1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKcommon *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2005-12 Stanford University and the Authors. *
* Authors: Paul Mitiguy *
* Contributors: Michael Sherman *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/**@file
* Tests for the classes defined in Rotation.h.
*/
//-----------------------------------------------------------------------------
#include "SimTKcommon.h"
#include "SimTKcommon/Testing.h"
#include <iostream>
using std::cout; using std::endl;
//-----------------------------------------------------------------------------
using namespace SimTK;
bool doRequiredTasks();
void WriteStringToScreen( const char outputString[] ) { std::cout << outputString; } // fputs( outputString,stdout ); if include<stdio>
//-------------------------------------------------------------------
int main() {
// Default value is program failed
bool programSucceeded = false;
// It is a good programming practice to do little in the main function of a program.
// The try-catch code in this main routine catches exceptions thrown by functions in the
// try block, e.g., catching an exception that occurs when a NULL pointer is de-referenced.
try {
// Do the required programming tasks
programSucceeded = doRequiredTasks();
}
// This catch statement handles certain types of exceptions
catch( const std::exception& e ) {
WriteStringToScreen( "\n\n Error: Programming error encountered.\n The exception thrown is: " );
WriteStringToScreen( e.what() );
WriteStringToScreen( "\n\n" );
}
// The exception-declaration statement (...) handles any type of exception,
// including C exceptions and system/application generated exceptions.
// This includes exceptions such as memory protection and floating-point violations.
// An ellipsis catch handler must be the last handler for its try block.
catch( ... ) {
WriteStringToScreen( "\n\n Error: Programming error encountered.\n An unhandled exception was thrown.\n\n" );
}
if (!programSucceeded)
WriteStringToScreen("\nError: a test failed.\n");
// The value returned by the main function is the exit status of the program.
// A normal program exit returns 0 (other return values usually signal an error).
return programSucceeded == true ? 0 : 1;
}
//-------------------------------------------------------------------
// Prototypes for methods in this test
//-------------------------------------------------------------------
bool testRotationOneAxis( const Real angle, const CoordinateAxis& axis );
bool testRotationTwoAxes( const BodyOrSpaceType bodyOrSpace, const Real angle1, const CoordinateAxis& axis1, const Real angle2, const CoordinateAxis &axis2 );
bool testRotationThreeAxes( const BodyOrSpaceType bodyOrSpace, const Real angle1, const CoordinateAxis& axis1, const Real angle2, const CoordinateAxis &axis2, const Real angle3, const CoordinateAxis &axis3 );
bool testQuaternion( Real e0, Real e1, Real e2, Real e3 );
bool testSetRotationToBodyFixedXYZ();
bool testInverseRotation1Angle( Real angle, Real theta );
bool testInverseRotation2Angle( Real angle1, Real theta1, Real angle2, Real theta2 );
bool testInverseRotation3AngleTwoAxes( Real angle1, Real theta1, Real angle2, Real theta2, Real angle3, Real theta3 );
bool testInverseRotation3AngleThreeAxes( Real angle1, Real theta1, Real angle2, Real theta2, Real angle3, Real theta3 );
bool exhaustiveTestof1AngleRotation();
bool exhaustiveTestof2AngleRotation();
bool exhaustiveTestof3AngleRotation();
bool exhaustiveTestof3AngleTwoAxesRotationNearSingularity();
bool exhaustiveTestof3AngleThreeAxesRotationNearSingularity();
