File: TestArray.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 72,876 kB
  • sloc: cpp: 248,828; ansic: 18,240; sh: 29; makefile: 24
file content (1015 lines) | stat: -rw-r--r-- 40,222 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
/* -------------------------------------------------------------------------- *
 *                       Simbody(tm): SimTKcommon                             *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2010-15 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

/*
 * These are regression tests for the SimTK::Array_<T,X> class.
 */

#include "SimTKcommon.h"
#include "SimTKcommon/Testing.h"

#include <vector>
#include <set>
#include <sstream>
#include <iterator>
#include <iostream>
#include <utility>
#include <memory>
using std::cout;
using std::endl;
using std::cin;


using namespace SimTK;

// Output an std::vector<T>
template <class T>
std::ostream& operator<<(std::ostream& o, std::vector<T>& v) {
    o << '<';
    if (!v.empty()) {
        o << v.front();
        for (unsigned i=1; i < v.size(); ++i)
            o << ' ' << v[i];
    }
    return o << '>';
}

//// Input an Array_<T>
//template <class T, class X> inline std::istream&
//operator>>(std::istream& i, Array_<T,X>& a) {
//    if (a.isOwner()) {
//        a.clear();
//        while(!i.eof()) {
//            a.push_back(); // default construct new element
//            i >> a.back(); // input last element
//        }
//    } else { // non-owner
//        typedef typename Array_<T,X>::size_type size_type;
//        for (size_type e(0); e < a.size() && !i.eof(); ++e)
//            i >> a[e];
//    }
//    return i;
//} 
//template <class T, class X> inline std::istream&
//operator>>(std::istream& i, ArrayView_<T,X>& a) 
//{   return i >> (Array_<T,X>&)a; }

template <class T>
class OtherArray_ : public Array_<T> {
public:
    typedef typename Array_<T>::size_type size_type;

    OtherArray_() : Array_<T>() {}
    OtherArray_(size_type n, const T& v) : Array_<T>(n,v) {}
};

SimTK_DEFINE_UNIQUE_INDEX_TYPE(TestIx);

// This index type has a max size of 4 for testing out-of-space
// checks.
class SmallIx {
public:
    SmallIx() : ix(0xff) {}
    explicit SmallIx(unsigned char i) : ix(i) {}

    SmallIx& operator++() 
    {   assert(ix<max_size()); ++ix; return *this;}
    SmallIx operator++(int) 
    {   assert(ix<max_size()); const SmallIx x=*this; ++ix; return x;}
    SmallIx& operator--() 
    {   assert(ix>0); --ix; return *this;}
    SmallIx operator--(int) 
    {   assert(ix>0); const SmallIx x=*this; ++ix; return x;}

    // These are required for any class to be used an index type.
    operator              unsigned char() const {return ix;}
    typedef unsigned char size_type;
    typedef signed char   difference_type;
    static size_type      max_size() {return 4;}
private:
    unsigned char ix;
};

namespace SimTK {
template <> struct NiceTypeName<SmallIx> {
    static const char* name() {return "SmallIx";}
    static const std::string& namestr() 
    {   static const std::string ns(name()); return ns; }
    static const std::string& xmlstr() {return namestr();}
};
}

class Counter {
public:
    Counter() : count(0) {}
    Counter& operator=(int i) {count=i; return *this;}
    Counter& operator++() {++count; return *this;}
    Counter operator++(int) {const Counter c=*this; ++count; return c;}
    Counter& reset() {count=0; return *this;}
    operator int() const {return count;}
private:
    mutable int count;
};
inline std::ostream&
operator<<(std::ostream& o, const Counter& c) {
    return o << (int)c;
} 

// This class is a T but augmented with counters that track the number
// of calls to constructors, assignment, and the destructor.
template <class T>
struct Count {
    Count() {++defCtor;}
    Count(const Count& c) : val(c.val) {++copyCtor;}
    Count& operator=(const Count& c) {val=c.val; ++copyAssign; return *this;}
    ~Count() {++dtor;}

    // Conversion from T.
    Count(const T& t) : val(t) {++initCtor;}
    // Assign from T.
    Count& operator=(const T& t) {val=t; ++initAssign; return *this;}


    bool operator==(const Count& other) const {return val==other.val;}
    bool operator!=(const Count& other) const {return val!=other.val;}

    static void dumpCounts(const char* msg) {
        cout << msg << ":";
        cout << " defCtor=" << Count<int>::defCtor;
        cout << " initCtor=" << Count<int>::initCtor;
        cout << " copyCtor=" << Count<int>::copyCtor;
        cout << " initAssign=" << Count<int>::initAssign;
        cout << " copyAssign=" << Count<int>::copyAssign;
        cout << " dtor=" << Count<int>::dtor;
        cout << endl;
    }

    static bool isReset() 
    {   return !(defCtor||initCtor||copyCtor||initAssign||copyAssign||dtor); }

    T val;

    static void reset() {defCtor=initCtor=copyCtor=initAssign=copyAssign=dtor=0;}
    static Counter defCtor;
    static Counter initCtor;
    static Counter copyCtor;
    static Counter initAssign;
    static Counter copyAssign;
    static Counter dtor;
};
template <class T> inline std::ostream&
operator<<(std::ostream& o, const Count<T>& c) {
    return o << c.val;
} 
template <class T> Counter Count<T>::defCtor;
template <class T> Counter Count<T>::initCtor;
template <class T> Counter Count<T>::copyCtor;
template <class T> Counter Count<T>::initAssign;
template <class T> Counter Count<T>::copyAssign;
template <class T> Counter Count<T>::dtor;

typedef std::set<float>::const_iterator inputIt; // not a random access iterator

// Instantiate the whole class to check for compilation problems.
namespace SimTK {
template class Array_<int>;
template class Array_<std::string, unsigned char>;

