File: TestNoseHooverThermostat.cpp

package info (click to toggle)
simbody 3.6.1%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 65,920 kB
  • sloc: cpp: 248,329; ansic: 18,240; makefile: 24
file content (290 lines) | stat: -rw-r--r-- 10,470 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
/* -------------------------------------------------------------------------- *
 *                               Simbody(tm)                                  *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2009-12 Stanford University and the Authors.        *
 * Authors: Christopher Bruns                                                 *
 * Contributors: Michael Sherman                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

#include "SimTKsimbody.h"

// define VISUALIZE for visualisation (for debugging)
// #define VISUALIZE 1

#include <fstream>

using namespace SimTK;
using namespace std;

#define ASSERT(cond) {SimTK_ASSERT_ALWAYS(cond, "Assertion failed");}


class HarmonicOscillator
{
public:

    class OscillatorReporter : public PeriodicEventReporter 
    {
    public:
        mutable int eventCount;
        mutable Real sumEnergy;
        mutable Real sumEnergySquared;
        mutable Real sumVelocity;
        mutable Real sumAbsVelocity;
        mutable Real sumVelocitySquared;
        mutable Real sumPosition;
        mutable Real sumRMSVelPos;

        OscillatorReporter(HarmonicOscillator& oscillator, Real reportInterval) 
            : PeriodicEventReporter(reportInterval), oscillator(oscillator),
              eventCount(0), sumEnergy(0.0), sumEnergySquared(0.0), 
              sumVelocity(0.0), sumAbsVelocity(0.0), sumVelocitySquared(0.0),
              sumPosition(0.0), sumRMSVelPos(0.0)
              // for Matlab
              //, phaseOut("phaseOut.txt")
        {}

        void handleEvent(const State& state) const override 
        {
            // Equilibrate a bit before collecting data
            if (state.getTime() <= 1)
                return;

            ++eventCount;
            oscillator.updSystem().realize(state, Stage::Dynamics);

            //std::ostream& po = phaseOut;
            //po << state.getTime() << " " << state.getQ()[0] << " " << state.getU()[0] << std::endl;

            Real energy = oscillator.getSystem().calcKineticEnergy(state);
            sumEnergy += energy;
            sumEnergySquared += energy*energy;

            Real position = oscillator.getPosition(state);
            sumPosition += position;

            Real velocity = oscillator.getVelocity(state);
            sumVelocity += velocity;
            sumAbsVelocity += std::abs(velocity);
            sumVelocitySquared += velocity*velocity;

            sumRMSVelPos += std::sqrt(position*position * velocity*velocity);

            // oscillator.savedPositions.push_back(oscillator.getPosition(state));
            // oscillator.savedVelocities.push_back(oscillator.getVelocity(state));
        }
    private:
        HarmonicOscillator& oscillator;

        //mutable std::ofstream phaseOut;
    };

    HarmonicOscillator() :
        system(), matter(system), forces(system), mass(1.0)
    {
        Vec3 station(0.0);

        // Use a slider to constrain the oscillator to one dimension of motion
        MobilizedBody::Slider body ( 
            matter.updGround(),
            Body::Rigid(MassProperties(mass, station, Inertia(1))) );
        body.setDefaultLength(-2.0); // initial position at -2
        sliderIndex = body.getMobilizedBodyIndex();

        // Unit spring constant to match example in Frenkel and Smit
        Force::TwoPointLinearSpring(forces, 
            matter.getGround(), Vec3(0),
            body, Vec3(0),
            1.0, 0.0);
    }

    void simulate() {
        // View in Visualizer - for test development only
#ifdef VISUALIZE
        Visualizer viz(system);
        viz.setBackgroundType(Visualizer::SolidColor);
        Visualizer::Reporter* vizrep = new Visualizer::Reporter(viz, 0.2);
        system.addEventReporter(vizrep);
#endif

        reporter = new OscillatorReporter(*this, 0.1);
        system.addEventReporter(reporter);

        State state = system.realizeTopology();
        Random::Uniform rand(-1,1);
        //state.updQ()[0] = rand.getValue();
        //state.updU()[0] = rand.getValue();

        // Simulate it.
        
        VerletIntegrator integ(system);
        //RungeKuttaMersonIntegrator integ(system);
        //integ.setAccuracy(0.01);
        TimeStepper ts(system, integ);
        ts.initialize(state);
        ts.stepTo(150.0);
    }

    void assertTemperature(Real temperature) const 
    {
        // ensure we collected some data
        ASSERT(reporter->eventCount > 100);

        int degreesOfFreedom = 1; 

        // Sanity checks

        // Mean position should be zero
        Real expectedMeanPosition = 0.0;
        Real measuredMeanPosition = reporter->sumPosition / reporter->eventCount;
        ASSERT(std::abs(expectedMeanPosition - measuredMeanPosition) < 0.2);

