File: OrientationTest.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 72,876 kB
  • sloc: cpp: 248,828; ansic: 18,240; sh: 29; makefile: 24
file content (423 lines) | stat: -rw-r--r-- 19,175 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/* -------------------------------------------------------------------------- *
 *                       Simbody(tm): SimTKcommon                             *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2005-12 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors: Paul Mitiguy                                                 *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

/**@file
 * Adhoc tests for rotation-related classes.
 */

#include "SimTKcommon.h"

#include <string>
#include <typeinfo>
#include <iostream>
#include <iomanip>
#include <cmath>
#include <limits>
using std::cout;
using std::endl;

using namespace SimTK;

static Rotation rotate1(int i, Real a);

float  feps = std::numeric_limits<float>::epsilon();
double deps = std::numeric_limits<double>::epsilon();

// What is the smallest a for which acos(cos(a))=a to machine precision?
double  ferr(float angle)  {return double((double)std::acos(std::cos(angle))-(double)angle)/(std::fabs((double)angle)+deps);}
double derr(double angle) {return (std::acos(std::cos(angle))-angle)/(std::fabs(angle)+deps);}
double err(double a, double aest) {return std::fabs(aest-a)/std::max(std::fabs(a), deps);}
void cosTest() {

    float sfeps = std::sqrt(feps);
    double sdeps = std::sqrt(deps);

    float csf = std::cos(sfeps);
    double csd = std::cos(sdeps);

    cout << "feps=" << feps << " sfeps=" << sfeps << " cos(sf)-1" << csf-1 << endl;
    cout << "deps=" << deps << " sdeps=" << sdeps << " cos(sd)-1" << csd-1 << endl;

    double pi2 = std::acos(0.);
    double maxs=0, maxc=0, maxt=0;
    for (int i=-10000001; i<=10000001; ++i) {
        double a = pi2 - 1.03e-9*double(i)*pi2 + 0.237e-9;
        double s = std::sin(a), c = std::cos(a);
        maxs = std::max(maxs, err(a, std::asin(s)));
        maxc = std::max(maxc, err(a, std::acos(c)));
        maxt = std::max(maxt, err(a, std::atan2(s,c)));
    }
    printf("near pi/2: esin=%g ecos=%g etan2=%g\n", maxs, maxc, maxt);

    double maxs2=0, maxc2=0, maxt2=0;
    for (int i=-10000001; i<=10000001; ++i) {
        double a = 1.03e-9*double(i)*pi2 + 0.237e-9;
        double s = std::sin(a), c = std::cos(a);
        maxs2 = std::max(maxs2, err(a, std::asin(s)));
        maxc2 = std::max(maxc2, err(a, std::acos(c)));
        maxt2 = std::max(maxt2, err(a, std::atan2(s,c)));
    }
    printf("near zero: esin=%g ecos=%g etan2=%g\n", maxs2, maxc2, maxt2);

}

void quatTest() {
    const Real pi2 = std::acos(Real(0));
    Vec4 avOrig(-.1-1e-4, 7e1,-.2,.1);
    Quaternion q1,q2;
    q1.setQuaternionFromAngleAxis(avOrig);
    cout << "q1=" << q1 << endl;
    Vec4 av1 = q1.convertQuaternionToAngleAxis();
    cout << std::setprecision(18);
    cout << "avOrig=" << avOrig << " av1=" << av1 << endl;
    q2.setQuaternionFromAngleAxis(av1);
    cout << "q2-q1=" << q2-q1 << endl;
    Vec4 av2 = q2.convertQuaternionToAngleAxis();
    cout << "av2-av1=" << av2-av1 << endl;

    Rotation r1(q1);
    Vec4 av3 = r1.convertRotationToAngleAxis();
    cout << "av3=" << av3 << " av3-av1=" << av3-av1 << endl;
    Quaternion q3;q3.setQuaternionFromAngleAxis(av3);
    Rotation r2(q3);
    cout << "norm(r2*~r1)-sqrt(3)=" << (r2*~r1).norm()-std::sqrt(3.) << endl;