bool exhaustiveTestofQuaternions();
bool testRotationFromTwoGivenAxes( const Vec3& vi, const CoordinateAxis& ai, const Vec3& vj, const CoordinateAxis& aj);
bool testReexpressSymMat33();
//-------------------------------------------------------------------
bool doRequiredTasks( ) {
// Use the next Rotation to test against (simple theta-lambda rotation)
Rotation testRotation;
// Test default constructor
Rotation defaultRotationConstructor;
testRotation.setRotationToIdentityMatrix();
bool test = defaultRotationConstructor.areAllRotationElementsSameToMachinePrecision( testRotation );
// Test copy constructor
testRotation.setRotationFromAngleAboutNonUnitVector( 1.0, Vec3(0.2, 0.4, 0.6) );
Rotation rotationCopyConstructor( testRotation );
test = test && rotationCopyConstructor.areAllRotationElementsSameToMachinePrecision( testRotation );
// Test operator =
Rotation rotationOperatorEqual = testRotation;
test = test && rotationOperatorEqual.areAllRotationElementsSameToMachinePrecision( testRotation );
// Test rotation by angle about arbitrary CoordinateAxis
testRotation.setRotationFromAngleAboutNonUnitVector( 0.1, Vec3(1.0, 0.0, 0.0) );
CoordinateAxis coordAxis = XAxis;
Rotation rotationCoordAxis( 0.1, coordAxis );
test = test && rotationCoordAxis.areAllRotationElementsSameToMachinePrecision( testRotation );
Real testTheta = rotationCoordAxis.convertOneAxisRotationToOneAngle( coordAxis );
test = test && fabs(0.1 - testTheta) < 10*SignificantReal;
// Test rotation by angle about XAxis, YAxis, ZAxis
test = test && testRotationOneAxis( 0.2, XAxis );
test = test && testRotationOneAxis( -0.2, XAxis );
test = test && testRotationOneAxis( 2.1, YAxis );
test = test && testRotationOneAxis( -2.1, YAxis );
test = test && testRotationOneAxis( 3.1, ZAxis );
test = test && testRotationOneAxis( -3.1, ZAxis );
// Test rotation with two angles and two axes XX, XY, XZ
test = test && testRotationTwoAxes( BodyRotationSequence, 0.2, XAxis, 0.3, XAxis );
test = test && testRotationTwoAxes( SpaceRotationSequence, 0.2, XAxis, 0.3, XAxis );
test = test && testRotationTwoAxes( BodyRotationSequence, 1.2, XAxis,-1.3, YAxis );
test = test && testRotationTwoAxes( SpaceRotationSequence, 1.2, XAxis,-1.3, YAxis );
test = test && testRotationTwoAxes( BodyRotationSequence, -3.1, XAxis, 1.2, ZAxis );
test = test && testRotationTwoAxes( SpaceRotationSequence, -3.1, XAxis, 1.2, ZAxis );
// Test rotation with two angles and two axes YX, YY, YZ
test = test && testRotationTwoAxes( BodyRotationSequence, 1.2, YAxis, 0.3, XAxis );
test = test && testRotationTwoAxes( SpaceRotationSequence, 1.2, YAxis, 0.3, XAxis );
test = test && testRotationTwoAxes( BodyRotationSequence, 2.2, YAxis,-1.3, YAxis );
test = test && testRotationTwoAxes( SpaceRotationSequence, 2.2, YAxis,-1.3, YAxis );
test = test && testRotationTwoAxes( BodyRotationSequence, -3.1, YAxis, 1.2, ZAxis );
test = test && testRotationTwoAxes( SpaceRotationSequence, -3.1, YAxis, 1.2, ZAxis );
// Test rotation with two angles and two axes ZX, ZY, ZZ
test = test && testRotationTwoAxes( BodyRotationSequence, 1.2, ZAxis, 0.3, XAxis );
test = test && testRotationTwoAxes( SpaceRotationSequence, 1.2, ZAxis, 0.3, XAxis );
test = test && testRotationTwoAxes( BodyRotationSequence, 2.2, ZAxis,-1.3, YAxis );
test = test && testRotationTwoAxes( SpaceRotationSequence, 2.2, ZAxis,-1.3, YAxis );
test = test && testRotationTwoAxes( BodyRotationSequence, -3.1, ZAxis, 1.2, ZAxis );
test = test && testRotationTwoAxes( SpaceRotationSequence, -3.1, ZAxis, 1.2, ZAxis );
// Test the construction of rotations from two given axes.
