1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKcommon *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2010-15 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/*
* These are regression tests for the SimTK::Array_<T,X> class.
*/
#include "SimTKcommon.h"
#include "SimTKcommon/Testing.h"
#include <vector>
#include <set>
#include <sstream>
#include <iterator>
#include <iostream>
#include <utility>
#include <memory>
using std::cout;
using std::endl;
using std::cin;
using namespace SimTK;
// Output an std::vector<T>
template <class T>
std::ostream& operator<<(std::ostream& o, std::vector<T>& v) {
o << '<';
if (!v.empty()) {
o << v.front();
for (unsigned i=1; i < v.size(); ++i)
o << ' ' << v[i];
}
return o << '>';
}
//// Input an Array_<T>
//template <class T, class X> inline std::istream&
//operator>>(std::istream& i, Array_<T,X>& a) {
// if (a.isOwner()) {
// a.clear();
// while(!i.eof()) {
// a.push_back(); // default construct new element
// i >> a.back(); // input last element
// }
// } else { // non-owner
// typedef typename Array_<T,X>::size_type size_type;
// for (size_type e(0); e < a.size() && !i.eof(); ++e)
// i >> a[e];
// }
// return i;
//}
//template <class T, class X> inline std::istream&
//operator>>(std::istream& i, ArrayView_<T,X>& a)
//{ return i >> (Array_<T,X>&)a; }
template <class T>
class OtherArray_ : public Array_<T> {
public:
typedef typename Array_<T>::size_type size_type;
OtherArray_() : Array_<T>() {}
OtherArray_(size_type n, const T& v) : Array_<T>(n,v) {}
};
SimTK_DEFINE_UNIQUE_INDEX_TYPE(TestIx);
// This index type has a max size of 4 for testing out-of-space
// checks.
class SmallIx {
public:
SmallIx() : ix(0xff) {}
explicit SmallIx(unsigned char i) : ix(i) {}
SmallIx& operator++()
{ assert(ix<max_size()); ++ix; return *this;}
SmallIx operator++(int)
{ assert(ix<max_size()); const SmallIx x=*this; ++ix; return x;}
SmallIx& operator--()
{ assert(ix>0); --ix; return *this;}
SmallIx operator--(int)
{ assert(ix>0); const SmallIx x=*this; ++ix; return x;}
// These are required for any class to be used an index type.
operator unsigned char() const {return ix;}
typedef unsigned char size_type;
typedef signed char difference_type;
static size_type max_size() {return 4;}
private:
unsigned char ix;
};
namespace SimTK {
template <> struct NiceTypeName<SmallIx> {
static const char* name() {return "SmallIx";}
static const std::string& namestr()
{ static const std::string ns(name()); return ns; }
static const std::string& xmlstr() {return namestr();}
};
}
class Counter {
public:
Counter() : count(0) {}
Counter& operator=(int i) {count=i; return *this;}
Counter& operator++() {++count; return *this;}
Counter operator++(int) {const Counter c=*this; ++count; return c;}
Counter& reset() {count=0; return *this;}
operator int() const {return count;}
private:
mutable int count;
};
inline std::ostream&
operator<<(std::ostream& o, const Counter& c) {
return o << (int)c;
}
// This class is a T but augmented with counters that track the number
// of calls to constructors, assignment, and the destructor.
template <class T>
struct Count {
Count() {++defCtor;}
Count(const Count& c) : val(c.val) {++copyCtor;}
Count& operator=(const Count& c) {val=c.val; ++copyAssign; return *this;}
~Count() {++dtor;}
// Conversion from T.
Count(const T& t) : val(t) {++initCtor;}
// Assign from T.
Count& operator=(const T& t) {val=t; ++initAssign; return *this;}
bool operator==(const Count& other) const {return val==other.val;}
bool operator!=(const Count& other) const {return val!=other.val;}
static void dumpCounts(const char* msg) {
cout << msg << ":";
cout << " defCtor=" << Count<int>::defCtor;
cout << " initCtor=" << Count<int>::initCtor;
cout << " copyCtor=" << Count<int>::copyCtor;
cout << " initAssign=" << Count<int>::initAssign;
cout << " copyAssign=" << Count<int>::copyAssign;
cout << " dtor=" << Count<int>::dtor;
cout << endl;
}
static bool isReset()
{ return !(defCtor||initCtor||copyCtor||initAssign||copyAssign||dtor); }
T val;
static void reset() {defCtor=initCtor=copyCtor=initAssign=copyAssign=dtor=0;}
static Counter defCtor;
static Counter initCtor;
static Counter copyCtor;
static Counter initAssign;
static Counter copyAssign;
static Counter dtor;
};
template <class T> inline std::ostream&
operator<<(std::ostream& o, const Count<T>& c) {
return o << c.val;
}
template <class T> Counter Count<T>::defCtor;
template <class T> Counter Count<T>::initCtor;
template <class T> Counter Count<T>::copyCtor;
template <class T> Counter Count<T>::initAssign;
template <class T> Counter Count<T>::copyAssign;
template <class T> Counter Count<T>::dtor;
typedef std::set<float>::const_iterator inputIt; // not a random access iterator
// Instantiate the whole class to check for compilation problems.
namespace SimTK {
template class Array_<int>;
template class Array_<std::string, unsigned char>;
// Instantiate templatized methods
// Constructors.
template Array_<float,int>::Array_(const float*,const float*);
// Gcc 4.8.2 complains that these two instantiations are ambiguous, and
// clang 3.4 dies with an internal error. cl has no problem with them. It is
// hard to determine who is right so I'll just include this for cl for now.
