File: MatVecTest.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 72,876 kB
  • sloc: cpp: 248,828; ansic: 18,240; sh: 29; makefile: 24
file content (552 lines) | stat: -rw-r--r-- 21,534 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
/* -------------------------------------------------------------------------- *
 *                       Simbody(tm): SimTKcommon                             *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2005-12 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

#include "SimTKcommon/SmallMatrix.h"
#include "SimTKcommon/Testing.h"

#include <cstdio>
#include <iostream>
#include <iomanip>
using std::cout;
using std::endl;
using std::setw;

#include <complex>
using std::complex;
using std::sin;
using std::cos;

using namespace SimTK;

static void dummy();

//typedef Vec<3,Complex> CVec3;
//static CVec3 f(CVec3 v) {
 //   return CVec3();
//}

static Complex f(Complex x) {
    return std::sin(x);
}

// TODO: move lots of tests here and check the answers
void testNegator() {
    Vec3 vvv(1,2,3); Row3 rrr(1,2,3);
    SimTK_TEST(vvv-vvv == Vec3(0));     // these are exact results
    SimTK_TEST(-vvv-vvv == (-2*vvv));
    SimTK_TEST(rrr-rrr == Row3(0));
    SimTK_TEST(-rrr-rrr == (-2*rrr));
}

void testElementwiseOps() {
    Vec3 vvv(1,2,3); Vec3 www(7,9,2);
    Row3 rrr(1,2,3); Row3 sss(5,4,10);

    Vec3 mv=vvv.elementwiseMultiply(www);
    Vec3 dv=vvv.elementwiseDivide(www);
    SimTK_TEST_EQ(mv, Vec3(7,18,6));
    SimTK_TEST_EQ(dv, Vec3(Real(1)/7, Real(2)/9, Real(3)/2));

    Row3 mr=rrr.elementwiseMultiply(sss);
    Row3 dr=rrr.elementwiseDivide(sss);
    SimTK_TEST_EQ(mr, Row3(5,8,30));
    SimTK_TEST_EQ(dr, Row3(Real(1)/5, Real(2)/4, Real(3)/10));

    Mat22 mmm(1, 2,
              3, 4);
    Mat22 nnn(7, 9,
              2, 3);
    SymMat22 yyy(1,
                 2, 3);
    SymMat22 zzz(5,
                 4, 10);

    Mat22 mm=mmm.elementwiseMultiply(nnn);
    Mat22 dm=mmm.elementwiseDivide(nnn);
    SymMat22 my=yyy.elementwiseMultiply(zzz);
    SymMat22 dy=yyy.elementwiseDivide(zzz);

    SimTK_TEST_EQ(mm, Mat22(7,18,6,12));
    SimTK_TEST_EQ(dm, Mat22(Real(1)/7,Real(2)/9,Real(3)/2,Real(4)/3));
    SimTK_TEST_EQ(my, SymMat22(5,8,30));
    SimTK_TEST_EQ(dy, SymMat22(Real(1)/5,Real(2)/4,Real(3)/10));
}

void testSums() {
    Mat22 m(1,2,
            3,4);
    SimTK_TEST_EQ(m.colSum(), Row2(4,6));
    SimTK_TEST_EQ(m.rowSum(), Vec2(3,7));
    SimTK_TEST(m.sum() == m.colSum()); // should be exact

    SymMat22 y(3, /*4*/
               4, 5);
    SimTK_TEST_EQ(y.colSum(), Row2(7,9)); // same for real, sym
    SimTK_TEST_EQ(y.rowSum(), Vec2(7,9));
    SimTK_TEST(y.sum() == y.colSum()); // should be exact

    Mat22 sm(y); // create fully populated symmetric matrix
    SimTK_TEST_EQ(sm.rowSum(), y.rowSum());
    SimTK_TEST_EQ(sm.colSum(), y.colSum());