const UnitVec3 vi(0.01, 0.02, .9);
const Vec3 vj(-0.5, 0.5, 0.2);
test = test && testRotationFromTwoGivenAxes(vi, XAxis, vj, YAxis);
test = test && testRotationFromTwoGivenAxes(vi, YAxis, vj, XAxis);
test = test && testRotationFromTwoGivenAxes(vi, YAxis, vj, ZAxis);
test = test && testRotationFromTwoGivenAxes(vi, ZAxis, vj, YAxis);
test = test && testRotationFromTwoGivenAxes(vi, ZAxis, vj, XAxis);
test = test && testRotationFromTwoGivenAxes(vi, XAxis, vj, ZAxis);
// Test rotation with three angles and three axes XXX, XXY, XXZ, XYX, XYY, XYZ, XZX, XZY, XZZ
test = test && testRotationThreeAxes( BodyRotationSequence, 0.2, XAxis, 0.3, XAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 0.2, XAxis, 0.3, XAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 1.2, XAxis,-1.3, XAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 1.2, XAxis,-1.3, XAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, -3.1, XAxis, 1.2, XAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, -3.1, XAxis, 1.2, XAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 0.2, XAxis, 0.3, YAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 0.2, XAxis, 0.3, YAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 1.2, XAxis,-1.3, YAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 1.2, XAxis,-1.3, YAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, -3.1, XAxis, 1.2, YAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, -3.1, XAxis, 1.2, YAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 0.2, XAxis, 0.3, ZAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 0.2, XAxis, 0.3, ZAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 1.2, XAxis,-1.3, ZAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 1.2, XAxis,-1.3, ZAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, -3.1, XAxis, 1.2, ZAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, -3.1, XAxis, 1.2, ZAxis, 1.3, ZAxis );
// Test rotation with three angles and three axes YXX, YXY, YXZ, YYX, YYY, YYZ, YZX, YZY, YZZ
test = test && testRotationThreeAxes( BodyRotationSequence, 0.2, YAxis, 0.3, XAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 0.2, YAxis, 0.3, XAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 1.2, YAxis,-1.3, XAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 1.2, YAxis,-1.3, XAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, -3.1, YAxis, 1.2, XAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, -3.1, YAxis, 1.2, XAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 0.2, YAxis, 0.3, YAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 0.2, YAxis, 0.3, YAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 1.2, YAxis,-1.3, YAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 1.2, YAxis,-1.3, YAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, -3.1, YAxis, 1.2, YAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, -3.1, YAxis, 1.2, YAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 0.2, YAxis, 0.3, ZAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 0.2, YAxis, 0.3, ZAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 1.2, YAxis,-1.3, ZAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 1.2, YAxis,-1.3, ZAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, -3.1, YAxis, 1.2, ZAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, -3.1, YAxis, 1.2, ZAxis, 1.3, ZAxis );
// Test rotation with three angles and three axes ZXX, ZXY, ZXZ, ZYX, ZYY, ZYZ, ZZX, ZZY, ZZZ
test = test && testRotationThreeAxes( BodyRotationSequence, 0.2, ZAxis, 0.3, XAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 0.2, ZAxis, 0.3, XAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 1.2, ZAxis,-1.3, XAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 1.2, ZAxis,-1.3, XAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, -3.1, ZAxis, 1.2, XAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, -3.1, ZAxis, 1.2, XAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 0.2, ZAxis, 0.3, YAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 0.2, ZAxis, 0.3, YAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 1.2, ZAxis,-1.3, YAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 1.2, ZAxis,-1.3, YAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, -3.1, ZAxis, 1.2, YAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, -3.1, ZAxis, 1.2, YAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 0.2, ZAxis, 0.3, ZAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 0.2, ZAxis, 0.3, ZAxis, 0.4, XAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, 1.2, ZAxis,-1.3, ZAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, 1.2, ZAxis,-1.3, ZAxis,-1.4, YAxis );
test = test && testRotationThreeAxes( BodyRotationSequence, -3.1, ZAxis, 1.2, ZAxis, 1.3, ZAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, -3.1, ZAxis, 1.2, ZAxis, 1.3, ZAxis );
// This used to fail
test = test && testRotationThreeAxes( BodyRotationSequence, -3.2288591161895095, XAxis, -3.1415926535897931, YAxis, -3.1415926535897931, XAxis );
test = test && testRotationThreeAxes( SpaceRotationSequence, -3.2288591161895095, XAxis, -3.1415926535897931, YAxis, -3.1415926535897931, XAxis );
// Test Rotation quaternion methods.
test = test && testQuaternion( 0.5, 0.1, 0.2, 0.3 );
test = test && testQuaternion(-0.5, 0.1, 0.2, -0.3 );
Quaternion unnorm(Vec4(1,2,3,4), true); // don't do this at home
SimTK_TEST_NOTEQ(unnorm.norm(), Real(1)); // shouldn't have normalized
Quaternion fixedUp;
fixedUp = unnorm.normalize();
SimTK_TEST_EQ(fixedUp.norm(), Real(1));
unnorm.normalizeThis();
SimTK_TEST_EQ(unnorm.norm(), Real(1));
// Test construction of nearby orthogonal rotation matrix from a generic Mat33.