#ifdef _MSC_VER
template Array_<float,int>::Array_(const Array_<float,int>&);
template Array_<float,int>&
Array_<float,int>::operator=(const Array_<float,int>&);
#endif
// Assignment.
template void
Array_<float,int>::assign(const float*,const float*);
template void
Array_<double,int>::assign(const inputIt&, const inputIt&);
template Array_<double,int>&
Array_<double,int>::operator=(const std::vector<float>&);
// Insertion
template float*
Array_<float,int>::insert(float*, const float*, const float*);
template float*
Array_<float,short>::insert(float*, const inputIt&, const inputIt&);
// Comparison
template bool operator==(const ArrayViewConst_<float,int>&,
const ArrayViewConst_<float,unsigned>&);
};
void testConstruction() {
const int data[] = {5,3,-2,27,9};
const char uchar[] = {'f','i','t','z'};
Array_<int> nothing;
Array_<int> def(5);
Array_<int> intWithInt(data, data+5);
Array_<char> charWithChar(uchar, uchar+4);
Array_<int> intWithChar(uchar, uchar+4);
Array_<char> charWithInt(data, data+5);
cout << "nothing=" << nothing << endl;
cout << "def=" << def << endl;
cout << "intWithInt=" << intWithInt << endl;
cout << "charWithChar=" << charWithChar << endl;
cout << "intWithChar=" << intWithChar << endl;
cout << "charWithInt=" << charWithInt << endl;
Array_< Count<int> > cint(data, data+5);
Count<int>::dumpCounts("cint(data,data+5)");
Count<int>::reset();
const Count<int> counts[] = {3,4,5};
Count<int>::reset();
Array_< Count<int> > ccnt(counts, counts+3);
Count<int>::dumpCounts("ccnt(counts,counts+3)");
Count<int>::reset();
Array_< Count<int> > cint2(cint);
Count<int>::dumpCounts("cint2(cint)");
Count<int>::reset();
cint2 = ccnt;
Count<int>::dumpCounts("cint2=ccnt");
Count<int>::reset();
cout << "cint2=" << cint2 << endl;
Array_<int,SmallIx> ismall0;
cout << "default constructed Array_<int> begin()=" << ismall0.begin()
<< " end()=" << ismall0.end()
<< " capacity()=" << (int)ismall0.capacity()
<< endl;
std::vector<int> ivec0;
cout << "default constructed std::vector<int>"
<< " capacity()=" << ivec0.capacity()
<< endl;
Array_<int,SmallIx> ismall(3);
Array_<int,SmallIx> imaxsz(data, data+4);
cout << "ismall0=" << ismall0 << endl;
cout << "ismall=" << ismall << endl;
cout << "imaxsz=" << imaxsz << endl;
new(ismall.raw_push_back()) int(27);
cout << "ismall after raw_push_back():" << ismall << endl;
SimTK_TEST_MUST_THROW_DEBUG(imaxsz.push_back()); // already full
// Check null assignments.
ismall = ismall0; // src is null
ismall0 = imaxsz; // dest was null
ismall = Array_<int,SmallIx>(); // both null
cout << "sizeof(Array_<int,bool>)=" << sizeof(Array_<int,bool>) << endl;
cout << "sizeof(Array_<int,char>)=" << sizeof(Array_<int,unsigned char>) << endl;
cout << "sizeof(Array_<int,short>)=" << sizeof(Array_<int,unsigned short>) << endl;
cout << "sizeof(Array_<int>)=" << sizeof(Array_<int>) << endl;
cout << "sizeof(std::vector<int>)=" << sizeof(std::vector<int>) << endl;
cout << "sizeof(Array_<int,long long>)=" << sizeof(Array_<int,long long>) << endl;
Array_<String, TestIx> strings(6, "woohoo");
cout << "strings=" << strings << endl;
strings.push_back("last");
for (int i=0; i<5; ++i) {
strings.insert(strings.end(), 2, "ins" + String(i));
cout << strings.size() << ":" << strings.capacity()
<< ":" << strings << endl;
}
cout << "strings=" << strings << endl;
Array_<String, TestIx>::reverse_iterator p = strings.rbegin();
while (p != strings.rend())
cout << " " << *p++;
cout << endl;
const int ownerData[] = {7, 77, 777, 7777, 77777};
std::vector<int> owner(ownerData, ownerData+5);
std::vector<unsigned> unowner(owner.begin(), owner.end());
Array_<int> shared; shared.shareData(&owner[1], &owner[4]);
cout << "vector before=" << owner << endl;
cout << "shared before=" << shared << endl;
shared[2] = 29;
cout << "shared after=" << shared << endl;
cout << "vector after=" << owner << endl;
cout << "shared(1,2)=" << shared(1,2) << endl;
Array_<int> copyOfOwner(owner);
cout << "copyOfOwner=" << copyOfOwner << endl;
Array_<unsigned short,char> weirdCopy(owner);
cout << "weirdCopy=" << weirdCopy << endl;
copyOfOwner = unowner;
cout << "copyOfOwner=unowner=" << copyOfOwner << endl;
Array_<unsigned> shareOfUnowner(unowner, DontCopy());
cout << "shareOfUnowner=" << shareOfUnowner << endl;
shareOfUnowner(1,3) = Array_<unsigned>(3,88);
cout << "shareOfUnowner=" << shareOfUnowner << endl;
OtherArray_<int> oa(5, -4);
cout << "oa=" << oa << endl;
}
static void toArray(const Array_<int>& a) {
cout << "toArray= " << a << " &a[0]=" << &a[0] << endl;
}
static void toArrayView(const ArrayView_<int>& av) {
cout << "toArrayView= " << av << " &av[0]=" << &av[0] << endl;
}
static void toArrayViewConst(const ArrayViewConst_<int>& ca) {
cout << "toArrayViewConst=" << ca << " &ca[0]=" << &ca[0] << endl;
}
void testConversion() {
const int p[] = {1,2,3,4,5,6};
std::vector<int> v(p,p+6);
cout << "v=" << v << " &v[0]=" << &v[0] << endl;
Array_<int> a(v);
ArrayView_<int> av(v);
ArrayViewConst_<int> ca(v);
cout << "a= " << a << " &a[0]=" << &a[0] << endl;
cout << "av=" << av << " &av[0]=" << &av[0] << endl;
cout << "ca=" << ca << " &ca[0]=" << &ca[0] << endl;
toArray(ArrayView_<int>(v));
toArrayView(v);
toArrayViewConst(v);
}
// ArrayView assignment can't change the size of the target ArrayView,
// and the semantics are elementwise assignment, not destruct-then-copy-
// construct as for resizeable Array (or std::vector) assignment.