    Mat<2,2,Complex> mc(1+2*I, 3+4*I,
                        5+6*I, 7+8*I);
    typedef Row<2,Complex> CRow2;
    typedef Vec<2,Complex> CVec2;
    SimTK_TEST_EQ(mc.colSum(), CRow2(6+8*I, 10+12*I));
    SimTK_TEST_EQ(mc.rowSum(), CVec2(4+6*I, 12+14*I));
    SimTK_TEST(mc.sum() == mc.colSum()); // should be exact

    // Row sum and col sum for Hermitian are conjugates; not the same.
    SymMat<2,Complex> yc( 1, /*3+6*I*/
                         3-6*I, 4);
    SimTK_TEST_EQ(yc.colSum(), CRow2(4-6*I, 7+6*I));
    SimTK_TEST_EQ(yc.rowSum(), CVec2(4+6*I, 7-6*I));
    SimTK_TEST(yc.sum() == yc.colSum()); // should be exact

    Mat<2,2,Complex> smc(yc); // create fully populated symmetric matrix
    SimTK_TEST_EQ(smc.rowSum(), yc.rowSum());
    SimTK_TEST_EQ(smc.colSum(), yc.colSum());
}

void testMiscellaneous()
{
    cout << std::setprecision(16);
    cout << "f(.3)=" << f(Complex(0.3)) << endl;
    Real h = 1e-20;
    cout << "f(.3 + i*h)/h=" << f(Complex(0.3,h)) / h << endl;

    cout << CNT< Mat<2,3, Vec<2> > >::getNaN() << endl;

    Mat<2,3, Vec<2, Mat<2,2,Complex> > > isThisNaN;
    cout << "isThisNan? " << isThisNaN << endl;

    const Complex mdc[] = {
        Complex(1.,2.),  Complex(3.,4.),   Complex(5.,6.),   Complex(7.,8.),
        Complex(9.,10.), Complex(10.,11.), Complex(.1,.26),  Complex(.3,.45),
        Complex(.5,.64), Complex(.7,.83),  Complex(.9,.102), Complex(.10,.111)   
    }; 

    cout << "*** TEST COMPLEX DOT PRODUCT ***" << endl;
    Vec<3,Complex> vdot(mdc), wdot(&mdc[3]);
    Row<3,Complex> rdot(mdc), sdot(&mdc[3]);
    cout << "v=" << vdot << " w=" << wdot << endl;
    cout << "r=" << rdot << " s=" << sdot << endl;
    cout << "v.normalize()=" << vdot.normalize() << endl;
    cout << "r.normalize()=" << rdot.normalize() << endl;


    cout << "--- dot() global function:dot(v,w), rw, vs, rs should be the same" << endl;
    cout << "vw=" << dot(vdot,wdot) << " rw" << dot(rdot,wdot) 
         << " vs" << dot(vdot,sdot) << " rs" << dot(rdot,sdot) << endl;
    cout << "--- dot operator* requires row*col meaning Hermitian transpose with sign changes" << endl;
    cout << "vw=" << ~vdot*wdot << " rw" << rdot*wdot
         << " vs" << ~vdot*~sdot << " rs" << rdot*~sdot << endl;

    cout << endl << "*** TEST COMPLEX OUTER PRODUCT ***" << endl;
    cout << "--- outer() global function:dot(v,w), rw, vs, rs should be the same" << endl;
    cout << "vw=" << outer(vdot,wdot) << " rw" << outer(rdot,wdot) 
         << " vs" << outer(vdot,sdot) << " rs" << outer(rdot,sdot) << endl;
    cout << "--- outer operator* requires col*row meaning Hermitian transpose with sign changes" << endl;
    cout << "vw=" << vdot*~wdot << " rw" << ~rdot*~wdot
         << " vs" << vdot*sdot << " rs" << ~rdot*sdot << endl;

    cout << "*** TEST COMPLEX CROSS PRODUCT ***" << endl;
    cout << "--- cross() global function:dot(v,w), rw, vs, rs should be the same" << endl;
    cout << "vw=" << cross(vdot,wdot) << " rw" << cross(rdot,wdot) 
         << " vs" << cross(vdot,sdot) << " rs" << cross(rdot,sdot) << endl;
    cout << "--- cross operator% involves NO sign changes, but returns row if either arg is a row" << endl;
    cout << "vw=" << vdot%wdot << " rw" << rdot%wdot
         << " vs" << vdot%sdot << " rs" << rdot%sdot << endl;