Rotation nearbyRotation( testRotation.asMat33() );
test = test && nearbyRotation.areAllRotationElementsSameToMachinePrecision( testRotation );
// Exhaustive test of 1-angle, 2-angle, and 3-angle rotations
test = test && exhaustiveTestof1AngleRotation();
test = test && exhaustiveTestof2AngleRotation();
test = test && exhaustiveTestof3AngleRotation();
// Exhaustive test of 3-angle rotations near singularity
test = test && exhaustiveTestof3AngleTwoAxesRotationNearSingularity();
test = test && exhaustiveTestof3AngleThreeAxesRotationNearSingularity();
// Exhaustive test of Quaterions
test = test && exhaustiveTestofQuaternions();
// Test special handling of body-fixed XYZ.
test = test && testSetRotationToBodyFixedXYZ();
// Test out special code for rotating symmetric matrices.
test = test && testReexpressSymMat33();
return test;
}
//-------------------------------------------------------------------
bool testRotationOneAxis( const Real angle, const CoordinateAxis& axis ) {
// Form rotation about specified axis
Rotation rotationSpecified;
if( axis == XAxis ) rotationSpecified.setRotationFromAngleAboutX( angle );
if( axis == YAxis ) rotationSpecified.setRotationFromAngleAboutY( angle );
if( axis == ZAxis ) rotationSpecified.setRotationFromAngleAboutZ( angle );
// Form equivalent rotation by another means
Real unitX = axis == XAxis ? 1 : 0;
Real unitY = axis == YAxis ? 1 : 0;
Real unitZ = axis == ZAxis ? 1 : 0;
UnitVec3 unitVector( unitX, unitY, unitZ );
Rotation testRotation( angle, unitVector );
// Test to see if they are the same
bool test = rotationSpecified.areAllRotationElementsSameToMachinePrecision( testRotation );
// Do the inverse problem to back out the angle
const Real theta = rotationSpecified.convertOneAxisRotationToOneAngle( axis );
// Create a Rotation matrix with the backed-out angle and compare to the original Rotation matrix
testRotation.setRotationFromAngleAboutAxis( theta, axis );
test = test && rotationSpecified.areAllRotationElementsSameToMachinePrecision( testRotation );
// Conversion should produce angle = theta if angle is in proper range (-pi < angle <= pi)
test = test && testInverseRotation1Angle( angle, theta );
return test;
}
//-------------------------------------------------------------------
bool testRotationTwoAxes( const BodyOrSpaceType bodyOrSpace, const Real angle1, const CoordinateAxis& axis1, const Real angle2, const CoordinateAxis &axis2 ) {
// Form rotation about specified axes
Rotation rotationSpecified( bodyOrSpace, angle1, axis1, angle2, axis2 );
// Form equivalent rotation by another means
Rotation AB( angle1, axis1 );
Rotation BC( angle2, axis2 );
Rotation testRotation = (bodyOrSpace == BodyRotationSequence) ? AB * BC : BC * AB;
// Test to see if they are the same
bool test = rotationSpecified.areAllRotationElementsSameToMachinePrecision( testRotation );
// Do the inverse problem to back out the angles
const Vec2 testVec = rotationSpecified.convertTwoAxesRotationToTwoAngles( bodyOrSpace, axis1, axis2 );
const Real theta1 = testVec[0];
const Real theta2 = testVec[1];
// Create a Rotation matrix with the backed-out angles and compare to the original Rotation matrix
testRotation.setRotationFromTwoAnglesTwoAxes( bodyOrSpace, theta1, axis1, theta2, axis2 );
test = test && rotationSpecified.areAllRotationElementsSameToMachinePrecision( testRotation );
// Conversion should produce same angles for for appropriate ranges of angle1 and angle2
if( axis1.isSameAxis(axis2) )
test = test && testInverseRotation1Angle( angle1+angle2, theta1+theta2 );
else
test = test && testInverseRotation2Angle( angle1,theta1, angle2,theta2 );
return test;
}
//-------------------------------------------------------------------