void testArrayViewAssignment() {
const int data[5] = {10, 100, -23, 4, -99};
Array_<int> adata(data, data+5); // copies of original data
std::vector<int> vdata(data, data+5);
Count<int>::reset();
Array_< Count<int> > acnt(data, data+5);
SimTK_TEST(!( Count<int>::defCtor ||Count<int>::copyCtor
||Count<int>::copyAssign||Count<int>::dtor));
SimTK_TEST(Count<int>::initCtor == 5);
Count<int>::reset();
acnt = adata; // clear() then construct from int
SimTK_TEST(!( Count<int>::defCtor ||Count<int>::copyCtor
||Count<int>::copyAssign));
SimTK_TEST(Count<int>::dtor==5 && Count<int>::initCtor==5);
Count<int>::reset();
Array_< Count<int> > acopy(3); // default constructed
SimTK_TEST(Count<int>::defCtor == 3);
acopy = acnt; // destruct 3, copy construct 5
SimTK_TEST(Count<int>::dtor==3 && Count<int>::copyCtor==5);
Count<int>::reset();
// this is an initialization, not an assignment
ArrayView_< Count<int> > avcnt = acnt(1,2); // shares 2nd & 3rd elts
SimTK_TEST(Count<int>::isReset()); // nothing should have happened
SimTK_TEST(avcnt.size()==2);
SimTK_TEST(avcnt[0]==acnt[1]&&avcnt[1]==acnt[2]);
SimTK_TEST(&avcnt[0]==&acnt[1]&& &avcnt[1]==&acnt[2]);
// This assignment should fail because the source has too many elements.
SimTK_TEST_MUST_THROW(avcnt = adata);
// This one should succeed, with 2 calls to Count<int>::op=(int).
Count<int>::reset();
avcnt.assign(adata.begin(), adata.begin()+2);
SimTK_TEST(!(Count<int>::defCtor||Count<int>::copyCtor
||Count<int>::copyAssign));
SimTK_TEST(Count<int>::initAssign == 2);
// This assignment should fail because of overlap between source and
// destination.
SimTK_TEST_MUST_THROW(avcnt = acnt(0,2));
// But this succeeds because no overlap.
Count<int>::reset();
avcnt = acnt(3,2); // sets acnt(1,2)=acnt(3,2) with 2 copy assigns
SimTK_TEST(!(Count<int>::copyCtor||Count<int>::dtor));
SimTK_TEST(Count<int>::copyAssign == 2);
//was: int data[5] = {10, 100, -23, 4, -99};
int modified[5] = {10, 4, -99, 4, -99}; // should now be
SimTK_TEST(avcnt[0]==4&&avcnt[1]==-99);
SimTK_TEST(acnt == Array_<int>(modified, modified+5));
// Check behavior of assign(first,last1) for input, forward, and
// random access iterators.
int someSpace[5] = {123, 1, 12, -9, 14};
ArrayView_<int> avSpace(someSpace, someSpace+5);
std::vector<int> aVec(avSpace.begin(), avSpace.end()); // copy
std::set<int> aSet(avSpace.begin(), avSpace.end()); // copy & sort
SimTK_TEST(&avSpace[0] == someSpace); //must be sharing space
// Test fill first.
avSpace = 19; SimTK_TEST(avSpace==Array_<int>(5, 19));
avSpace.fill(-3); SimTK_TEST(avSpace==Array_<int>(5, -3));
SimTK_TEST_MUST_THROW_DEBUG(avSpace.assign(12, 999));
avSpace.assign(5,999); SimTK_TEST(avSpace==Array_<int>(5,999));
// Assign from pointers
avSpace.assign(data, data+5); SimTK_TEST(avSpace==vdata);
avSpace = 999;
// Assign from random_access_iterators
avSpace.assign(vdata.begin(),vdata.end());SimTK_TEST(avSpace==vdata);
avSpace = 999;
// Assign from bidirectional_interator
avSpace.assign(aSet.begin(), aSet.end());
SimTK_TEST(avSpace==std::vector<int>(aSet.begin(),aSet.end()));
SimTK_TEST_MUST_THROW(avSpace.assign(data, data+3));
SimTK_TEST_MUST_THROW(avSpace.assign(vdata.begin(), vdata.begin()+3));
std::set<int>::iterator sp = aSet.begin(); ++sp; ++sp;
SimTK_TEST_MUST_THROW(avSpace.assign(aSet.begin(), sp));
//TODO: test input iterators, and source too big problems
}
void testInsert() {
const int data1[3] = {7, -2, 3};
const int data2[4] = {101, 121, -111, 321};
int wdata[3] = {99, 9999, 999}; // writable
Array_<int> a(data2,data2+4); // copy the data
SimTK_TEST(&a[0] != data2);
ArrayViewConst_<int> avc(data2, data2+4); // share the data
SimTK_TEST(&avc[1] == data2+1);
Array_<int> aw(wdata, wdata+3, DontCopy()); // shared
SimTK_TEST(&aw[0] == wdata);
// Can't insert into non-owner.