    cout << "*** TEST crossMat() ***" << endl;
    Mat<3,3,Complex> vcross(crossMat(vdot));
    Mat<3,3,Complex> rcross(crossMat(rdot));
    cout << "--- crossMat 3d should be same whether made from row or vec" << endl;
    cout << "vdot%wdot=" << vdot%wdot << endl;
    cout << "crossMat(v)=" << vcross << "crossMat(r)=" << rcross;
    cout << "crossMat(v)*w=" << crossMat(vdot)*wdot << " vcross*w=" << vcross*wdot << endl;


    Vec<2,Complex> vdot2 = vdot.getSubVec<2>(0);
    Vec<2,Complex> wdot2 = wdot.getSubVec<2>(0);
    Row<2,Complex> rdot2 = rdot.getSubRow<2>(0);
    Row<2,Complex> vcross2(crossMat(vdot2));
    Row<2,Complex> rcross2(crossMat(rdot2));

    cout << "--- crossMat 2d should be same whether made from row or vec" << endl;
    cout << "vdot2, wdot2=" << vdot2 << ", " << wdot2 << " vdot2%wdot2=" << vdot2%wdot2 << endl;
    cout << "crossMat(v2)=" << vcross2 << "crossMat(r2)=" << rcross2;
    cout << "crossMat(v2)*w2=" << crossMat(vdot2)*wdot2 << " vcross2*w2=" << vcross2*wdot2 << endl;

    cout << "*********\n";



    Mat<2,5,float> m25f( 1, 2, 3, 4, 5,
                         6, 7, 8, 9, 10 );
    cout << "Mat<2,5,float>=" << m25f;
    cout << "Mat<2,5,float>.normalize()=" << m25f.normalize();
    cout << "Mat<2,5,float>.sqrt()=" << m25f.sqrt();

    const Mat<1,5,Vec<2,float> >& m15v2f = 
        *reinterpret_cast<const Mat<1,5,Vec<2,float> >*>(&m25f);
    cout << "  m25f@" << &m25f << " m15v2f@" << &m15v2f << endl;
    cout << "Mat<1,5,Vec<2,float> >=" << m15v2f;;
    cout << "Mat<1,5,Vec<2,float> >.normalize()=" << m15v2f.normalize();

    const Real twoXthree[] = { 1, 2, 3,
                               4, 5, 6 };
    const Real threeXone[] = { .1, .001, .00001 };
    const Real sym33[] = { 1,
                           2, 3,
                           4, -5, 6 };
    SymMat<3> sm3(sym33);
    cout << "SymMat<3> sm3=" << sm3;
    Mat<3,3> m33sm3;
    for (int i=0; i<3; ++i) 
        for (int j=0; j<=i; ++j)
            m33sm3(i,j) = m33sm3(j,i) = sm3(i,j);
    cout << "Mat33(sm3)=" << m33sm3;
    cout << "sm3*3=" << sm3*3;
    cout << "sm3+100=" << sm3+100;
    cout << "m33sm3+100=" << m33sm3+100;
    cout << "sm3.normalize()=" << sm3.normalize();
    cout << "m33sm3.normalize()=" << m33sm3.normalize();
    cout << "sm3+=100:" << (sm3+=100.);
    cout << "m33sm3+=100:" << (m33sm3+=100.);

    Mat<3,3,Complex> whole(mdc);
    SymMat<3,Complex,9> sym = SymMat<3,Complex,9>().setFromLower(whole);
    cout << "whole=" << whole << endl;
    cout << "sym  =" << sym << "(pos~)sym  =" << sym.positionalTranspose() << endl;

    cout << "whole.real()=" << whole.real();
    cout << "whole.imag()=" << whole.imag();
    cout << "sym.real()=" << sym.real();
    cout << "sym.imag()=" << sym.imag();