bool testRotationThreeAxes( const BodyOrSpaceType bodyOrSpace, const Real angle1, const CoordinateAxis& axis1, const Real angle2, const CoordinateAxis &axis2, const Real angle3, const CoordinateAxis &axis3 ) {
// Form rotation about specified axes
Rotation rotationSpecified( bodyOrSpace, angle1, axis1, angle2, axis2, angle3, axis3 );
// Form equivalent rotation by another means
Rotation AB( angle1, axis1 );
Rotation BC( angle2, axis2 );
Rotation CD( angle3, axis3 );
Rotation testRotation = (bodyOrSpace == BodyRotationSequence) ? AB * BC * CD : CD * BC * AB;
// Test to see if they are the same
bool test = rotationSpecified.areAllRotationElementsSameToMachinePrecision( testRotation );
// Do the inverse problem to back out the angles
const Vec3 testVec = rotationSpecified.convertThreeAxesRotationToThreeAngles( bodyOrSpace, axis1, axis2, axis3 );
const Real theta1 = testVec[0];
const Real theta2 = testVec[1];
const Real theta3 = testVec[2];
// Create a Rotation matrix with the backed-out angles and compare to the original Rotation matrix
testRotation.setRotationFromThreeAnglesThreeAxes( bodyOrSpace, theta1, axis1, theta2, axis2, theta3, axis3 );
test = test && rotationSpecified.areAllRotationElementsSameToMachinePrecision( testRotation );
// Conversion should produce same angles for for appropriate ranges of angle1 and angle2
if( axis1.areAllSameAxes(axis2,axis3) )
test = test && testInverseRotation1Angle( angle1+angle2+angle3, theta1+theta2+theta3 );
else if( axis1.isSameAxis(axis2) )
test = test && testInverseRotation2Angle( angle1+angle2, theta1+theta1, angle3,theta3 );
else if( axis2.isSameAxis(axis3) )
test = test && testInverseRotation2Angle( angle1,theta1, angle2+angle3, theta2+theta3 );
else if( axis1.isSameAxis(axis3) )
test = test && testInverseRotation3AngleTwoAxes( angle1,theta1, angle2,theta2, angle3,theta3 );
else
test = test && testInverseRotation3AngleThreeAxes( angle1,theta1, angle2,theta2, angle3,theta3 );
return test;
}
//-------------------------------------------------------------------
bool testInverseRotation1Angle( Real angle, Real theta ) {
bool test = true;
bool angleInProperRange = ( -SimTK_PI <= angle && angle <= SimTK_PI );
if( angleInProperRange )
test = fabs( angle - theta ) < 10*SignificantReal;
return test;
}
//-------------------------------------------------------------------
bool testInverseRotation2Angle( Real angle1, Real theta1, Real angle2, Real theta2 ) {
bool test = true;
bool angle1InProperRange = ( -SimTK_PI <= angle1 && angle1 <= SimTK_PI );
bool angle2InProperRange = ( -SimTK_PI <= angle2 && angle2 <= SimTK_PI );
if( angle1InProperRange && angle2InProperRange ) {
test = test && fabs( angle1 - theta1 ) < 10*SignificantReal;
test = test && fabs( angle2 - theta2 ) < 10*SignificantReal;
}
return test;
}
//-------------------------------------------------------------------
bool testInverseRotation3AngleTwoAxes( Real angle1, Real theta1, Real angle2, Real theta2, Real angle3, Real theta3 ) {
bool test = true;
bool angle1InProperRange = ( -SimTK_PI <= angle1 && angle1 <= SimTK_PI );
bool angle2InProperRange = ( 0 <= angle2 && angle2 <= SimTK_PI );
bool angle3InProperRange = ( -SimTK_PI <= angle3 && angle3 <= SimTK_PI );
if( angle1InProperRange && angle2InProperRange && angle3InProperRange ) {
test = test && fabs( angle1 - theta1 ) < 10*SignificantReal;
test = test && fabs( angle2 - theta2 ) < 10*SignificantReal;
test = test && fabs( angle3 - theta3 ) < 10*SignificantReal;
// Test needs to be modified if near singularity
const Real singularity = 0.0;
if( test == false && fabs(angle2-singularity) <= SignificantReal ) {
const Real angle1PlusAngle3 = angle1 + angle3;
const Real theta1PlusTheta3 = theta1 + theta3;