SimTK_TEST_MUST_THROW(aw.insert(aw.begin(), avc.begin(), avc.end()));
// Unless we're inserting zero elements; that's allowed.
aw.insert(&aw[1], avc.begin(), avc.begin());
Array_<int> ac(data1, data1+3);
std::vector<int> vc(data1, data1+3);
ac.insert(&ac[1], &a[1], &a[1]+2);
vc.insert(vc.begin()+1, &a[1], &a[1]+2);
SimTK_TEST(ac.size()==5);
SimTK_TEST(ac == vc); // 7, 121, -111, -2, 3
// insert vc onto beginning and end of ac
ac.insert(ac.begin(), vc.begin(), vc.end());
ac.insert(ac.end(), vc.begin(), vc.end());
SimTK_TEST(ac.size()==15);
SimTK_TEST(ac(0,5)==vc && ac(5,5)==vc && ac(10,5)==vc);
// Shrink ac back down to 5 again.
ac.erase(ac.begin()+2, ac.begin()+12);
SimTK_TEST(ac == vc);
SimTK_TEST(ac.allocated() >= 15);
ac.shrink_to_fit();
SimTK_TEST(ac.allocated() < 15);
SimTK_TEST(ac == vc); // make sure we didn't lose the data
// Now try some null insertions
Array_<int> null;
ac.insert(ac.begin(), null.begin(), null.end());
ac.insert(ac.begin()+2, null.begin(), null.end());
ac.insert(ac.end(), null.begin(), null.end());
ac.insert(ac.begin(), 0, 929);
ac.insert(ac.begin()+2, 0, 929);
ac.insert(ac.end(), 0, 929);
SimTK_TEST(ac == vc);
ArrayView_<int> null2;
null.insert(null.begin(), null2.begin(), null2.end());
SimTK_TEST(null.empty() && null2.empty());
// How about inserting into a null array?
null.insert(null.begin(), 3, 987);
SimTK_TEST(null == std::vector<int>(3,987));
null.deallocate(); // back to null
SimTK_TEST(null.data()==0 && null.size()==0 && null.allocated()==0);
null.insert(null.begin(), ac.begin(), ac.end());
SimTK_TEST(null == vc);
null.deallocate();
// Fill in a bunch of 1000's in the middle, erase the beginning and
// end, and make sure we see just the 1000's.
ac.insert(ac.begin()+2, 99, 1000);
ac.erase(ac.begin(), ac.begin()+2);
ac.erase(ac.end()-3, ac.end());
SimTK_TEST(ac == Array_<int>(99,1000));
}
// A bool index type is more or less useless in real life but was handy for
// catching obscure implementation bugs having to do with index_type vs.
// size_type.
void testBoolIndex() {
SimTK_TEST((Array_<int,long>().empty()));
SimTK_TEST(!(Array_<int,long>(1L,99).empty()));
SimTK_TEST((Array_<int,long>(1L,99)[0] == 99));
Array_<std::string, bool> wisdom(2);
SimTK_TEST(wisdom[true] == ""); SimTK_TEST(wisdom[false] == "");
wisdom[true] = "this too shall pass";
wisdom[false] = "don't worry it's not loaded";
SimTK_TEST(wisdom.size() == 2);
SimTK_TEST(wisdom.max_size() == 2);
SimTK_TEST(wisdom.capacity() >= 2);
SimTK_TEST(wisdom.allocated() == wisdom.capacity());
SimTK_TEST(wisdom.data() != 0);
SimTK_TEST(wisdom.data() == wisdom.cdata());
SimTK_TEST(wisdom.begin() == wisdom.data());
SimTK_TEST(wisdom.cbegin() == wisdom.cdata());
SimTK_TEST(wisdom.end() == wisdom.begin()+2);
SimTK_TEST(wisdom.cend() == wisdom.cbegin()+2);
SimTK_TEST(wisdom[false] == "don't worry it's not loaded");
SimTK_TEST(wisdom[true] == "this too shall pass");
SimTK_TEST(wisdom.at(false) == "don't worry it's not loaded");
SimTK_TEST(wisdom.at(true) == "this too shall pass");
cout << "wisdom=" << wisdom << endl;
cout << "wisdom(false,1)=" << wisdom(false,1) << endl;
cout << "wisdom(true,1)=" << wisdom(true,1) << endl;
cout << "wisdom(true,0)=" << wisdom(true,0) << endl;
// Subarrays are fixed size; can't assign a 1-element vector to
// a 2 element subarray.