    Mat<3,4,Complex>  mdcp(mdc);  cout << "*** Data looks like this: " << mdcp;
    SymMat<4,negator<Complex> > symp(reinterpret_cast<const negator<conjugate<double> >*>(mdc));
    cout << "    4x4 Sym<Neg<cmplx>> from (negator<conj>)pointer to data gives this:" << symp;
    cout << "    sym.real()=" << symp.real();
    cout << "    sym.imag()=" << symp.imag();
    cout << "   ~sym.imag()=" << ~symp.imag();
    cout << "pos~(sym.imag())=" << symp.imag().positionalTranspose();
    cout << "(pos~sym).imag()=" << symp.positionalTranspose().imag();
    cout << "   -sym.imag()=" << -symp.imag();

    symp(2,1).real() = 99.;
    cout << "after sym(2,1).real=99, sym=" << symp;

    symp.updPositionalTranspose().imag()(3,1)=123.;
    cout << "after (pos~sym).imag()(3,1)=123, (pos~sym).imag()=" << symp.positionalTranspose().imag();
    cout << "    ... sym=" << symp;

    Mat<2,3, SymMat<3,Complex> > weird(Row<3,SymMat<3,Complex> >( sym, -sym, sym ),
                                       Row<3,SymMat<3,Complex> >( sym, sym, sym ));
    cout << "weird=" << weird;
    weird *= 2.;
    cout << " weird*=2: " << weird;
    cout << " weird(1)=" << weird(1) << endl;
    cout << " weird(0,1)=" << weird(0,1) << " [0][1]=" << weird[0][1] << endl;

    cout << " typename(weird)=" << typeid(weird).name() << endl;
    cout << " typename(weird.real)=" << typeid(weird.real()).name() << endl;
    cout << " typename(weird.imag)=" << typeid(weird.imag()).name() << endl;

    cout << " weird.real()=" << weird.real();
    cout << " weird.imag()=" << weird.imag();

    cout << "sizeof(sym<3,cplx>)=" << sizeof(sym) << " sizeof(mat<2,3,sym>=" << sizeof(weird) << endl;

    Mat<2,3> m23(twoXthree);
    Mat<3,1> m31(threeXone);
    cout << "m23=" << m23 << endl;
    cout << "m31=" << m31 << endl;
    cout << "m23*-m31=" << m23*-m31 << endl;
    cout << "~ ~m31 * ~-m23=" << ~((~m31)*(~-m23)) << endl;

    Mat<2,3,Complex> c23(m23);
    Mat<3,1,Complex> c31(m31);
    cout << "c23=" << c23 << endl;
    cout << "c31=" << c31 << endl;
    cout << "c23*c31=" << c23*-c31 << endl;
    cout << "  ~c31 * ~-c23=" << (~c31)*(~-c23) << endl;
    cout << "~ ~-c31 * ~c23=" << ~((~-c31)*(~c23)) << endl;


    Mat<3,4> m34;
    Mat<3,4,Complex> cm34;


    cm34 = mdc;
    m34 = cm34.real();

    cout << "Mat<3,4,Complex> cm34=" << cm34 << endl;
    cout << "cm34.diag()=" << cm34.diag() << endl;

    cout << "cm34 + cm34=" << cm34+cm34 << endl; //INTERNAL COMPILER ERROR IN Release MODE
    cout << "~cm34 * 1000=" << ~cm34 * 1000. << endl;

    cout << "m34=" << m34 << endl;
    m34 =19.123;
    cout << "after m34=19.123, m34=" << m34 << endl;
 
    const double ddd[] = { 11, 12, 13, 14, 15, 16 }; 
    const complex<float> ccc[] = {  complex<float>(1.,2.),  
                                    complex<float>(3.,4.),
                                    complex<float>(5.,6.),
                                    complex<float>(7.,8.) };
    Vec<2,complex<float>,1> cv2(ccc);
    cout << "cv2 from array=" << cv2 << endl;
    cv2 = Vec<2,complex<float> >(complex<float>(1.,2.), complex<float>(3.,4.));
    cout << "cv2 after assignment=" << cv2 << endl;

    cout << "cv2.real()=" << cv2.real() << " cv2.imag()=" << cv2.imag() << endl;