// Instantiate templatized methods

// Constructors.
template Array_<float,int>::Array_(const float*,const float*);


// Gcc 4.8.2 complains that these two instantiations are ambiguous, and 
// clang 3.4 dies with an internal error. cl has no problem with them. It is
// hard to determine who is right so I'll just include this for cl for now.
#ifdef _MSC_VER
    template Array_<float,int>::Array_(const Array_<float,int>&);
    template Array_<float,int>&
    Array_<float,int>::operator=(const Array_<float,int>&);
#endif

// Assignment.
template void 
Array_<float,int>::assign(const float*,const float*);
template void
Array_<double,int>::assign(const inputIt&, const inputIt&);
template Array_<double,int>& 
Array_<double,int>::operator=(const std::vector<float>&);



// Insertion
template float*
Array_<float,int>::insert(float*, const float*, const float*);
template float*
Array_<float,short>::insert(float*, const inputIt&, const inputIt&);

// Comparison
template bool operator==(const ArrayViewConst_<float,int>&, 
                         const ArrayViewConst_<float,unsigned>&);
};

void testConstruction() {
    const int data[] = {5,3,-2,27,9};
    const char uchar[] = {'f','i','t','z'};
    Array_<int> nothing;
    Array_<int> def(5);
    Array_<int> intWithInt(data, data+5);
    Array_<char> charWithChar(uchar, uchar+4);
    Array_<int>  intWithChar(uchar, uchar+4);
    Array_<char>  charWithInt(data, data+5);
    cout << "nothing=" << nothing << endl;
    cout << "def=" << def << endl;
    cout << "intWithInt=" << intWithInt << endl;
    cout << "charWithChar=" << charWithChar << endl;
    cout << "intWithChar=" << intWithChar << endl;
    cout << "charWithInt=" << charWithInt << endl;

    Array_< Count<int> > cint(data, data+5);
    Count<int>::dumpCounts("cint(data,data+5)");
    Count<int>::reset();

    const Count<int> counts[] = {3,4,5};
    Count<int>::reset();
    Array_< Count<int> > ccnt(counts, counts+3);
    Count<int>::dumpCounts("ccnt(counts,counts+3)");
    Count<int>::reset();

    Array_< Count<int> > cint2(cint);
    Count<int>::dumpCounts("cint2(cint)");
    Count<int>::reset();

    cint2 = ccnt;
    Count<int>::dumpCounts("cint2=ccnt");
    Count<int>::reset();
    cout << "cint2=" << cint2 << endl;

    Array_<int,SmallIx> ismall0;
    cout << "default constructed Array_<int> begin()=" << ismall0.begin()
         << " end()=" << ismall0.end() 
         << " capacity()=" << (int)ismall0.capacity() 
         << endl;

    std::vector<int> ivec0;
    cout << "default constructed std::vector<int>" 
         << " capacity()=" << ivec0.capacity() 
         << endl;

    Array_<int,SmallIx> ismall(3);
    Array_<int,SmallIx> imaxsz(data, data+4);
    cout << "ismall0=" << ismall0 << endl;
    cout << "ismall=" << ismall << endl;
    cout << "imaxsz=" << imaxsz << endl;

    new(ismall.raw_push_back()) int(27);
    cout << "ismall after raw_push_back():" << ismall << endl;

    SimTK_TEST_MUST_THROW_DEBUG(imaxsz.push_back()); // already full

    // Check null assignments.
    ismall = ismall0; // src is null
    ismall0 = imaxsz; // dest was null
    ismall = Array_<int,SmallIx>(); // both null

    cout << "sizeof(Array_<int,bool>)=" << sizeof(Array_<int,bool>) << endl;
    cout << "sizeof(Array_<int,char>)=" << sizeof(Array_<int,unsigned char>) << endl;
    cout << "sizeof(Array_<int,short>)=" << sizeof(Array_<int,unsigned short>) << endl;
    cout << "sizeof(Array_<int>)=" << sizeof(Array_<int>) << endl;
    cout << "sizeof(std::vector<int>)=" << sizeof(std::vector<int>) << endl;
    cout << "sizeof(Array_<int,long long>)=" << sizeof(Array_<int,long long>) << endl;

    Array_<String, TestIx> strings(6, "woohoo");
    cout << "strings=" << strings << endl;
    strings.push_back("last");
    for (int i=0; i<5; ++i) {
        strings.insert(strings.end(), 2, "ins" + String(i));
        cout << strings.size() << ":" << strings.capacity() 
                               << ":" << strings << endl;
    }
    cout << "strings=" << strings << endl;

    Array_<String, TestIx>::reverse_iterator p = strings.rbegin();
    while (p != strings.rend())
        cout << " " << *p++;
    cout << endl;

    const int ownerData[] = {7, 77, 777, 7777, 77777};
    std::vector<int> owner(ownerData, ownerData+5);
    std::vector<unsigned> unowner(owner.begin(), owner.end());
    Array_<int> shared; shared.shareData(&owner[1], &owner[4]);
    cout << "vector before=" << owner << endl;
    cout << "shared before=" << shared << endl;
    shared[2] = 29;
    cout << "shared after=" << shared << endl;
    cout << "vector after=" << owner << endl;
    cout << "shared(1,2)=" << shared(1,2) << endl;