SimTK_TEST_MUST_THROW_DEBUG(
wisdom(false,2) = std::vector<const char*>(1,"whatever"));
const std::vector<const char*> vrel(2,"it's all relative");
wisdom(false,2) = vrel;
cout << "wisdom=" << wisdom << endl;
// Test all the comparison operators Array vs. std::vector.
SimTK_TEST(wisdom == vrel); SimTK_TEST(vrel == wisdom);
SimTK_TEST(wisdom <= vrel); SimTK_TEST(vrel <= wisdom);
SimTK_TEST(wisdom >= vrel); SimTK_TEST(vrel >= wisdom);
SimTK_TEST(wisdom(false,1) < vrel);
SimTK_TEST(wisdom(true,1) < vrel);
SimTK_TEST(wisdom(0,0) < vrel);
SimTK_TEST(wisdom(true,1) < vrel);
SimTK_TEST(wisdom(false,1) != vrel);
SimTK_TEST(wisdom != std::vector<const char*>(2,"it's all absolute"));
wisdom[true] = "z comes after i";
SimTK_TEST(wisdom > vrel); SimTK_TEST(vrel < wisdom);
SimTK_TEST_MUST_THROW_DEBUG(wisdom(true,2));
SimTK_TEST_MUST_THROW_DEBUG(wisdom.push_back("more brilliance"));
}
// It should be possible to assign to an Array_ from an std::set or std::map
// even though you can't subtract their bidirectional_iterators.
void testNonRandomIterator() {
const int someInts[] = {30,40,10,20,30,7,5};
std::set<int> iset(someInts, someInts+7);
std::vector<int> sortUniq(iset.begin(), iset.end()); // the right answer
Array_<int> iarr(iset.begin(), iset.end());
iarr.assign(iset.begin(), iset.end()); // must increment to count
SimTK_TEST(iarr == sortUniq);
Array_<int> iarr2(sortUniq.begin(), sortUniq.end());
iarr2.assign(sortUniq.begin(), sortUniq.end()); // can subtract iterators
SimTK_TEST(iarr2 == sortUniq);
iarr2.assign(iarr.begin(), iarr.end()); // can subtract pointers
SimTK_TEST(iarr2 == sortUniq);
// The standard requires this to match the constructor that creates
// n copies of an initial value -- it must NOT match the templatized
// InputIterator form because these are integral types.
Array_<int> dummy1((char)3, 'A'); // 3*65
SimTK_TEST(dummy1 == Array_<int>(3, (int)'A'));
Array_<int> dummy2(4U, 129U); // 4*129
SimTK_TEST(dummy2 == Array_<int>(4, 129));
// This should use the constant-time std::swap specialization that is
// provided in the Array.h header file.
std::swap(dummy1, dummy2);
SimTK_TEST(dummy2 == Array_<int>(3, (int)'A'));
SimTK_TEST(dummy1 == Array_<int>(4, 129));
// assign() and insert() should behave like the constructor.
dummy1.assign((char)2, 'B');
dummy1.insert(dummy1.begin()+1, (char)3, 'C');
const int d1answer[] = {(int)'B',(int)'C',(int)'C',(int)'C',(int)'B'};
SimTK_TEST((dummy1 == Array_<int,unsigned short>(d1answer, d1answer+5)));
// Test fill().
dummy1.fill(7);
SimTK_TEST((dummy1 == Array_<int>(5, 7))); // i.e., 5 7's
// This is too much data and should be detectable for any forward iterator.
typedef Array_<int,SmallIx> AType;
SimTK_TEST_MUST_THROW_DEBUG(
AType small(iset.begin(), iset.end())); // bidirectional
SimTK_TEST_MUST_THROW_DEBUG(
AType small(sortUniq.begin(), sortUniq.end())); // random access
SimTK_TEST_MUST_THROW_DEBUG(
AType small(iarr.begin(), iarr.end())); // pointer
}
// Input iterators require special handling in the implementation because
// it can't be determined for them how many elements are in a range
// [first,last1) because to increment an iterator is to consume it. This is
// the only case where a bulk constructor, insert(), or assign() must be
// done with multiple space reallocations (basically like a series of
// one-element push_back() calls).
void testInputIterator() {
const int answerData[]={10,12,-14,5,203,-232,1,2,3,4};
const Array_<int,char> answer(answerData,answerData+10);
const Array_<int,short> smallAnswer(answerData+4, answerData+8);
std::istringstream inp1("10 12 -14 5 203 -232 1 2 3 4");
std::istringstream inp2("10 12 -14 5 203 -232 1 2 3 4");
std::istringstream smallInp("203 -232 1 2"); // fits in SmallIx
typedef std::istream_iterator<int> Iter;
Iter p1(inp1), p2(inp2), psmall(smallInp);
Array_<int> readin(p1, Iter()); // like begin(), end()
SimTK_TEST(readin == answer);
// This shouldn't work because there are too many elements.
typedef Array_<int,SmallIx> SmallArray;
SimTK_TEST_MUST_THROW_DEBUG(SmallArray tooSmall(p2, Iter()));
// This should be OK.
SmallArray okSmall(psmall, Iter());
SimTK_TEST(okSmall == smallAnswer);
Array_<float> farray;
const float farray_ans1[] = {-1.5f,3e4f,.125f,11,4e-7f};
std::istringstream fin1("[ -1.5, 3e4 ,.125 , 11,4e-7 ]");
fin1 >> farray;
SimTK_TEST(!fin1.fail());
SimTK_TEST(farray == std::vector<float>(farray_ans1, farray_ans1+5));
// Replace middle three elements.