    Vec<2,negator<complex<float> >,1>& negCv2 = (Vec<2,negator<complex<float> >,1>&)cv2;
    Vec<2,conjugate<float>,1>& conjCv2 = (Vec<2,conjugate<float>,1>&)cv2;
    Vec<2,negator<conjugate<float> >,1>& negConjCv2 = (Vec<2,negator<conjugate<float> >,1>&)cv2;

    

    Vec<2,complex<float> > testMe = cv2;
    cout << "testMe=cv2 (init)=" << testMe << endl;
    testMe = cv2;
    cout << "testMe=cv2 (assign)=" << testMe << endl;


    cout << "(cv2+cv2)/complex<float>(1000,0):" << (cv2 + cv2) / complex<float>(1000,0) << endl; 
    cout << "(cv2+cv2)/1000.f:" << (cv2 + cv2) / 1000.f << endl;
    cout << "(cv2+cv2)/1000.:" << (cv2 + cv2) / 1000. << endl;
    cout << "(cv2+cv2)/1000:" << (cv2 + cv2) / 1000 << endl;

    cout << "negCv2=" << negCv2 << endl;
    cout << "conjCv2=" << conjCv2 << endl;
    cout << "negConjCv2=" << negConjCv2 << endl;
    cout << "cv2+negCv2=" << cv2+negCv2 << endl;

    negConjCv2 = complex<float>(8,9);
    cout << "AFTER negConjCv2 = (8,9):" << endl;
    cout << "  cv2=" << cv2 << endl;
    cout << "  negCv2=" << negCv2 << endl;
    cout << "  conjCv2=" << conjCv2 << endl;
    cout << "  negConjCv2=" << negConjCv2 << endl;

    cout << "cv2:  " << cv2 << endl;
    cout << "cv2T: " << cv2.transpose() << endl; 
    cout << "-cv2: " << -cv2 << endl;
    cout << "~cv2: " << ~cv2 << endl;
    cout << "-~cv2: " << -(~cv2) << endl;
    cout << "~-cv2: " << ~(-cv2) << endl; 
    cout << "~-cv2*10000: " << (~(-cv2))*10000.f << endl;  
        
   (~cv2)[1]=complex<float>(101.1f,202.3f);
    cout << "after ~cv2[1]=(101.1f,202.3f), cv2= " << cv2 << endl;    
    (-(~cv2))[1]=complex<float>(11.1f,22.3f);
    cout << "after -~cv2[1]=(11.1f,22.3f), cv2= " << cv2 << endl; 
        
    Vec<3> dv3(ddd), ddv3(ddd+3);
    dv3[2] = 1000;
    cout << "dv3=" << dv3 << " ddv3=" << ddv3 << endl;
    cout << "100(ddv3-dv3)/1000=" << 100.* (ddv3 - dv3) / 1000. << endl; 

    Vec<3> xxx(dv3); cout << "copy of dv3 xxx=" << xxx << endl;
    Vec<3> yyy(*ddd);cout << "copy of *ddd yyy=" << yyy << endl;
    
    cout << "dv3.norm()=" << dv3.norm() << endl;
    cout << "cv2=" << cv2 << " cv2.norm()=" << cv2.norm() << endl; 
       
    const Vec<2> v2c[] = {Vec<2>(ddd),Vec<2>(ddd+1)};
    Vec<2, Vec<2> > vflt(v2c);
    cout << "vflt 2xvec2=" << vflt << endl;
    cout << "10.*vflt=" << 10.*vflt << endl;
    cout << "vflt*10.=" << vflt*10. << endl;

    int ivals[] = {0x10, 0x20, 0x30, 0x40};
    Vec<4> iv(ivals);
    cout << "iv=" << iv << endl;
    
    Vec<2, Vec<2> > v22;
    v22 = Vec<2>(&ivals[2]);
    cout << "v22=" << v22 << endl;