bool angleSumInProperRange = ( -SimTK_PI <= angle1PlusAngle3 && angle1PlusAngle3 <= SimTK_PI );
if( angleSumInProperRange == false ) test = true;
else {
test = fabs( angle2 - theta2 ) < 10*SignificantReal;
test = test && fabs( angle1PlusAngle3 - theta1PlusTheta3 ) < 10*SignificantReal;
}
}
}
return test;
}
//-------------------------------------------------------------------
bool testInverseRotation3AngleThreeAxes( Real angle1, Real theta1, Real angle2, Real theta2, Real angle3, Real theta3 ) {
bool test = true;
bool angle1InProperRange = ( -SimTK_PI <= angle1 && angle1 <= SimTK_PI );
bool angle2InProperRange = (-0.5*SimTK_PI <= angle2 && angle2 <= 0.5*SimTK_PI );
bool angle3InProperRange = ( -SimTK_PI <= angle3 && angle3 <= SimTK_PI );
if( angle1InProperRange && angle2InProperRange && angle3InProperRange ) {
test = test && fabs( angle1 - theta1 ) < 10*SignificantReal;
test = test && fabs( angle2 - theta2 ) < 10*SignificantReal;
test = test && fabs( angle3 - theta3 ) < 10*SignificantReal;
// Test needs to be modified if near singularity
const Real singularity = 0.5*SimTK_PI;
if( test == false && fabs(angle2-singularity) <= SignificantReal ) {
const Real angle1PlusAngle3 = angle1 + angle3;
const Real theta1PlusTheta3 = theta1 + theta3;
bool angleSumInProperRange = ( -SimTK_PI <= angle1PlusAngle3 && angle1PlusAngle3 <= SimTK_PI );
if( angleSumInProperRange == false ) test = true;
else {
test = fabs( angle2 - theta2 ) < 10*SignificantReal;
test = test && fabs( angle1PlusAngle3 - theta1PlusTheta3 ) < 10*SignificantReal;
}
}
}
return test;
}
//-------------------------------------------------------------------
bool testQuaternion( Real e0, Real e1, Real e2, Real e3 )
{
// Construct quaternion and normalize it
Quaternion qe0e1e2e3( e0, e1, e2, e3 );
// Convert quaternion to a Rotation matrix
Rotation rotationSpecified( qe0e1e2e3 );
// Convert Rotation back to quaternion
Quaternion qTest = rotationSpecified.convertRotationToQuaternion();
// Convert quaternion to a Rotation matrix
Rotation testRotation; testRotation.setRotationFromQuaternion( qTest );
// Test to see if they are the same
bool test = rotationSpecified.areAllRotationElementsSameToMachinePrecision( testRotation );
return test;
}
//-------------------------------------------------------------------
bool testSetRotationToBodyFixedXYZ() {
bool test = true;
const Real q0=.123, q1=-.234, q2=.787;
Rotation R0, R1, R2;
// The general case and special case implementation should produce
// the same result.
R0.setRotationFromThreeAnglesThreeAxes(
BodyRotationSequence, q0, XAxis, q1, YAxis, q2, ZAxis);
R1.setRotationToBodyFixedXYZ(Vec3(q0,q1,q2));
R2.setRotationToBodyFixedXYZ(
Vec3(std::cos(q0),std::cos(q1),std::cos(q2)),
Vec3(std::sin(q0),std::sin(q1),std::sin(q2)));
test = test && R0.areAllRotationElementsSameToMachinePrecision(R1);
test = test && R0.areAllRotationElementsSameToMachinePrecision(R2);
test = test && R1.areAllRotationElementsSameToMachinePrecision(R2);
return test;
}
//-------------------------------------------------------------------
bool exhaustiveTestof1AngleRotation( ) {
bool test = true;
// Range to check angles
Real negativeStartAngle = convertDegreesToRadians( -385 );
Real positiveStartAngle = convertDegreesToRadians( 385 );
Real incrementAngle = convertDegreesToRadians( 0.5 );
// Test each axis
for( int i=0; i<=2; i++ ) {
CoordinateAxis axisi = CoordinateAxis::getCoordinateAxis(i);
for( Real anglei = negativeStartAngle; anglei < positiveStartAngle; anglei += incrementAngle )
test = test && testRotationOneAxis( anglei, axisi );
}
return test;
}
//-------------------------------------------------------------------
bool exhaustiveTestof2AngleRotation( ) {
bool test = true;
// Range to check angles
Real negativeStartAngle = convertDegreesToRadians( -200 );