ArrayView_<float> fmid(farray(1,3));
const float farray_ans2[] = {-1.5f,910,920,9200,4e-7f};
std::istringstream fin2(" 9.1e2 9.2e2 9.2e3 ignore me");
fin2 >> fmid;
SimTK_TEST(!fin2.fail());
SimTK_TEST(farray == Array_<float>(farray_ans2, farray_ans2+5));
std::istringstream fin3(" 9.1e2 9.2e2"); fin3 >> fmid;
SimTK_TEST(fin3.fail()); // wrong size
std::istringstream fin4(" 9.1e2 9.2e2,9.2e3 "); fin4 >> fmid;
SimTK_TEST(fin4.fail()); // inconsistent use of commas
std::istringstream fin5("(9.1e2,9.2e2,9.2e3 "); fin5 >> fmid;
SimTK_TEST(fin5.fail()); // missing paren
std::istringstream fin6("{9.1e2,9.2e2,9.2e3]"); fin6 >> fmid;
SimTK_TEST(fin6.fail()); // mismatched delimiters
std::istringstream fin7("{9.1e2,9.2e2,9.2e3,}"); fin7 >> fmid;
SimTK_TEST(fin7.fail()); // trailing comma
std::istringstream fin8(" 9.1e2,9.2e2,9.2e3,"); fin8 >> fmid;
SimTK_TEST(!fin8.fail()); // trailing comma OK here because we got our fill
}
// Reduce the loop count by 50X in Debug.
static const int Outer = 500000
#ifndef NDEBUG
/ 50
#endif
;
static const int Inner = 1000;
void testSpeedStdVector() {
std::vector<int> v;
using Index = std::vector<int>::size_type;
v.reserve(Inner);
for (int i=0; i < Outer; ++i) {
v.clear();
for (int i=0; i < Inner; ++i)
v.push_back(i);
}
int sum;
for (int i=0; i < Outer; ++i) {
sum = i;
for (Index i=0; i < v.size(); ++i)
sum += v[i];
}
cout << "std::vector sum=" << sum << endl;
}
void testSpeedSimTKArray() {
Array_<int> v;
using Index = Array_<int>::size_type;
v.reserve(Inner);
for (int i=0; i < Outer; ++i) {
v.clear();
for (int i=0; i < Inner; ++i)
v.push_back(i);
}
int sum;
for (int i=0; i < Outer; ++i) {
sum = i;
for (Index i=0; i < v.size(); ++i)
sum += v[i];
}
cout << "Array sum=" << sum << endl;
}
void testNiceTypeName() {
cout << "Is64BitPlatform=" << NiceTypeName<Is64BitPlatformType>::name() << endl;
cout << "packed_size_type<bool>="
<< NiceTypeName<ArrayIndexPackType<bool>::packed_size_type>::name() << endl;
cout << "packed_size_type<char>="
<< NiceTypeName<ArrayIndexPackType<char>::packed_size_type>::name() << endl;
cout << "packed_size_type<signed char>="
<< NiceTypeName<ArrayIndexPackType<signed char>::packed_size_type>::name() << endl;
cout << "packed_size_type<unsigned char>="
<< NiceTypeName<ArrayIndexPackType<unsigned char>::packed_size_type>::name() << endl;
cout << "packed_size_type<short>="
<< NiceTypeName<ArrayIndexPackType<short>::packed_size_type>::name() << endl;
cout << "packed_size_type<unsigned short>="
<< NiceTypeName<ArrayIndexPackType<unsigned short>::packed_size_type>::name() << endl;
cout << "packed_size_type<int>="
<< NiceTypeName<ArrayIndexPackType<int>::packed_size_type>::name() << endl;
cout << "packed_size_type<unsigned>="
<< NiceTypeName<ArrayIndexPackType<unsigned>::packed_size_type>::name() << endl;
cout << "packed_size_type<long>="
<< NiceTypeName<ArrayIndexPackType<long>::packed_size_type>::name() << endl;
cout << "packed_size_type<unsigned long long>="
<< NiceTypeName<ArrayIndexPackType<unsigned long long>::packed_size_type>::name() << endl;
cout << "Array_<String,char> using name(): "
<< NiceTypeName< Array_<String,char> >::name() << endl;
// Check demangling/canonicalizing.
cout << "Array_<String,char> using namestr(): "
<< NiceTypeName< Array_<String,char> >::namestr() << endl;
// Check removing angle brackets for XML.
cout << "Array_<String,char> using xmlstr(): "
<< NiceTypeName< Array_<String,char> >::xmlstr() << endl;
}
// The Array_ class is supposed to make better use of memory than does
// std::vector when the index type is smaller than a pointer.
void testMemoryFootprint() {
// These conditions should apply on any 32- or 64-bit platform.