    Array_<int> copyOfOwner(owner);
    cout << "copyOfOwner=" << copyOfOwner << endl;
    Array_<unsigned short,char> weirdCopy(owner);
    cout << "weirdCopy=" << weirdCopy << endl;
    copyOfOwner = unowner;
    cout << "copyOfOwner=unowner=" << copyOfOwner << endl;

    Array_<unsigned> shareOfUnowner(unowner, DontCopy());
    cout << "shareOfUnowner=" << shareOfUnowner << endl;

    shareOfUnowner(1,3) = Array_<unsigned>(3,88);
    cout << "shareOfUnowner=" << shareOfUnowner << endl;

    OtherArray_<int> oa(5, -4);
    cout << "oa=" << oa << endl;
}

static void toArray(const Array_<int>& a) {
    cout << "toArray=     "  << a  << "  &a[0]="  << &a[0] << endl;
}
static void toArrayView(const ArrayView_<int>& av) {
    cout << "toArrayView= "  << av  << " &av[0]="  << &av[0] << endl;
}
static void toArrayViewConst(const ArrayViewConst_<int>& ca) {
    cout << "toArrayViewConst="  << ca  << " &ca[0]="  << &ca[0] << endl;
}
void testConversion() {
    const int p[] = {1,2,3,4,5,6};
    std::vector<int> v(p,p+6);
    cout << "v=" << v << " &v[0]=" << &v[0] << endl;
    Array_<int> a(v);
    ArrayView_<int> av(v);
    ArrayViewConst_<int> ca(v);
    cout << "a= "  << a  << "  &a[0]="  << &a[0] << endl;
    cout << "av=" << av << " &av[0]=" << &av[0] << endl;
    cout << "ca=" << ca << " &ca[0]=" << &ca[0] << endl;

    toArray(ArrayView_<int>(v)); 
    toArrayView(v); 
    toArrayViewConst(v);
}

// ArrayView assignment can't change the size of the target ArrayView,
// and the semantics are elementwise assignment, not destruct-then-copy-
// construct as for resizeable Array (or std::vector) assignment.
void testArrayViewAssignment() {
    const int data[5] = {10, 100, -23, 4, -99};
    Array_<int> adata(data, data+5);    // copies of original data
    std::vector<int> vdata(data, data+5);

    Count<int>::reset();
    Array_< Count<int> > acnt(data, data+5);
    SimTK_TEST(!(  Count<int>::defCtor   ||Count<int>::copyCtor
                 ||Count<int>::copyAssign||Count<int>::dtor));
    SimTK_TEST(Count<int>::initCtor == 5);

    Count<int>::reset();
    acnt = adata; // clear() then construct from int
    SimTK_TEST(!(  Count<int>::defCtor   ||Count<int>::copyCtor
                 ||Count<int>::copyAssign));
    SimTK_TEST(Count<int>::dtor==5 && Count<int>::initCtor==5);

    Count<int>::reset();
    Array_< Count<int> > acopy(3); // default constructed
    SimTK_TEST(Count<int>::defCtor == 3);
    acopy = acnt; // destruct 3, copy construct 5
    SimTK_TEST(Count<int>::dtor==3 && Count<int>::copyCtor==5);

    Count<int>::reset();
    // this is an initialization, not an assignment
    ArrayView_< Count<int> > avcnt = acnt(1,2); // shares 2nd & 3rd elts
    SimTK_TEST(Count<int>::isReset()); // nothing should have happened
    SimTK_TEST(avcnt.size()==2);
    SimTK_TEST(avcnt[0]==acnt[1]&&avcnt[1]==acnt[2]);
    SimTK_TEST(&avcnt[0]==&acnt[1]&& &avcnt[1]==&acnt[2]);

    // This assignment should fail because the source has too many elements.
    SimTK_TEST_MUST_THROW(avcnt = adata);
    // This one should succeed, with 2 calls to Count<int>::op=(int).
    Count<int>::reset();
    avcnt.assign(adata.begin(), adata.begin()+2);
    SimTK_TEST(!(Count<int>::defCtor||Count<int>::copyCtor
                 ||Count<int>::copyAssign));
    SimTK_TEST(Count<int>::initAssign == 2);

    // This assignment should fail because of overlap between source and
    // destination.
    SimTK_TEST_MUST_THROW(avcnt = acnt(0,2));
    // But this succeeds because no overlap.
    Count<int>::reset();
    avcnt = acnt(3,2); // sets acnt(1,2)=acnt(3,2) with 2 copy assigns
    SimTK_TEST(!(Count<int>::copyCtor||Count<int>::dtor));
    SimTK_TEST(Count<int>::copyAssign == 2);
    //was: int data[5] = {10, 100, -23, 4, -99};
    int modified[5] = {10, 4, -99, 4, -99}; // should now be
    SimTK_TEST(avcnt[0]==4&&avcnt[1]==-99);
    SimTK_TEST(acnt == Array_<int>(modified, modified+5));

