1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2008-12 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKsimbody.h"
using namespace SimTK;
using namespace std;
const Real TOL = 1e-5;
#define ASSERT(cond) {SimTK_ASSERT_ALWAYS(cond, "Assertion failed");}
template <class T>
void assertEqual(T val1, T val2) {
ASSERT(abs(val1-val2) < TOL || abs(val1-val2)/max(abs(val1), abs(val2)) < TOL);
}
template <int N>
void assertEqual(Vec<N> val1, Vec<N> val2) {
for (int i = 0; i < N; ++i)
assertEqual(val1[i], val2[i]);
}
void testForces() {
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralContactSubsystem contacts(system);
GeneralForceSubsystem forces(system);
// Create a triangle mesh in the shape of a pyramid, with the
// square base having area 1 (split into two triangles).
vector<Vec3> vertices;
vertices.push_back(Vec3(0, 0, 0));
vertices.push_back(Vec3(1, 0, 0));
vertices.push_back(Vec3(1, 0, 1));
vertices.push_back(Vec3(0, 0, 1));
vertices.push_back(Vec3(0.5, 1, 0.5));
vector<int> faceIndices;
int faces[6][3] = {{0, 1, 2}, {0, 2, 3}, {1, 0, 4},
{2, 1, 4}, {3, 2, 4}, {0, 3, 4}};
for (int i = 0; i < 6; i++)
for (int j = 0; j < 3; j++)
faceIndices.push_back(faces[i][j]);
// Create the mobilized bodies and configure the contact model.
Body::Rigid body(MassProperties(1.0, Vec3(0), Inertia(1)));
ContactSetIndex setIndex = contacts.createContactSet();
MobilizedBody::Translation mesh(matter.updGround(), Transform(), body, Transform());
contacts.addBody(setIndex, mesh, ContactGeometry::TriangleMesh(vertices, faceIndices), Transform());
contacts.addBody(setIndex, matter.updGround(), ContactGeometry::HalfSpace(), Transform(Rotation(-0.5*Pi, ZAxis), Vec3(0))); // y < 0
ElasticFoundationForce ef(forces, contacts, setIndex);
Real stiffness = 1e9, dissipation = 0.01, us = 0.1, ud = 0.05, uv = 0.01, vt = 0.01;
ef.setBodyParameters(ContactSurfaceIndex(0), stiffness, dissipation, us, ud, uv);
ef.setTransitionVelocity(vt);
ASSERT(ef.getTransitionVelocity() == vt);
State state = system.realizeTopology();
// Position the pyramid at a variety of positions and check the normal
// force.
for (Real depth = -0.1; depth < 0.1; depth += 0.01) {
mesh.setQToFitTranslation(state, Vec3(0, -depth, 0));
system.realize(state, Stage::Dynamics);
Real f = 0;
if (depth > 0)
f = stiffness*depth;
assertEqual(system.getRigidBodyForces(state, Stage::Dynamics)[mesh.getMobilizedBodyIndex()][1], Vec3(0, f, 0));
assertEqual(system.getRigidBodyForces(state, Stage::Dynamics)[matter.getGround().getMobilizedBodyIndex()][1], Vec3(0, -f, 0));
}
// Now do it with a vertical velocity and see if the dissipation force is correct.
for (Real depth = -0.105; depth < 0.1; depth += 0.01) {
mesh.setQToFitTranslation(state, Vec3(0, -depth, 0));
for (Real v = -1.0; v <= 1.0; v += 0.1) {
mesh.setUToFitLinearVelocity(state, Vec3(0, -v, 0));
system.realize(state, Stage::Dynamics);
Real f = (depth > 0 ? stiffness*depth*(1+dissipation*v) : 0);
if (f < 0)
f = 0;
assertEqual(system.getRigidBodyForces(state, Stage::Dynamics)[mesh.getMobilizedBodyIndex()][1], Vec3(0, f, 0));
}
}
// Do it with a horizontal velocity and see if the friction force is correct.
Vector_<SpatialVec> expectedForce(matter.getNumBodies());
for (Real depth = -0.105; depth < 0.1; depth += 0.01) {
mesh.setQToFitTranslation(state, Vec3(0, -depth, 0));
Real fh = 0;
if (depth > 0)
fh = stiffness*depth;
for (Real v = -1.0; v <= 1.0; v += 0.1) {
mesh.setUToFitLinearVelocity(state, Vec3(v, 0, 0));
system.realize(state, Stage::Dynamics);
const Real vrel = std::abs(v/vt);
Real ff = (v < 0 ? 1 : -1)*fh*(std::min(vrel, 1.0)*(ud+2*(us-ud)/(1+vrel*vrel))+uv*std::fabs(v));
const Vec3 totalForce = Vec3(ff, fh, 0);
expectedForce = SpatialVec(Vec3(0), Vec3(0));
Vec3 contactPoint1 = mesh.findStationAtGroundPoint(state, Vec3(2.0/3.0, 0, 1.0/3.0));
mesh.applyForceToBodyPoint(state, contactPoint1, 0.5*totalForce, expectedForce);
Vec3 contactPoint2 = mesh.findStationAtGroundPoint(state, Vec3(1.0/3.0, 0, 2.0/3.0));
mesh.applyForceToBodyPoint(state, contactPoint2, 0.5*totalForce, expectedForce);
SpatialVec actualForce = system.getRigidBodyForces(state, Stage::Dynamics)[mesh.getMobilizedBodyIndex()];
assertEqual(actualForce[0], expectedForce[mesh.getMobilizedBodyIndex()][0]);
assertEqual(actualForce[1], expectedForce[mesh.getMobilizedBodyIndex()][1]);
}
}
}
int main() {
try {
testForces();
}
catch(const std::exception& e) {
cout << "exception: " << e.what() << endl;
return 1;
}
cout << "Done" << endl;
return 0;
}
|