SimTK_TEST(sizeof(Array_<int>) <= sizeof(std::vector<int>));
SimTK_TEST(sizeof(Array_<int,bool>) < sizeof(std::vector<int>));
SimTK_TEST(sizeof(Array_<int,char>) < sizeof(std::vector<int>));
SimTK_TEST(sizeof(Array_<int,signed char>) < sizeof(std::vector<int>));
SimTK_TEST(sizeof(Array_<int,unsigned char>) < sizeof(std::vector<int>));
SimTK_TEST(sizeof(Array_<int,short>) < sizeof(std::vector<int>));
SimTK_TEST(sizeof(Array_<int,unsigned short>) < sizeof(std::vector<int>));
// Since an int is smaller than a pointer here we will do better than
// any 3-pointer implementation. And we shouldn't be worse than normal
// for long longs.
if (Is64BitPlatform) {
SimTK_TEST(sizeof(Array_<int,int>) < sizeof(std::vector<int>));
SimTK_TEST(sizeof(Array_<int,unsigned>) < sizeof(std::vector<int>));
SimTK_TEST(sizeof(Array_<int,long long>) <= sizeof(std::vector<int>));
SimTK_TEST(sizeof(Array_<int,unsigned long long>) <= sizeof(std::vector<int>));
}
// We don't know if long will be 32 or 64 bit on any given 64 bit
// implementation (it is 32 bits for MSVC and 64 for gcc). But it is
// always 32 bits on a 32 bit implementation so we shouldn't be doing
// any worse here.
SimTK_TEST(sizeof(Array_<int,long>) <= sizeof(std::vector<int>));
// Check that packing is working right.
// ints and larger are treated the same for 32 vs 64. (longs are
// wobblers though so we don't check here)
SimTK_TEST(sizeof(Array_<int>::packed_size_type)==sizeof(int));
SimTK_TEST(sizeof(Array_<int,int>::packed_size_type)==sizeof(int));
SimTK_TEST(sizeof(Array_<int,unsigned int>::packed_size_type)==sizeof(int));
SimTK_TEST(sizeof(Array_<int,long long>::packed_size_type)==sizeof(long long));
SimTK_TEST(sizeof(Array_<int,unsigned long long>::packed_size_type)==sizeof(long long));
if (Is64BitPlatform) {
// Small types are packed into an int on 64 bit platform.
SimTK_TEST(sizeof(Array_<int,bool>::packed_size_type)==sizeof(int));
SimTK_TEST(sizeof(Array_<int,char>::packed_size_type)==sizeof(int));
SimTK_TEST(sizeof(Array_<int,signed char>::packed_size_type)==sizeof(int));
SimTK_TEST(sizeof(Array_<int,unsigned char>::packed_size_type)==sizeof(int));
SimTK_TEST(sizeof(Array_<int,short>::packed_size_type)==sizeof(int));
SimTK_TEST(sizeof(Array_<int,unsigned short>::packed_size_type)==sizeof(int));
} else {
// Small types are packed into a short on 32 bit platform.
SimTK_TEST(sizeof(Array_<int,bool>::packed_size_type)==sizeof(short));
SimTK_TEST(sizeof(Array_<int,char>::packed_size_type)==sizeof(short));
SimTK_TEST(sizeof(Array_<int,signed char>::packed_size_type)==sizeof(short));
SimTK_TEST(sizeof(Array_<int,unsigned char>::packed_size_type)==sizeof(short));
SimTK_TEST(sizeof(Array_<int,short>::packed_size_type)==sizeof(short));
SimTK_TEST(sizeof(Array_<int,unsigned short>::packed_size_type)==sizeof(short));
}
// Now we'll bravely insist that we know how these should be packed.
if (Is64BitPlatform) {
SimTK_TEST(sizeof(Array_<int>)==16);
SimTK_TEST(sizeof(Array_<int,bool>)==16);
SimTK_TEST(sizeof(Array_<int,char>)==16);
SimTK_TEST(sizeof(Array_<int,signed char>)==16);
SimTK_TEST(sizeof(Array_<int,unsigned char>)==16);
SimTK_TEST(sizeof(Array_<int,short>)==16);
SimTK_TEST(sizeof(Array_<int,unsigned short>)==16);
SimTK_TEST(sizeof(Array_<int,int>)==16);
SimTK_TEST(sizeof(Array_<int,unsigned>)==16);
SimTK_TEST(sizeof(Array_<int,long>)<=24);
SimTK_TEST(sizeof(Array_<int,unsigned long>)<=24);
SimTK_TEST(sizeof(Array_<int,long long>)==24);
SimTK_TEST(sizeof(Array_<int,unsigned long long>)==24);
} else { // 32 bit platform
SimTK_TEST(sizeof(Array_<int>)==12);
SimTK_TEST(sizeof(Array_<int,bool>)==8);
SimTK_TEST(sizeof(Array_<int,char>)==8);
SimTK_TEST(sizeof(Array_<int,signed char>)==8);
SimTK_TEST(sizeof(Array_<int,unsigned char>)==8);
SimTK_TEST(sizeof(Array_<int,short>)==8);
SimTK_TEST(sizeof(Array_<int,unsigned short>)==8);
SimTK_TEST(sizeof(Array_<int,int>)==12);
SimTK_TEST(sizeof(Array_<int,unsigned>)==12);
SimTK_TEST(sizeof(Array_<int,long>)<=12);
SimTK_TEST(sizeof(Array_<int,unsigned long>)<=12);
// These don't make sense on a 32 bit platform, but they work. The
// size will be 20 or 24 depending on how the compiler aligns the
// 8-byte integers after the pointer.
SimTK_TEST(sizeof(Array_<int,long long>)<=24);
SimTK_TEST(sizeof(Array_<int,unsigned long long>)<=24);
}
}
// Create a local array and return it along with the original data location.