    // Check behavior of assign(first,last1) for input, forward, and
    // random access iterators.
    int someSpace[5] = {123, 1, 12, -9, 14};
    ArrayView_<int> avSpace(someSpace, someSpace+5);
    std::vector<int> aVec(avSpace.begin(), avSpace.end()); // copy
    std::set<int> aSet(avSpace.begin(), avSpace.end()); // copy & sort
    SimTK_TEST(&avSpace[0] == someSpace); //must be sharing space
    // Test fill first.
    avSpace = 19; SimTK_TEST(avSpace==Array_<int>(5, 19));
    avSpace.fill(-3); SimTK_TEST(avSpace==Array_<int>(5, -3));
    SimTK_TEST_MUST_THROW_DEBUG(avSpace.assign(12, 999));
    avSpace.assign(5,999); SimTK_TEST(avSpace==Array_<int>(5,999));
    // Assign from pointers
    avSpace.assign(data, data+5); SimTK_TEST(avSpace==vdata);
    avSpace = 999;
    // Assign from random_access_iterators
    avSpace.assign(vdata.begin(),vdata.end());SimTK_TEST(avSpace==vdata);
    avSpace = 999;
    // Assign from bidirectional_interator
    avSpace.assign(aSet.begin(), aSet.end());
    SimTK_TEST(avSpace==std::vector<int>(aSet.begin(),aSet.end()));

    SimTK_TEST_MUST_THROW(avSpace.assign(data, data+3));
    SimTK_TEST_MUST_THROW(avSpace.assign(vdata.begin(), vdata.begin()+3));
    std::set<int>::iterator sp = aSet.begin(); ++sp; ++sp;
    SimTK_TEST_MUST_THROW(avSpace.assign(aSet.begin(), sp));

    //TODO: test input iterators, and source too big problems
}

void testInsert() {
    const int data1[3] = {7, -2, 3};
    const int data2[4] = {101, 121, -111, 321};
    int wdata[3] = {99, 9999, 999}; // writable

    Array_<int> a(data2,data2+4); // copy the data
    SimTK_TEST(&a[0] != data2);
    ArrayViewConst_<int> avc(data2, data2+4); // share the data
    SimTK_TEST(&avc[1] == data2+1);

    Array_<int> aw(wdata, wdata+3, DontCopy()); // shared
    SimTK_TEST(&aw[0] == wdata);

    // Can't insert into non-owner.
    SimTK_TEST_MUST_THROW(aw.insert(aw.begin(), avc.begin(), avc.end()));
    // Unless we're inserting zero elements; that's allowed.
    aw.insert(&aw[1], avc.begin(), avc.begin());

    Array_<int> ac(data1, data1+3);
    std::vector<int> vc(data1, data1+3);
    ac.insert(&ac[1], &a[1], &a[1]+2);
    vc.insert(vc.begin()+1, &a[1], &a[1]+2);
    SimTK_TEST(ac.size()==5);
    SimTK_TEST(ac == vc); // 7, 121, -111, -2, 3

    // insert vc onto beginning and end of ac
    ac.insert(ac.begin(), vc.begin(), vc.end());
    ac.insert(ac.end(), vc.begin(), vc.end());
    SimTK_TEST(ac.size()==15);
    SimTK_TEST(ac(0,5)==vc && ac(5,5)==vc && ac(10,5)==vc);

    // Shrink ac back down to 5 again.
    ac.erase(ac.begin()+2, ac.begin()+12);
    SimTK_TEST(ac == vc);
    SimTK_TEST(ac.allocated() >= 15);
    ac.shrink_to_fit();
    SimTK_TEST(ac.allocated() < 15);
    SimTK_TEST(ac == vc); // make sure we didn't lose the data

    // Now try some null insertions
    Array_<int> null;
    ac.insert(ac.begin(), null.begin(), null.end());
    ac.insert(ac.begin()+2, null.begin(), null.end());
    ac.insert(ac.end(), null.begin(), null.end());
    ac.insert(ac.begin(), 0, 929);
    ac.insert(ac.begin()+2, 0, 929);
    ac.insert(ac.end(), 0, 929);
    SimTK_TEST(ac == vc);

    ArrayView_<int> null2;
    null.insert(null.begin(), null2.begin(), null2.end());
    SimTK_TEST(null.empty() && null2.empty());

    // How about inserting into a null array?
    null.insert(null.begin(), 3, 987);
    SimTK_TEST(null == std::vector<int>(3,987));
    null.deallocate(); // back to null
    SimTK_TEST(null.data()==0 && null.size()==0 && null.allocated()==0);

    null.insert(null.begin(), ac.begin(), ac.end());
    SimTK_TEST(null == vc);
    null.deallocate();

    // Fill in a bunch of 1000's in the middle, erase the beginning and
    // end, and make sure we see just the 1000's.
    ac.insert(ac.begin()+2, 99, 1000); 
    ac.erase(ac.begin(), ac.begin()+2);
    ac.erase(ac.end()-3, ac.end());
    SimTK_TEST(ac == Array_<int>(99,1000));

}

// A bool index type is more or less useless in real life but was handy for 
// catching obscure implementation bugs having to do with index_type vs. 
// size_type.
void testBoolIndex() {
    SimTK_TEST((Array_<int,long>().empty()));
    SimTK_TEST(!(Array_<int,long>(1L,99).empty()));
    SimTK_TEST((Array_<int,long>(1L,99)[0] == 99));

    Array_<std::string, bool> wisdom(2);
    SimTK_TEST(wisdom[true] == ""); SimTK_TEST(wisdom[false] == "");
    wisdom[true]  = "this too shall pass";
    wisdom[false] = "don't worry it's not loaded";
    SimTK_TEST(wisdom.size() == 2);
    SimTK_TEST(wisdom.max_size() == 2);
    SimTK_TEST(wisdom.capacity() >= 2);
    SimTK_TEST(wisdom.allocated() == wisdom.capacity());
    SimTK_TEST(wisdom.data() != 0);
    SimTK_TEST(wisdom.data() == wisdom.cdata());
    SimTK_TEST(wisdom.begin() == wisdom.data());
    SimTK_TEST(wisdom.cbegin() == wisdom.cdata());
    SimTK_TEST(wisdom.end() == wisdom.begin()+2);
    SimTK_TEST(wisdom.cend() == wisdom.cbegin()+2);