    // Test dot product
    {
    double d[] = {1,2,3,4,5,6,7,8};


    Vec<2> v1(&d[0]), v2(&d[2]);
    Row<2> r1(&d[4]), r2(&d[6]);
    Vec<2>::TNeg& nv1 = (Vec<2>::TNeg&)v1;

    negator<double> nd(100); cout << endl << "nd=" << nd << endl;
    cout << "nv1=" << nv1 << endl;
    cout << "nv1*nd=" << nv1*nd << endl;
    cout << "nd*nv1=" << nd*nv1 << endl;
    cout << "nv1/nd=" << nv1/nd << endl << endl;


    cout << "v1,v2=" << v1 << v2 << endl;
    cout << "r1,r2=" << r1 << r2 << endl;
    cout << "dot r1*v1 =" << dot(r1,v1) << endl;
    cout << "dot r1*nv1=" << dot(r1,nv1) << endl;
    cout << "r1*v1 =" << r1*v1 << endl;
    cout << "r1*nv1=" << r1*nv1 << endl;
    
    // outer product
    cout << " outer v1*r1=" << v1*r1 << endl;
    cout << " outer nv1*r1=" << nv1*r1 << endl;

    // cross product (2d)
    cout << "cross(v1,v2)=" << cross(v1,v2) << endl;
    cout << "v1 % v2=" << v1 % v2 << endl;
    cout << "cross(r1,v2)=" << cross(r1,v2) << endl;
    cout << "r1 % v2=" << r1 % v2 << endl;
    cout << "cross(v1,r2)=" << cross(v1,r2) << endl;
    cout << "v1 % r2=" << v1 % r2 << endl;
    cout << "cross(r1,r2)=" << cross(r1,r2) << endl;
    cout << "r1 % r2=" << r1 % r2 << endl;

    // do the cross products with 3d routines
    Vec3 v13(v1[0],v1[1],0), v23(v2[0],v2[1],0);
    Row3 r13(r1[0],r1[1],0), r23(r2[0],r2[1],0);
    cout << "cross(v13,v23)=" << cross(v13,v23) << endl;
    cout << "v13 % v23=" << v13 % v23 << endl;
    cout << "cross(r13,v23)=" << cross(r13,v23) << endl;
    cout << "r13 % v23=" << r13 % v23 << endl;
    cout << "cross(v13,r23)=" << cross(v13,r23) << endl;
    cout << "v13 % r23=" << v13 % r23 << endl;
    cout << "cross(r13,r23)=" << cross(r13,r23) << endl;
    cout << "r13 % r23=" << r13 % r23 << endl;

    v13[2]=7;
    cout << "v13=" << v13 << " 2*v13+.001=" << 2*v13+.001 << endl;
    cout << "v13 % (2*v13)=" << v13 % (2*v13) << endl;
    cout << "v13 % (2*v13+.001)=" << v13 % (2*v13+.001) << endl;

    cout << endl;

    // test constructors
    Mat<2,3> mvcols( v1, ~r1, v2 );
    Mat<3,2> mvrows( ~v1, 
                      r1,
                      r2 ); 

    cout << "mvcols=" << mvcols << endl;
    cout << "mvrows=" << mvrows << endl;   

    Vec<3,float> v2f(39.f, 40.f, 50.L);
    cout << "v2f=" << v2f << endl;

    cout << "v2f.drop1(0)=" << v2f.drop1(0) << endl;
    cout << "v2f.drop1(1)=" << v2f.drop1(1) << endl;
    cout << "v2f.drop1(2)=" << v2f.drop1(2) << endl;

    cout << "v2f.append1(3.3f)=" << v2f.append1(3.3f) << endl;
    cout << "v2f.append1((short)1)="   << v2f.append1((short)1)   << endl;
    cout << "v2f.drop1(1).append1((unsigned short)0x10)=" << v2f.drop1(1).append1((unsigned short)0x10) << endl;
    cout << "(~v2f).drop1(1).append1((unsigned short)0x10)=" << (~v2f).drop1(1).append1((unsigned short)0x10) << endl;