// With move construction the caller should end up with our local data without
// having to copy it.
static std::pair<Array_<double,char>, double*> returnByValue(double d) {
Array_<double,char> local{1,2,3,4,5.5};
local.push_back(d);
double* localData = local.data();
return {std::move(local),localData};
}
void testMoveConstructionAndAssignment() {
Array_<double> ad1{1,2,3.5,4};
const double* p1 = ad1.data();
Array_<double> ad2{.01,.02};
const double* p2 = ad2.data();
Array_<double> ad3(ad1); // copy construction
const double* p3 = ad3.data();
SimTK_TEST(p3 != p2);
ad3 = std::move(ad1); // move assignment
SimTK_TEST(ad3.data() == p1 && ad1.data() == p3);
Array_<double> ad4(std::move(ad2)); // move construction
SimTK_TEST(ad4.data()==p2 && ad2.empty());
auto returned = returnByValue(3.25); // construction
SimTK_TEST(returned.first == std::vector<double>({1,2,3,4,5.5,3.25}));
SimTK_TEST(returned.first.data() == returned.second);
returned = returnByValue(-1); // assignment
SimTK_TEST(returned.first == std::vector<double>({1,2,3,4,5.5,-1}));
SimTK_TEST(returned.first.data() == returned.second);
// std::unique_ptr has only move construction so this won't compile if
// Array_ requires copy construction
Array_<std::unique_ptr<double>> aud;
aud.push_back(std::unique_ptr<double>(new double(5.125)));
aud.push_back(std::unique_ptr<double>(new double(3.5)));
aud.push_back(std::unique_ptr<double>(new double(-2.25)));
SimTK_TEST(aud.size()==3);
SimTK_TEST(*aud[0]==5.125 && *aud[1]==3.5 && *aud[2]==-2.25);
aud.emplace_back(new double(123.));
SimTK_TEST(aud.size()==4 && *aud[3]==123.);
aud.emplace(&aud[2], new double(100));
SimTK_TEST(aud.size()==5 && *aud[2]==100. && *aud[3]==-2.25);
}
template <class T>
static void takeAnArray(const Array_<T>& arr) {
}
// Array_<T> has a non-explicit constructor that accepts an
// std::initializer_list<T> which should provide implicit conversion from an
// initializer list to an Array_ and allow initializer_list<T2> as long as
// T(T2) works (the compiler takes care of that while building the initializer
// list).
void testInitializerList() {
Array_<double> ad1{}; // Should call default constructor
SimTK_TEST(ad1.empty());
Array_<double> ad2{3}; // Should be 1-element initializer list
SimTK_TEST(ad2.size()==1 && ad2.front()==3);
Array_<double> ad3(3); // Should be a 3-element uninitialized list
SimTK_TEST(ad3.size()==3);
Array_<double> ad4 = {1,2,2.5,.125}; // initlist construction
SimTK_TEST(ad4 == std::vector<double>({1,2,2.5,.125}));
ad4 = {2,4,5}; // implicit conversion, then move
SimTK_TEST(ad4 == std::vector<double>({2.,4.,5.}));
takeAnArray<int>({2,3,4}); // implicit conversion to Array_<int>
takeAnArray<double>({1.2,3,4}); // implicit conversion to Array_<double>
}
namespace {
void argConversion(const Array_<TestIx>& arg) {
// try passing this a convertible type
}
void argConversion(const std::vector<TestIx>& arg) {
// try passing this a convertible type
}
// This is implicitly convertible to TextIx.
class SubTestIx : public TestIx {
public: explicit SubTestIx(int ix) : TestIx(ix) {}
};
}
// Should be able to copy or assign arrays with different element types
// provided that the source type is implicitly convertible to the
// destination type, but should fail even if there is an explicit
// conversion.
void testTypeMismatch() {
Array_<TestIx> txarray(2, TestIx(3));
Array_<SubTestIx> stxarray(2, SubTestIx(4));
Array_<SmallIx> sxarray(2, SmallIx(1));
TestIx tx; SmallIx sx;
// tx = sx; // should fail to compile
tx = TestIx(sx); // allowed
txarray = stxarray; // should work
SimTK_TEST(txarray == Array_<TestIx>(2, TestIx(4)));
// txarray = sxarray; // should fail to compile
//argConversion(sxarray); // should fail to compile
argConversion(stxarray); // should work
}
// For comparison of Array_ with std::vector.
// std::vector is more strict.
void testTypeMismatchStdVector() {
std::vector<TestIx> txarray(2,TestIx(3));
std::vector<SubTestIx> stxarray(2,SubTestIx(4));
std::vector<SmallIx> sxarray(2,SmallIx(1));
TestIx tx; SmallIx sx;
// tx = sx; // should fail to compile
tx = TestIx(sx); // allowed
//txarray = stxarray; // <-- fails despite implicit conversion
// txarray = sxarray; // should fail to compile
//argConversion(sxarray); // should fail to compile
//argConversion(stxarray); //<-- fails despite implicit conversion
}
int main() {
SimTK_START_TEST("TestArray");
SimTK_SUBTEST(testTypeMismatch);
SimTK_SUBTEST(testInitializerList);
SimTK_SUBTEST(testMoveConstructionAndAssignment);
SimTK_SUBTEST(testInsert);
SimTK_SUBTEST(testArrayViewAssignment);
SimTK_SUBTEST(testInputIterator);
SimTK_SUBTEST(testNiceTypeName);
SimTK_SUBTEST(testMemoryFootprint);
SimTK_SUBTEST(testConstruction);
SimTK_SUBTEST(testConversion);
SimTK_SUBTEST(testBoolIndex);
SimTK_SUBTEST(testNonRandomIterator);
SimTK_SUBTEST(testSpeedStdVector);
SimTK_SUBTEST(testSpeedSimTKArray);
SimTK_END_TEST();
}
|