Real positiveStartAngle = convertDegreesToRadians( 200 );
Real incrementAngle = convertDegreesToRadians( 10.0 );
// Test each axis
for( int i=0; i<=2; i++ ) {
CoordinateAxis axisi = CoordinateAxis::getCoordinateAxis(i);
for( int j=0; j<=2; j++ ) {
CoordinateAxis axisj = CoordinateAxis::getCoordinateAxis(j);
for( Real anglei = negativeStartAngle; anglei < positiveStartAngle; anglei += incrementAngle )
for( Real anglej = negativeStartAngle; anglej < positiveStartAngle; anglej += incrementAngle ) {
test = test && testRotationTwoAxes( BodyRotationSequence, anglei, axisi, anglej, axisj );
test = test && testRotationTwoAxes( SpaceRotationSequence, anglei, axisi, anglej, axisj );
}
}
}
return test;
}
//-------------------------------------------------------------------
bool exhaustiveTestof3AngleRotation( ) {
bool test = true;
// Range to check angles
Real negativeStartAngle = convertDegreesToRadians( -200 );
Real positiveStartAngle = convertDegreesToRadians( 200 );
Real incrementAngle = convertDegreesToRadians( 40.0 );
// Test each axis
for( int i=0; i<=2; i++ ) {
CoordinateAxis axisi = CoordinateAxis::getCoordinateAxis(i);
for( int j=0; j<=2; j++ ) {
CoordinateAxis axisj = CoordinateAxis::getCoordinateAxis(j);
for( int k=0; k<=2; k++ ) {
CoordinateAxis axisk = CoordinateAxis::getCoordinateAxis(k);
for( Real anglei = negativeStartAngle; anglei < positiveStartAngle; anglei += incrementAngle )
for( Real anglej = negativeStartAngle; anglej < positiveStartAngle; anglej += incrementAngle )
for( Real anglek = negativeStartAngle; anglek < positiveStartAngle; anglek += incrementAngle ) {
test = test && testRotationThreeAxes( BodyRotationSequence, anglei, axisi, anglej, axisj, anglek, axisk );
test = test && testRotationThreeAxes( SpaceRotationSequence, anglei, axisi, anglej, axisj, anglek, axisk );
}
}
}
}
return test;
}
//-------------------------------------------------------------------
bool exhaustiveTestof3AngleTwoAxesRotationNearSingularity() {
bool test = true;
// Range to check angles anglei and anglek
Real negativeStartAngle = convertDegreesToRadians( -200 );
Real positiveStartAngle = convertDegreesToRadians( 200 );
Real incrementStartAngle = convertDegreesToRadians( 20.0 );
// Range to check around singularity
Real negativeSinglAngle = convertDegreesToRadians( 0 - 1.0E-11 );
Real positiveSinglAngle = convertDegreesToRadians( 0 + 1.0E-11 );
Real incrementSinglAngle = convertDegreesToRadians( 1.0E-12 );
// Test each axis
for( int i=0; i<=2; i++ ) {
CoordinateAxis axisi = CoordinateAxis::getCoordinateAxis(i);
for( int j=0; j<=2; j++ ) {
CoordinateAxis axisj = CoordinateAxis::getCoordinateAxis(j);
for( int k=0; k<=2; k++ ) {
CoordinateAxis axisk = CoordinateAxis::getCoordinateAxis(k);
for( Real anglei = negativeStartAngle; anglei < positiveStartAngle; anglei += incrementStartAngle )
for( Real anglej = negativeSinglAngle; anglej < positiveSinglAngle; anglej += incrementSinglAngle )
for( Real anglek = negativeStartAngle; anglek < positiveStartAngle; anglek += incrementStartAngle ) {
test = test && testRotationThreeAxes( BodyRotationSequence, anglei, axisi, anglej, axisj, anglek, axisk );
test = test && testRotationThreeAxes( SpaceRotationSequence, anglei, axisi, anglej, axisj, anglek, axisk );
}
}
}
}
return test;
}
//-------------------------------------------------------------------
bool exhaustiveTestof3AngleThreeAxesRotationNearSingularity() {
bool test = true;
// Range to check angles anglei and anglek
Real negativeStartAngle = convertDegreesToRadians( -200 );
Real positiveStartAngle = convertDegreesToRadians( 200 );
Real incrementStartAngle = convertDegreesToRadians( 20.0 );
// Range to check around singularity
Real negativeSinglAngle = convertDegreesToRadians( 90 - 1.0E-11 );