}

void orthoTest(String msg, const Rotation& R) {
    cout << msg << endl;
    cout << "cols=" << R(0).norm()-1 << ", " << R(1).norm()-1 << ", " << R(2).norm()-1 << endl;
    cout << "rows=" << R[0].norm()-1 << ", " << R[1].norm()-1 << ", " << R[2].norm()-1 << endl;
    cout << "perp=" << dot(R(0),R(1)) << ", " << dot(R(1),R(2)) << ", " << dot(R(0),R(2)) << endl;
}

void f(const CoordinateAxis& ax) { printf("which = %d\n", (int)ax); }
void f(CoordinateAxis::XCoordinateAxis) { printf("X\n"); }
void f(CoordinateAxis::YCoordinateAxis) { printf("Y\n"); }
void f(CoordinateAxis::ZCoordinateAxis) { printf("Z\n"); }

int a[]={9,10,11};

int main() {
    quatTest();

    cout << "-----------------\n";
    cout << "X,Y,Z=" << XAxis << "," <<YAxis << "," <<ZAxis << endl;
    printf("%d %d %d\n", (int)XAxis, (int)YAxis, (int)ZAxis);

    f(XAxis); f(YAxis); f(ZAxis);
    printf("index: %d %d %d\n", a[XAxis], a[YAxis], a[ZAxis]);

try {
    UnitVec3 u;
    cout << "should be NaN: u()=" << u << endl;
    cout << "typename(u)=" << typeid(u).name() << " ~u=" << typeid(~u).name() << endl;

    u = UnitVec3(1,2,3);
    cout << "u=UnitVec(1,2,3): " << u << " transposed: " << ~u << endl;
    cout << "u[2]=" << u[2] << " u(2)=" << u(2) << endl;
    cout << "(~u)[2]=" << (~u)[2] << " (~u)(2)=" << (~u)(2) << endl;

    cout << "u.perp()=" << u.perp() << " ~u*u.perp()=" << ~u*u.perp() << endl;
    cout << "(~u).perp()=" << (~u).perp() << " (~u).perp()*u=" << (~u).perp()*u << endl;

    Vec3 vv(u);
    Vec3 w = u;
    cout << "Vec3 vv(u)=" << vv << "  Vec3 w=u, w=" << w << endl;

    // these lines shouldn't compile
    //u = Vec3(1,2,3);
    //u += UnitVec3(1,2,3);
    //u[2] = 5.;
    //u(2) = 5.;
    //u=0.;
    // end of lines which shouldn't compile


    Rotation R;
    cout << "should be identity: R()=" << R;
    cout << "typename(R)=" << typeid(R).name() << " ~R=" << typeid(~R).name() << endl;

    Transform X;
    cout << "should be identity: X()=" << X;
    cout << "typename(X)=" << typeid(X).name() << " ~X=" << typeid(~X).name() << endl;

    R = Rotation( u, ZAxis );

    cout << "Rotation with u as z axis (norm=" << R.norm() << "): " << R; 
    cout << "~R: " << ~R;
    cout << "typename(R[1])=" << typeid(R[1]).name() << " R(1)=" << typeid(R(1)).name() << endl;

    X = Transform(R, Vec3(-1, 2, 20));
    cout << "Transform X=" << X;
    cout << "   X.R=" << X.R() << "  X.p=" << X.p() << "  X.pInv=" << X.pInv() << endl;
    cout << "   X.x=" << X.x() << "  y=" << X.y() << "  z=" << X.z() << endl;
    cout << "Transform ~X=" << ~X;
    cout << "   (~X).R=" << (~X).R() << "  (~X).p=" << (~X).p() << "  (~X).pInv=" << (~X).pInv() << endl;
    cout << "   (~X).x=" << (~X).x() << "  y=" << (~X).y() << "  z=" << (~X).z() << endl;    
    cout << "Transform X asMat34():" << X.asMat34();
    cout << "Transform X toMat34():" << X.toMat34();
    cout << "Transform X toMat44():" << X.toMat44();
    cout << "Transform ~X toMat34():" << (~X).toMat34();
    cout << "Transform ~X toMat44():" << (~X).toMat44();
    cout << "should be identity: X*~X=" << X*~X;
    cout << "should be identity: ~X*X=" << ~X*X;