    SimTK_TEST(wisdom[false] == "don't worry it's not loaded");
    SimTK_TEST(wisdom[true] == "this too shall pass");
    SimTK_TEST(wisdom.at(false) == "don't worry it's not loaded");
    SimTK_TEST(wisdom.at(true) == "this too shall pass");

    cout << "wisdom=" << wisdom << endl;
    cout << "wisdom(false,1)=" << wisdom(false,1) << endl;
    cout << "wisdom(true,1)=" << wisdom(true,1) << endl;
    cout << "wisdom(true,0)=" << wisdom(true,0) << endl;

    // Subarrays are fixed size; can't assign a 1-element vector to
    // a 2 element subarray.
    SimTK_TEST_MUST_THROW_DEBUG(
        wisdom(false,2) = std::vector<const char*>(1,"whatever"));

    const std::vector<const char*> vrel(2,"it's all relative");
    wisdom(false,2) = vrel;
    cout << "wisdom=" << wisdom << endl;

    // Test all the comparison operators Array vs. std::vector.
    SimTK_TEST(wisdom == vrel); SimTK_TEST(vrel == wisdom);
    SimTK_TEST(wisdom <= vrel); SimTK_TEST(vrel <= wisdom);
    SimTK_TEST(wisdom >= vrel); SimTK_TEST(vrel >= wisdom);
    SimTK_TEST(wisdom(false,1) < vrel);
    SimTK_TEST(wisdom(true,1) < vrel);
    SimTK_TEST(wisdom(0,0) < vrel);
    SimTK_TEST(wisdom(true,1) < vrel);
    SimTK_TEST(wisdom(false,1) != vrel);
    SimTK_TEST(wisdom != std::vector<const char*>(2,"it's all absolute"));
    wisdom[true] = "z comes after i";
    SimTK_TEST(wisdom > vrel); SimTK_TEST(vrel < wisdom);


    SimTK_TEST_MUST_THROW_DEBUG(wisdom(true,2));
    SimTK_TEST_MUST_THROW_DEBUG(wisdom.push_back("more brilliance"));
}

// It should be possible to assign to an Array_ from an std::set or std::map
// even though you can't subtract their bidirectional_iterators.
void testNonRandomIterator() {
    const int someInts[] = {30,40,10,20,30,7,5};
    std::set<int> iset(someInts, someInts+7);
    std::vector<int> sortUniq(iset.begin(), iset.end()); // the right answer

    Array_<int> iarr(iset.begin(), iset.end());
    iarr.assign(iset.begin(), iset.end()); // must increment to count
    SimTK_TEST(iarr == sortUniq);

    Array_<int> iarr2(sortUniq.begin(), sortUniq.end());
    iarr2.assign(sortUniq.begin(), sortUniq.end()); // can subtract iterators
    SimTK_TEST(iarr2 == sortUniq);
    iarr2.assign(iarr.begin(), iarr.end()); // can subtract pointers
    SimTK_TEST(iarr2 == sortUniq);

    // The standard requires this to match the constructor that creates
    // n copies of an initial value -- it must NOT match the templatized
    // InputIterator form because these are integral types.
    Array_<int> dummy1((char)3, 'A'); // 3*65
    SimTK_TEST(dummy1 == Array_<int>(3, (int)'A'));
    Array_<int> dummy2(4U, 129U);     // 4*129
    SimTK_TEST(dummy2 == Array_<int>(4, 129));

    // This should use the constant-time std::swap specialization that is 
    // provided in the Array.h header file.
    std::swap(dummy1, dummy2);
    SimTK_TEST(dummy2 == Array_<int>(3, (int)'A'));
    SimTK_TEST(dummy1 == Array_<int>(4, 129));

    // assign() and insert() should behave like the constructor.
    dummy1.assign((char)2, 'B');
    dummy1.insert(dummy1.begin()+1, (char)3, 'C');
    const int d1answer[] = {(int)'B',(int)'C',(int)'C',(int)'C',(int)'B'};
    SimTK_TEST((dummy1 == Array_<int,unsigned short>(d1answer, d1answer+5)));

    // Test fill().
    dummy1.fill(7);
    SimTK_TEST((dummy1 == Array_<int>(5, 7))); // i.e., 5 7's


    // This is too much data and should be detectable for any forward iterator.
    typedef Array_<int,SmallIx> AType;
    SimTK_TEST_MUST_THROW_DEBUG(
        AType small(iset.begin(), iset.end())); // bidirectional
    SimTK_TEST_MUST_THROW_DEBUG(
        AType small(sortUniq.begin(), sortUniq.end())); // random access
    SimTK_TEST_MUST_THROW_DEBUG(
        AType small(iarr.begin(), iarr.end())); // pointer

}

// Input iterators require special handling in the implementation because
// it can't be determined for them how many elements are in a range
// [first,last1) because to increment an iterator is to consume it. This is
// the only case where a bulk constructor, insert(), or assign() must be
// done with multiple space reallocations (basically like a series of 
// one-element push_back() calls).
void testInputIterator() {
    const int answerData[]={10,12,-14,5,203,-232,1,2,3,4};
    const Array_<int,char> answer(answerData,answerData+10);
    const Array_<int,short> smallAnswer(answerData+4, answerData+8);
    std::istringstream inp1("10 12 -14 5 203 -232 1 2 3 4");
    std::istringstream inp2("10 12 -14 5 203 -232 1 2 3 4");
    std::istringstream smallInp("203 -232 1 2"); // fits in SmallIx
    typedef std::istream_iterator<int> Iter;
    Iter p1(inp1), p2(inp2), psmall(smallInp);
    Array_<int> readin(p1, Iter()); // like begin(), end()
    SimTK_TEST(readin == answer);