Real positiveSinglAngle = convertDegreesToRadians( 90 + 1.0E-11 );
Real incrementSinglAngle = convertDegreesToRadians( 1.0E-12 );
// Test each axis
for( int i=0; i<=2; i++ ) {
CoordinateAxis axisi = CoordinateAxis::getCoordinateAxis(i);
for( int j=0; j<=2; j++ ) {
CoordinateAxis axisj = CoordinateAxis::getCoordinateAxis(j);
for( int k=0; k<=2; k++ ) {
CoordinateAxis axisk = CoordinateAxis::getCoordinateAxis(k);
for( Real anglei = negativeStartAngle; anglei < positiveStartAngle; anglei += incrementStartAngle )
for( Real anglej = negativeSinglAngle; anglej < positiveSinglAngle; anglej += incrementSinglAngle )
for( Real anglek = negativeStartAngle; anglek < positiveStartAngle; anglek += incrementStartAngle ) {
test = test && testRotationThreeAxes( BodyRotationSequence, anglei, axisi, anglej, axisj, anglek, axisk );
test = test && testRotationThreeAxes( SpaceRotationSequence, anglei, axisi, anglej, axisj, anglek, axisk );
}
}
}
}
return test;
}
//-------------------------------------------------------------------
bool exhaustiveTestofQuaternions() {
bool test = true;
for( Real e0 = -1; e0 <= 1; e0 += 0.2 )
for( Real e1 = -1; e1 <= 1; e1 += 0.2 )
for( Real e2 = -1; e2 <= 1; e2 += 0.2 )
for( Real e3 = -1; e3 <= 1; e3 += 0.2 )
test = test && testQuaternion( e0, e1, e2, e3 );
return test;
}
//-------------------------------------------------------------------
// Here we need to check that the resulting rotation has determinant 1 (a previous bug
// left it with determinant -1) and that the j'th axis is at least pointing in the
// direction of the given vj.
bool testRotationFromTwoGivenAxes( const Vec3& vi, const CoordinateAxis& ai, const Vec3& vj, const CoordinateAxis& aj) {
bool test = true;
// This makes a Rotation with vi as axis i, but axis j will only be in the general direction of vj.
const Rotation testRotation(UnitVec3(vi), ai, vj, aj);
test = test && std::fabs(det(testRotation) - 1) <= SignificantReal;
test = test && dot(testRotation(ai), vi) > 0;
test = test && dot(testRotation(aj), vj) > 0;
return test;
}
//-------------------------------------------------------------------
// Test the tricked-out code used to rotation a symmetric dyadic
// matrix S_AA=R_AB*S_BB*R_BA.
bool testReexpressSymMat33() {
bool test = true;
const Rotation R_AB(Test::randRotation());
const SymMat33 S_BB(Test::randSymMat<3>());
const Mat33 M_BB(S_BB);
const SymMat33 S_AA = R_AB.reexpressSymMat33(S_BB);
const Mat33 M_AA = R_AB*M_BB*~R_AB;
const Mat33 MS_AA(S_AA);
test = test && (MS_AA-M_AA).norm() <= SignificantReal;
// Now put it back with an InverseRotation.
const SymMat33 isS_BB = (~R_AB).reexpressSymMat33(S_AA);
test = test && (S_BB-isS_BB).norm() <= SignificantReal;
const Rotation I; // identity
const SymMat33 S_BB_still = I.reexpressSymMat33(S_BB);
test = test && (S_BB_still-S_BB).norm() <= SignificantReal;
// Test symmetric matrix multiply (doesn't belong here).
const SymMat33 S1(Test::randSymMat<3>()), S2(Test::randSymMat<3>());
const Mat33 M1(S1), M2(S2);
const Mat33 S(S1*S2);
const Mat33 M(M1*M2);
test = test && (S-M).norm() <= SignificantReal;
const SymMat<3,Complex> SC1(Test::randComplex(),
Test::randComplex(), Test::randComplex(),
Test::randComplex(), Test::randComplex(), Test::randComplex() );
const SymMat<3,Complex> SC2(Test::randComplex(),
Test::randComplex(), Test::randComplex(),
Test::randComplex(), Test::randComplex(), Test::randComplex() );
SimTK_TEST_EQ(SC1.elt(1,0), conj(SC1.elt(0,1)));
SimTK_TEST_EQ(SC1.elt(2,0), conj(SC1.elt(0,2)));
SimTK_TEST_EQ(SC1.elt(1,2), conj(SC1.elt(2,1)));
const Mat<3,3,Complex> MC1(SC1), MC2(SC2);
const Mat<3,3,Complex> SC(SC1*SC2);
const Mat<3,3,Complex> MC(MC1*MC2);
SimTK_TEST_EQ(SC, MC);
return test;
}
|