    cout << "v2f.insert1(0, 23.f)=" << v2f.insert1(0, 23.f) << endl;
    cout << "v2f.insert1(1, 23.f)=" << v2f.insert1(1, 23.f) << endl;
    cout << "v2f.insert1(2, 23.f)=" << v2f.insert1(2, 23.f) << endl;
    cout << "v2f.insert1(3, 23.f)=" << v2f.insert1(3, 23.f) << endl;
    cout << "v2f.insert1(2, 23.f).drop1(2)=" << v2f.insert1(2, 23.f).drop1(2) << endl;

    cout << "(~v2f).insert1(2, 23.f).drop1(2)=" << (~v2f).insert1(2, 23.f).drop1(2) << endl;

    Mat33 m33( Row3(1,     2,     3),
               Row3(4,     5,     6),
               Row3(.003f, 9.62L, 41.1) );
    cout << "m33=" << m33 << endl;  
    cout << "v13=" << v13 << endl;
    cout << "m33*v13=" << m33*v13 << endl;
    cout << "~m33*v13=" << (~m33)*v13 << endl;
    cout << "~v13*~m33=" << ~v13*(~m33) << endl;
    }

    Mat<4,3> ident43;
    ident43 = 1;
    cout << "ident43=" << ident43 << endl;

    Mat<4,3> negid43 = -ident43; // requires implicit conversion from Mat<negator<Real>>
    cout << "negid43=" << negid43 << endl;

    // Absolute value
    const Vec<3> vorig(1.,-2.,-3.);
    cout << "vorig=" << vorig << " vorig.abs()=" << vorig.abs() << endl;
    const Vec<2, Vec<3> > v2orig(vorig,-vorig);
    cout << "v2orig=" << v2orig << " v2orig.abs()=" << v2orig.abs() << endl;

    Vec<3> nvorig = -vorig;
    Vec<2, Vec<3> > nv2orig = -v2orig;

    Mat<3,2> morig(vorig,-vorig);
    cout << "morig=" << morig << " morig.abs()=" << morig.abs() << endl;

    //Mat<2,2, Vec<3> > m2orig(v2orig, (Vec<2, Vec<3> >)-v2orig);
    //cout << "m2orig=" << m2orig << " m2orig.abs()=" << m2orig.abs() << endl;

    cout << "vorig.getSubVec<2>(1)=" << vorig.getSubVec<2>(1) << endl;

    negid43.updSubMat<2,2>(2,1) = -27.;
    cout << "after negid43.updSubMat<2,2>(2,1) = -27., negid43=" << negid43;

    cout << "negid43[2].getSubRow<2>(1)=" << negid43[2].getSubRow<2>(1) << endl;

    cout << "CHECK DIAGONAL LENGTH FOR RECTANGULAR MATRICES" << endl;
    Mat<3,2, Row3, 1, 2> H;
    cout << "H[" << H.nrow() << "," << H.ncol() << "]" << endl;
    cout << "H.diag()[" << H.diag().nrow() << "," << H.diag().ncol() << "]" << endl;
    Mat<3,2, Row3, 1, 2>::TransposeType Ht;
    cout << "Ht[" << Ht.nrow() << "," << Ht.ncol() << "]" << endl;
    cout << "Ht.diag()[" << Ht.diag().nrow() << "," << Ht.diag().ncol() << "]" << endl;
}

void testMatInverse() {
    Matrix m = Test::randMatrix(20,20);
    Matrix mi = m.invert();
    Matrix id(20,20); id=1; // identity
    SimTK_TEST_EQ_SIZE(m*mi, id, 20);
}


int main() {
    SimTK_START_TEST("MatVecTest");

        SimTK_SUBTEST(testSums);
        SimTK_SUBTEST(testNegator);
        SimTK_SUBTEST(testElementwiseOps);
        SimTK_SUBTEST(testMiscellaneous);
        SimTK_SUBTEST(testMatInverse);

    SimTK_END_TEST();
}