    Vec3 v(1,2,3);
    cout << "v=" << v << endl;
    cout << "X.R()*v=" << X.R()*v << endl;
    cout << "X*v=" << X*v << endl;
    cout << "X*[v,0]=" << X*v.append1(0) << endl;
    cout << "X*[v,1]=" << X*v.append1(1) << endl;
    cout << "~X*(X*v)=" << ~X*(X*v) << endl;
    cout << "~X*(X*[v,0])=" << ~X*(X*v.append1(0)) << endl;
    cout << "~X*(X*[v,1])=" << ~X*(X*v.append1(1)) << endl;

    Rotation rx( 0.1,  XAxis );
    Rotation ry( 0.17, YAxis );
    Rotation rz( 0.31, ZAxis );
    Rotation rxoldy( SpaceRotationSequence, 0.1, XAxis, 0.17, YAxis );
    Rotation rxyz = rz*ry*rx; // space fixed
    // reverse order to use body fixed like space fixed
    Rotation r123( BodyRotationSequence, 0.31, ZAxis, 0.17, YAxis, 0.1, XAxis );

    cout << "Rotation r123:" << r123;
    cout << "Rotation r123.asMat33():" << r123.asMat33();
    cout << "Rotation r123.toMat33():" << r123.toMat33();

    cout << "InvRotation ~r123:" << (~r123);
    cout << "InvRotation ~r123.asMat33():" << (~r123).asMat33();
    cout << "InvRotation ~r123.toMat33():" << (~r123).toMat33();

    cout << "ry(.17)*rx(.1)=" << ry*rx;
    cout << "rxoldy(.1,.17)=" << rxoldy;
    cout << "norm(rxoldy-ry*rx)=" << (rxoldy-ry*rx).norm() << endl;
    cout << "rxyz=" << rxyz;
    cout << "r123=" << r123;

    // Test inverse assignments, copy construct
    Rotation invr123(~r123);
    Rotation invr123eq;
    invr123eq = ~r123;

    cout << "Check inverse assignment/copy." << endl;
    cout << "norm invr123*r123-identity=" << (invr123*r123-Mat33(1)).norm() << endl;
    cout << "norm invr123eq*r123-identity=" << (invr123eq*r123-Mat33(1)).norm() << endl;

    Rotation bodyXY( BodyRotationSequence, 0.03, XAxis, 0.11, YAxis, 0.0, ZAxis );
    Rotation aboutYthenX( SpaceRotationSequence, 0.11, YAxis, 0.03, XAxis );

    cout << "bodyXY(.03,.11)=" << bodyXY;
    cout << "aboutYthenoldX(.11,.03)=" << aboutYthenX;

    Rotation bodyZX( BodyRotationSequence, 0.07, ZAxis, 0.0, YAxis, -0.22, XAxis );
    Rotation aboutZThenNewX( BodyRotationSequence, 0.07, ZAxis, -0.22, XAxis );
    Rotation aboutZ( 0.07, ZAxis );
    Rotation aboutXaboutZ = Rotation(-0.22, aboutZ*Vec3(1,0,0)) * aboutZ;
    cout << "bodyZX(.07,-.22)=" << bodyZX;
    cout << "aboutZThenNewX(.07,-.22)=" << aboutZThenNewX;
    cout << "aboutXaboutZ(.07,-.22)=" << aboutXaboutZ;
    cout << "  diff norm=" << (aboutXaboutZ-aboutZThenNewX).norm() << endl;

    // Check all space-fixed sequences vs composed single rotations.
    cout << "SXY err=" << ( Rotation( SpaceRotationSequence, 0.13, XAxis, -0.29, YAxis ) - Rotation( -0.29, YAxis )*Rotation( 0.13, XAxis) ).norm() << endl;
    cout << "SXZ err=" << ( Rotation( SpaceRotationSequence, 0.13, XAxis, -0.29, ZAxis ) - Rotation( -0.29, ZAxis )*Rotation( 0.13, XAxis) ).norm() << endl;
    cout << "SZX err=" << ( Rotation( SpaceRotationSequence, 0.13, ZAxis, -0.29, XAxis ) - Rotation( -0.29, XAxis )*Rotation( 0.13, ZAxis) ).norm() << endl;
    cout << "SYZ err=" << ( Rotation( SpaceRotationSequence, 0.13, YAxis, -0.29, ZAxis ) - Rotation( -0.29, ZAxis )*Rotation( 0.13, YAxis) ).norm() << endl;
    cout << "SZY err=" << ( Rotation( SpaceRotationSequence, 0.13, ZAxis, -0.29, YAxis ) - Rotation( -0.29, YAxis )*Rotation( 0.13, ZAxis) ).norm() << endl;