        // Mean velocity should be zero
        Real expectedMeanVelocity = 0.0;
        Real measuredMeanVelocity = reporter->sumVelocity / reporter->eventCount;
        ASSERT(std::abs(expectedMeanVelocity - measuredMeanVelocity) < 0.2);

        // Check temperature
        Real measuredMeanEnergy = reporter->sumEnergy/reporter->eventCount;
        Real expectedMeanEnergy = degreesOfFreedom * 0.5 * SimTK_BOLTZMANN_CONSTANT_MD * temperature; // kT/2 per degree of freedom
        ASSERT(std::abs(1.0 - measuredMeanEnergy/expectedMeanEnergy) < 0.2);

        // Boltzmann distribution stuff

        // Mean squared velocity should be dof*kT/mass
        // Boltzmann distribution
        Real expectedMeanVelocitySquared = 
            degreesOfFreedom * SimTK_BOLTZMANN_CONSTANT_MD * temperature / mass;
        Real measuredMeanVelocitySquared =
            reporter->sumVelocitySquared / reporter->eventCount;
        ASSERT(std::abs(1.0 - measuredMeanVelocitySquared/expectedMeanVelocitySquared) < 0.2);

        // TODO: check this formula
        // Mean absolute velocity should be (8*v2bar/3PI)^1/2
        Real expectedMeanAbsVelocity = std::sqrt(
            8.0 * expectedMeanVelocitySquared / (degreesOfFreedom * SimTK_PI) );
        Real measuredMeanAbsVelocity = 
            reporter->sumAbsVelocity / reporter->eventCount;
       // ASSERT(std::abs(1.0 - measuredMeanAbsVelocity/expectedMeanAbsVelocity) < 0.2);
    }

    MultibodySystem& updSystem() {return system;}
    const MultibodySystem& getSystem() const {return system;}

    SimbodyMatterSubsystem& updMatterSubsystem() {return matter;}
    const SimbodyMatterSubsystem& getMatterSubsystem() const {return matter;}

    GeneralForceSubsystem& updForceSubsystem() {return forces;}
    const GeneralForceSubsystem& getForceSubsystem() const {return forces;}

    // slider coordinate
    Real getPosition(const State& state) const {
        const MobilizedBody::Slider& slider = MobilizedBody::Slider::downcast( matter.getMobilizedBody(sliderIndex) );

        return slider.getLength(state);
    }

    Real getVelocity(const State& state) const {
        const MobilizedBody::Slider& slider = MobilizedBody::Slider::downcast( matter.getMobilizedBody(sliderIndex) );

        return slider.getRate(state);
    }

    Real getTime(const State& state) const {
        return state.getTime();
    }

    // std::vector<Real> savedVelocities;
    // std::vector<Real> savedPositions;

private:
    MultibodySystem system;
    SimbodyMatterSubsystem matter;
    GeneralForceSubsystem forces;

    Real mass;
    MobilizedBodyIndex sliderIndex;

    OscillatorReporter* reporter;
};


// Case study 12, page 155 in
// Understanding Molecular Simulation: From Algorithms to Applications
// Frenkel and Smit
void testHarmonicOscillatorNoThermostat() 
{
    HarmonicOscillator oscillator;
    oscillator.simulate();
}

void testNoseHooverConstructorSmoke()
{
    HarmonicOscillator oscillator;
    GeneralForceSubsystem& forces = oscillator.updForceSubsystem();
    Force::Thermostat(forces, oscillator.getMatterSubsystem(), 
        SimTK_BOLTZMANN_CONSTANT_MD, 300, .1);
    oscillator.simulate();
}

void testOscillatorTemperature(Real temperature, int nChains=-1)
{
    HarmonicOscillator oscillator;
    GeneralForceSubsystem& forces = oscillator.updForceSubsystem();
    Force::Thermostat nhc(forces, oscillator.getMatterSubsystem(), 
        SimTK_BOLTZMANN_CONSTANT_MD, temperature, 0.1);
    if (nChains > 0)
        nhc.setDefaultNumChains(nChains);
    oscillator.simulate();
    oscillator.assertTemperature(temperature);
}


int main() 
{

    // Several tests commented out to lessen burden on nightly build tests

    //cout << "testHarmonicOscillatorNoThermostat" << endl;
    //testHarmonicOscillatorNoThermostat();

    //cout << "testNoseHooverConstructorSmoke" << endl;
    //testNoseHooverConstructorSmoke();

#ifndef __i386__
    cout << "oscillator 100K" << endl;
    testOscillatorTemperature(100); // use default #chains

    //cout << "oscillator 300K" << endl;
    //testOscillatorTemperature(300.0);

    //cout << "oscillator 5000K" << endl;
    //testOscillatorTemperature(5000.0);

    //cout << "argon 10K" << endl;
    //testArgonTemperature(10.0);

    //cout << "argon 300K" << endl;
    //testArgonTemperature(300.0);

    //cout << "argon 5000K" << endl;
    //testArgonTemperature(5000.0);

    return 0;
#endif
}