    // This shouldn't work because there are too many elements.
    typedef Array_<int,SmallIx> SmallArray;
    SimTK_TEST_MUST_THROW_DEBUG(SmallArray tooSmall(p2, Iter()));

    // This should be OK.
    SmallArray okSmall(psmall, Iter());
    SimTK_TEST(okSmall == smallAnswer);

    Array_<float> farray;
    const float farray_ans1[] = {-1.5f,3e4f,.125f,11,4e-7f};
    std::istringstream fin1("[ -1.5, 3e4 ,.125 , 11,4e-7 ]");
    fin1 >> farray;
    SimTK_TEST(!fin1.fail());
    SimTK_TEST(farray == std::vector<float>(farray_ans1, farray_ans1+5));

    // Replace middle three elements.
    ArrayView_<float> fmid(farray(1,3));
    const float farray_ans2[] = {-1.5f,910,920,9200,4e-7f};
    std::istringstream fin2(" 9.1e2 9.2e2 9.2e3   ignore me");
    fin2 >> fmid;
    SimTK_TEST(!fin2.fail());
    SimTK_TEST(farray == Array_<float>(farray_ans2, farray_ans2+5));

    std::istringstream fin3(" 9.1e2 9.2e2"); fin3 >> fmid;
    SimTK_TEST(fin3.fail()); // wrong size

    std::istringstream fin4(" 9.1e2 9.2e2,9.2e3 ");  fin4 >> fmid;
    SimTK_TEST(fin4.fail()); // inconsistent use of commas

    std::istringstream fin5("(9.1e2,9.2e2,9.2e3 ");  fin5 >> fmid;
    SimTK_TEST(fin5.fail()); // missing paren

    std::istringstream fin6("{9.1e2,9.2e2,9.2e3]");  fin6 >> fmid;
    SimTK_TEST(fin6.fail()); // mismatched delimiters

    std::istringstream fin7("{9.1e2,9.2e2,9.2e3,}");  fin7 >> fmid;
    SimTK_TEST(fin7.fail()); // trailing comma

    std::istringstream fin8(" 9.1e2,9.2e2,9.2e3,");  fin8 >> fmid;
    SimTK_TEST(!fin8.fail()); // trailing comma OK here because we got our fill
}

// Reduce the loop count by 50X in Debug.
static const int Outer = 500000
#ifndef NDEBUG
          / 50
#endif
                ;

static const int Inner = 1000;
void testSpeedStdVector() {
    std::vector<int> v;
    using Index = std::vector<int>::size_type;
    v.reserve(Inner);

    for (int i=0; i < Outer; ++i) {
        v.clear();
        for (int i=0; i < Inner; ++i)
            v.push_back(i);
    }

    int sum;
    for (int i=0; i < Outer; ++i) {
        sum = i;
        for (Index i=0; i < v.size(); ++i)
            sum += v[i];
    }
    cout << "std::vector sum=" << sum << endl;
}

void testSpeedSimTKArray() {
    Array_<int> v; 
    using Index = Array_<int>::size_type;
    v.reserve(Inner);

    for (int i=0; i < Outer; ++i) {
        v.clear();
        for (int i=0; i < Inner; ++i)
            v.push_back(i);
    }

    int sum;
    for (int i=0; i < Outer; ++i) {
        sum = i;
        for (Index i=0; i < v.size(); ++i)
            sum += v[i];
    }
    cout << "Array sum=" << sum << endl;
}

void testNiceTypeName() {
    cout << "Is64BitPlatform=" << NiceTypeName<Is64BitPlatformType>::name() << endl;
    cout << "packed_size_type<bool>=" 
        << NiceTypeName<ArrayIndexPackType<bool>::packed_size_type>::name() << endl;
    cout << "packed_size_type<char>=" 
        << NiceTypeName<ArrayIndexPackType<char>::packed_size_type>::name() << endl;
    cout << "packed_size_type<signed char>=" 
        << NiceTypeName<ArrayIndexPackType<signed char>::packed_size_type>::name() << endl;
    cout << "packed_size_type<unsigned char>=" 
        << NiceTypeName<ArrayIndexPackType<unsigned char>::packed_size_type>::name() << endl;
    cout << "packed_size_type<short>=" 
        << NiceTypeName<ArrayIndexPackType<short>::packed_size_type>::name() << endl;
    cout << "packed_size_type<unsigned short>=" 
        << NiceTypeName<ArrayIndexPackType<unsigned short>::packed_size_type>::name() << endl;
    cout << "packed_size_type<int>=" 
        << NiceTypeName<ArrayIndexPackType<int>::packed_size_type>::name() << endl;
    cout << "packed_size_type<unsigned>=" 
        << NiceTypeName<ArrayIndexPackType<unsigned>::packed_size_type>::name() << endl;
    cout << "packed_size_type<long>=" 
        << NiceTypeName<ArrayIndexPackType<long>::packed_size_type>::name() << endl;
    cout << "packed_size_type<unsigned long long>=" 
        << NiceTypeName<ArrayIndexPackType<unsigned long long>::packed_size_type>::name() << endl;
    cout << "Array_<String,char> using name(): " 
         << NiceTypeName< Array_<String,char> >::name() << endl;
    // Check demangling/canonicalizing.
    cout << "Array_<String,char> using namestr(): " 
         << NiceTypeName< Array_<String,char> >::namestr() << endl;
    // Check removing angle brackets for XML.
    cout << "Array_<String,char> using xmlstr(): " 
         << NiceTypeName< Array_<String,char> >::xmlstr() << endl;
}