    // Check all body-fixed sequences vs. transformed & composed single rotations.
    const Real a1=-.23, a2=1.09;
    const Rotation ax( a1, XAxis ); const Vec3 x(1,0,0);
    const Rotation ay( a1, YAxis ); const Vec3 y(0,1,0);
    const Rotation az( a1, ZAxis ); const Vec3 z(0,0,1);

    cout << "BXY err=" << ( Rotation( BodyRotationSequence, a1, XAxis, a2, YAxis ) - Rotation(a2,ax*y)*ax ).norm() << endl;
    cout << "BYX err=" << ( Rotation( BodyRotationSequence, a1, YAxis, a2, XAxis ) - Rotation(a2,ay*x)*ay ).norm() << endl;
    cout << "BXZ err=" << ( Rotation( BodyRotationSequence, a1, XAxis, a2, ZAxis ) - Rotation(a2,ax*z)*ax ).norm() << endl;
    cout << "BZX err=" << ( Rotation( BodyRotationSequence, a1, ZAxis, a2, XAxis ) - Rotation(a2,az*x)*az ).norm() << endl;
    cout << "BYZ err=" << ( Rotation( BodyRotationSequence, a1, YAxis, a2, ZAxis ) - Rotation(a2,ay*z)*ay ).norm() << endl;
    cout << "BZY err=" << ( Rotation( BodyRotationSequence, a1, ZAxis, a2, YAxis ) - Rotation(a2,az*y)*az ).norm() << endl;

    cout << "rotate1(0,.03)="  << ( rotate1(0,.03) - Rotation(.03,XAxis) ).norm() << endl;
    cout << "rotate1(1,.03)="  << ( rotate1(1,.03) - Rotation(.03,YAxis) ).norm() << endl;
    cout << "rotate1(2,.03)="  << ( rotate1(2,.03) - Rotation(.03,ZAxis) ).norm() << endl;

    cout << "-1 % 3=" << -1 % 3 << endl;

    const Transform X_01( Rotation( .03, Vec3(1,.1,.7) ), Vec3(1,2,3) );
    const Real masses[] = {1,2,3,4,5};
    const Real mtot = Vector(5,masses).sum();
    const Vec3 stations000[] = {Vec3(.1,.2,.3), Vec3(-2,-9,1), Vec3(.01,.02,.05),
                                Vec3(1,-1,1), Vec3(0,0,0)};
    const Vector_<Vec3> s000(5, stations000);
    const Vec3 com000 = (~Vector(5,masses) * s000)/mtot;
    Vector_<Vec3> s123(s000); 
    for (int i=0;i<5;++i) s123[i] = ~X_01*s123[i];
    const Vec3 com123 = (~Vector(5,masses) * s123)/mtot;
    Inertia I000(0), I123(0);
    for (int i=0; i<5; ++i) I000 += Inertia(s000[i],masses[i]);
    for (int i=0; i<5; ++i) I123 += Inertia(s123[i],masses[i]);
    cout << "mtot=" << mtot << endl;
    cout << "com000=" << com000 << endl;
    cout << "com123=" << com123 << endl;
    cout << "I000=" << I000;
    cout << "I123=" << I123;
    
    MassProperties mp(mtot, com000, I000);
    cout << mp;
    Real scale = std::sqrt(I123.toMat33().diag().normSqr()/3); cout << "inertia scale=" << scale << endl;
    cout << "norm(I000->123-I123)/rms(I123)=" 
        << (mp.calcTransformedInertia(X_01).toMat33()-I123.toMat33()).norm()/scale
        << endl;


