribution from mass center location
mom[1] += mv; // just add up central linear momenta
}
if (mtot != 0)
com /= mtot;
// Shift momentum from ground origin to system COM (only angular affected).
mom[0] -= com % mom[1];
return mom;
}
} // namespace SimTK
|