// The Array_ class is supposed to make better use of memory than does
// std::vector when the index type is smaller than a pointer.
void testMemoryFootprint() {
    // These conditions should apply on any 32- or 64-bit platform.
    SimTK_TEST(sizeof(Array_<int>)      <= sizeof(std::vector<int>));
    SimTK_TEST(sizeof(Array_<int,bool>) <  sizeof(std::vector<int>));
    SimTK_TEST(sizeof(Array_<int,char>) <  sizeof(std::vector<int>));
    SimTK_TEST(sizeof(Array_<int,signed char>)    <  sizeof(std::vector<int>));
    SimTK_TEST(sizeof(Array_<int,unsigned char>)  <  sizeof(std::vector<int>));
    SimTK_TEST(sizeof(Array_<int,short>)          <  sizeof(std::vector<int>));
    SimTK_TEST(sizeof(Array_<int,unsigned short>) <  sizeof(std::vector<int>));

    // Since an int is smaller than a pointer here we will do better than
    // any 3-pointer implementation. And we shouldn't be worse than normal
    // for long longs.
    if (Is64BitPlatform) {
        SimTK_TEST(sizeof(Array_<int,int>)       <  sizeof(std::vector<int>));
        SimTK_TEST(sizeof(Array_<int,unsigned>)  <  sizeof(std::vector<int>));
        SimTK_TEST(sizeof(Array_<int,long long>) <=  sizeof(std::vector<int>));
        SimTK_TEST(sizeof(Array_<int,unsigned long long>) <=  sizeof(std::vector<int>));
    }

    // We don't know if long will be 32 or 64 bit on any given 64 bit
    // implementation (it is 32 bits for MSVC and 64 for gcc). But it is
    // always 32 bits on a 32 bit implementation so we shouldn't be doing
    // any worse here.
    SimTK_TEST(sizeof(Array_<int,long>) <= sizeof(std::vector<int>));

    // Check that packing is working right.
    // ints and larger are treated the same for 32 vs 64. (longs are 
    // wobblers though so we don't check here)
    SimTK_TEST(sizeof(Array_<int>::packed_size_type)==sizeof(int));
    SimTK_TEST(sizeof(Array_<int,int>::packed_size_type)==sizeof(int));
    SimTK_TEST(sizeof(Array_<int,unsigned int>::packed_size_type)==sizeof(int));
    SimTK_TEST(sizeof(Array_<int,long long>::packed_size_type)==sizeof(long long));
    SimTK_TEST(sizeof(Array_<int,unsigned long long>::packed_size_type)==sizeof(long long));
    if (Is64BitPlatform) {
        // Small types are packed into an int on 64 bit platform.
        SimTK_TEST(sizeof(Array_<int,bool>::packed_size_type)==sizeof(int));
        SimTK_TEST(sizeof(Array_<int,char>::packed_size_type)==sizeof(int));
        SimTK_TEST(sizeof(Array_<int,signed char>::packed_size_type)==sizeof(int));
        SimTK_TEST(sizeof(Array_<int,unsigned char>::packed_size_type)==sizeof(int));
        SimTK_TEST(sizeof(Array_<int,short>::packed_size_type)==sizeof(int));
        SimTK_TEST(sizeof(Array_<int,unsigned short>::packed_size_type)==sizeof(int));
    } else { 
        // Small types are packed into a short on 32 bit platform.
        SimTK_TEST(sizeof(Array_<int,bool>::packed_size_type)==sizeof(short));
        SimTK_TEST(sizeof(Array_<int,char>::packed_size_type)==sizeof(short));
        SimTK_TEST(sizeof(Array_<int,signed char>::packed_size_type)==sizeof(short));
        SimTK_TEST(sizeof(Array_<int,unsigned char>::packed_size_type)==sizeof(short));
        SimTK_TEST(sizeof(Array_<int,short>::packed_size_type)==sizeof(short));
        SimTK_TEST(sizeof(Array_<int,unsigned short>::packed_size_type)==sizeof(short));
    }

    // Now we'll bravely insist that we know how these should be packed.
    if (Is64BitPlatform) {
        SimTK_TEST(sizeof(Array_<int>)==16);
        SimTK_TEST(sizeof(Array_<int,bool>)==16);
        SimTK_TEST(sizeof(Array_<int,char>)==16);
        SimTK_TEST(sizeof(Array_<int,signed char>)==16);
        SimTK_TEST(sizeof(Array_<int,unsigned char>)==16);
        SimTK_TEST(sizeof(Array_<int,short>)==16);
        SimTK_TEST(sizeof(Array_<int,unsigned short>)==16);
        SimTK_TEST(sizeof(Array_<int,int>)==16);
        SimTK_TEST(sizeof(Array_<int,unsigned>)==16);
        SimTK_TEST(sizeof(Array_<int,long>)<=24);
        SimTK_TEST(sizeof(Array_<int,unsigned long>)<=24);
        SimTK_TEST(sizeof(Array_<int,long long>)==24);
        SimTK_TEST(sizeof(Array_<int,unsigned long long>)==24);
    } else { // 32 bit platform
        SimTK_TEST(sizeof(Array_<int>)==12);
        SimTK_TEST(sizeof(Array_<int,bool>)==8);
        SimTK_TEST(sizeof(Array_<int,char>)==8);
        SimTK_TEST(sizeof(Array_<int,signed char>)==8);
        SimTK_TEST(sizeof(Array_<int,unsigned char>)==8);
        SimTK_TEST(sizeof(Array_<int,short>)==8);
        SimTK_TEST(sizeof(Array_<int,unsigned short>)==8);
        SimTK_TEST(sizeof(Array_<int,int>)==12);
        SimTK_TEST(sizeof(Array_<int,unsigned>)==12);
        SimTK_TEST(sizeof(Array_<int,long>)<=12);
        SimTK_TEST(sizeof(Array_<int,unsigned long>)<=12);
        // These don't make sense on a 32 bit platform, but they work. The
        // size will be 20 or 24 depending on how the compiler aligns the
        // 8-byte integers after the pointer.
        SimTK_TEST(sizeof(Array_<int,long long>)<=24);
        SimTK_TEST(sizeof(Array_<int,unsigned long long>)<=24);
    }
}