    Rotation R_AB( BodyRotationSequence,   0.31, ZAxis, 0.17, YAxis, 0.1, XAxis ); 
    Rotation R_BC( BodyRotationSequence, -123.3, ZAxis, 41.1, YAxis, 14,  XAxis );
        
    Rotation Rtmp;
    cout << "R_AB*R_BC=" << R_AB*R_BC;
    Rtmp = R_AB;
    cout << "R_AB*=R_BC=" << (Rtmp*=R_BC);
    cout << "R_AB*~R_BC=" << R_AB*~R_BC;
    cout << "R_AB/R_BC=" << R_AB/R_BC;
    Rtmp=R_AB;
    cout << "R_AB/=R_BC=" << (Rtmp/=R_BC);

    cout << "COMPARE ROTATIONS" << endl;
    Rotation R_GB, R_GX; Real backOut;
    R_GB.setRotationFromAngleAboutNonUnitVector( 0.17, Vec3(1,2,3) );
    backOut = R_GB.convertRotationToAngleAxis()[0];
    cout << " in=0.17 radians, out=" << backOut << " err=" << std::abs(backOut-0.17) << endl;

    R_GB.setRotationFromAngleAboutNonUnitVector( 0.17+1e-13, Vec3(1,2,3) );
    R_GX.setRotationFromAngleAboutNonUnitVector( 0.17,       Vec3(1,2,3) );
    cout << " 0.17+1e-13:0.17 isSameToPrecision? " << R_GB.isSameRotationToWithinAngleOfMachinePrecision(R_GX)
         << " isSameToAngle(1e-12)? " << R_GB.isSameRotationToWithinAngle(R_GX, 1e-12) << endl;
    R_GB.setRotationFromAngleAboutNonUnitVector( 0.17+1e-15, Vec3(1,2,3) );
    R_GX.setRotationFromAngleAboutNonUnitVector( 0.17,       Vec3(1,2,3) );
    cout << " 0.17+1e-15:0.17 isSameToPrecision? " << R_GB.isSameRotationToWithinAngleOfMachinePrecision(R_GX)
         << " isSameToAngle(1e-18)? " << R_GB.isSameRotationToWithinAngle(R_GX, 1e-18) << endl;

    const Real pi2 = Pi/2;
    const Real pi2x = -pi2 + 1e-8;
    cout << "pi2x=pi2-" << pi2-pi2x << " sin(pi2x)-1=" << std::sin(pi2x)-1 << endl;
    const Vec3 vin(-3, pi2x, 0.1);
    Rotation b123( BodyRotationSequence, vin[0], XAxis, vin[1], YAxis, vin[2], ZAxis );  
    Mat33 m123=b123; m123[0][0] += 1e-14; m123[1][2] += 1e-14;
    //b123 = Rotation::trustMe(m123);
    //cout << "bad  b123*~b123 angle=" << (b123*~b123).convertToAngleAxis()[0] << endl;
    //b123 = Rotation(m123);
    //cout << "good b123*~b123.norm()=" << (b123*~b123).convertToAngleAxis()[0] << endl;
    b123 *= R_GX;
    b123 *= ~R_GX;
    cout << "b123=" << b123;
    Rotation cleanb123(b123.asMat33());
   // b123=cleanb123;

    cout << "cos(pi2x)=" << cos(pi2x) << "cos(pi2)=" << cos(pi2) << endl;
    cout << "atan2(02/00)-pi2=" << atan2(b123[0][2],b123[0][0])-pi2 << endl;
    Vec3 v123 = b123.convertThreeAxesRotationToThreeAngles( BodyRotationSequence, XAxis, YAxis, ZAxis );
    Vec4 aax = b123.convertRotationToAngleAxis();
    cout << "vin=" << vin << "\nvout=" << v123 << endl;
    Rotation b123x( BodyRotationSequence, v123[0], XAxis, v123[1], YAxis, v123[2], ZAxis );
    Vec4 aax2 = (~b123*b123x).convertRotationToAngleAxis();
    cout << " aax2=" << aax2 << endl;

    Rotation chrisRot( UnitVec3( Vec3(1,1,0) ), XAxis, Vec3(0,1,0), YAxis );
    cout << "chrisRot+y=" << chrisRot;
    chrisRot = Rotation( UnitVec3( Vec3(1,1,0) ), XAxis, Vec3(0,-1,0), YAxis );
    cout << "chrisRot-y=" << chrisRot;
    chrisRot = Rotation( UnitVec3( Vec3(1,1,0) ), XAxis, Vec3(0,0,1), YAxis );
    cout << "chrisRot+z=" << chrisRot;
    return 0;
}
catch(const Exception::Base& e) {
    std::cout << e.getMessage() << std::endl;
}
}

static Rotation rotate1(int i, Real a) {
    assert(0 <= i && i < 3);
    int j=(i+1)%3, k=(i+2)%3;
    Real s=std::sin(a), c=std::cos(a);
    Mat33 m;
    m(i,i)=1; m(i,j)=m(j,i)=m(i,k)=m(k,i)=0;
    m(j,j)=m(k,k)=c;
    m(k,j)=s; m(j,k)=-s;
    return Rotation(m,true);
}


// Two-angle space-fixed rotations.

//0,1
static Rotation aboutXThenOldY(const Real& xInRad, const Real& yInRad) {
    const Real s0 = std::sin(xInRad), c0 = std::cos(xInRad);
    const Real s1 = std::sin(yInRad), c1 = std::cos(yInRad);
    const Mat33 m( c1   ,  s0*s1 ,  c0*s1 ,
                    0   ,   c0   ,  -s0   ,
                  -s1   ,  s0*c1 ,  c0*c1 ); return Rotation(m,true);
}
//2,0
static Rotation aboutZThenOldX(const Real& zInRad, const Real& xInRad) {
    const Real s1 = std::sin(xInRad), c1 = std::cos(xInRad);
    const Real s0 = std::sin(zInRad), c0 = std::cos(zInRad);
    const Mat33 m(  c0   ,  -s0   ,    0   ,
                   s0*c1 ,  c0*c1 ,  -s1   ,
                   s0*s1 ,  c0*s1 ,   c1   ); return Rotation(m,true);
}
//1,2
static Rotation aboutYThenOldZ(const Real& yInRad, const Real& zInRad) {
    const Real s0 = std::sin(yInRad), c0 = std::cos(yInRad);
    const Real s1 = std::sin(zInRad), c1 = std::cos(zInRad);
    const Mat33 m( c0*c1 ,  -s1   ,  s0*c1 ,
                   c0*s1 ,   c1   ,  s0*s1 ,
                   -s0   ,    0   ,   c0   ); return Rotation(m,true);
}

//1,0
static Rotation aboutYThenOldX(const Real& yInRad, const Real& xInRad) {
    const Real s1 = std::sin(xInRad), c1 = std::cos(xInRad);
    const Real s0 = std::sin(yInRad), c0 = std::cos(yInRad);
    const Mat33 m(  c0   ,    0   ,   s0   ,
                   s0*s1 ,   c1   , -c0*s1 ,
                  -s0*c1 ,   s1   ,  c0*c1 ); return Rotation(m,true);
}
//0,2
static Rotation aboutXThenOldZ(const Real& xInRad, const Real& zInRad) {
    const Real s0 = std::sin(xInRad), c0 = std::cos(xInRad);
    const Real s1 = std::sin(zInRad), c1 = std::cos(zInRad);
    const Mat33 m(  c1   , -c0*s1 ,  s0*s1 ,
                    s1   ,  c0*c1 , -s0*c1 ,
                     0   ,   s0   ,   c0   ); return Rotation(m,true);
}

//2,1
static Rotation aboutZThenOldY(const Real& zInRad, const Real& yInRad) {
    const Real s1 = std::sin(yInRad), c1 = std::cos(yInRad);
    const Real s0 = std::sin(zInRad), c0 = std::cos(zInRad);
    const Mat33 m( c0*c1 , -s0*c1 ,   s1   ,
                    s0   ,   c0   ,    0   ,
                  -c0*s1 ,  s0*s1 ,   c1   ); return Rotation(m,true);
}