// Create a local array and return it along with the original data location.
// With move construction the caller should end up with our local data without
// having to copy it.
static std::pair<Array_<double,char>, double*> returnByValue(double d) {
    Array_<double,char> local{1,2,3,4,5.5};
    local.push_back(d);
    double* localData = local.data();
    return {std::move(local),localData};
}

void testMoveConstructionAndAssignment() {
    Array_<double> ad1{1,2,3.5,4};
    const double* p1 = ad1.data();
    Array_<double> ad2{.01,.02};
    const double* p2 = ad2.data();

    Array_<double> ad3(ad1); // copy construction
    const double* p3 = ad3.data();
    SimTK_TEST(p3 != p2);
    ad3 = std::move(ad1);    // move assignment
    SimTK_TEST(ad3.data() == p1 && ad1.data() == p3);

    Array_<double> ad4(std::move(ad2)); // move construction
    SimTK_TEST(ad4.data()==p2 && ad2.empty());

    auto returned = returnByValue(3.25); // construction
    SimTK_TEST(returned.first == std::vector<double>({1,2,3,4,5.5,3.25}));
    SimTK_TEST(returned.first.data() == returned.second);

    returned = returnByValue(-1);       // assignment
    SimTK_TEST(returned.first == std::vector<double>({1,2,3,4,5.5,-1}));
    SimTK_TEST(returned.first.data() == returned.second);

    // std::unique_ptr has only move construction so this won't compile if
    // Array_ requires copy construction
    Array_<std::unique_ptr<double>> aud;
    aud.push_back(std::unique_ptr<double>(new double(5.125)));
    aud.push_back(std::unique_ptr<double>(new double(3.5)));
    aud.push_back(std::unique_ptr<double>(new double(-2.25)));
    SimTK_TEST(aud.size()==3);
    SimTK_TEST(*aud[0]==5.125 && *aud[1]==3.5 && *aud[2]==-2.25);

    aud.emplace_back(new double(123.));
    SimTK_TEST(aud.size()==4 && *aud[3]==123.);

    aud.emplace(&aud[2], new double(100));
    SimTK_TEST(aud.size()==5 && *aud[2]==100. && *aud[3]==-2.25);
}

template <class T>
static void takeAnArray(const Array_<T>& arr) {
}

// Array_<T> has a non-explicit constructor that accepts an 
// std::initializer_list<T> which should provide implicit conversion from an
// initializer list to an Array_ and allow initializer_list<T2> as long as
// T(T2) works (the compiler takes care of that while building the initializer
// list).
void testInitializerList() {
    Array_<double> ad1{}; // Should call default constructor
    SimTK_TEST(ad1.empty());
    Array_<double> ad2{3}; // Should be 1-element initializer list
    SimTK_TEST(ad2.size()==1 && ad2.front()==3);
    Array_<double> ad3(3); // Should be a 3-element uninitialized list
    SimTK_TEST(ad3.size()==3);

    Array_<double> ad4 = {1,2,2.5,.125}; // initlist construction
    SimTK_TEST(ad4 == std::vector<double>({1,2,2.5,.125}));
    ad4 = {2,4,5};                   // implicit conversion, then move
    SimTK_TEST(ad4 == std::vector<double>({2.,4.,5.}));
    takeAnArray<int>({2,3,4}); // implicit conversion to Array_<int>
    takeAnArray<double>({1.2,3,4}); // implicit conversion to Array_<double>
}

namespace {
void argConversion(const Array_<TestIx>& arg) {
    // try passing this a convertible type
}
void argConversion(const std::vector<TestIx>& arg) {
    // try passing this a convertible type
}

// This is implicitly convertible to TextIx.
class SubTestIx : public TestIx {
public: explicit SubTestIx(int ix) : TestIx(ix) {}
};
}

// Should be able to copy or assign arrays with different element types
// provided that the source type is implicitly convertible to the 
// destination type, but should fail even if there is an explicit
// conversion.
void testTypeMismatch() {
    Array_<TestIx> txarray(2, TestIx(3));
    Array_<SubTestIx> stxarray(2, SubTestIx(4));
    Array_<SmallIx> sxarray(2, SmallIx(1));
    TestIx tx; SmallIx sx;
    // tx = sx;  // should fail to compile
    tx = TestIx(sx); // allowed
    txarray = stxarray; // should work
    SimTK_TEST(txarray == Array_<TestIx>(2, TestIx(4)));
    // txarray = sxarray; // should fail to compile

    //argConversion(sxarray); // should fail to compile
    argConversion(stxarray); // should work
}

// For comparison of Array_ with std::vector. 
// std::vector is more strict.
void testTypeMismatchStdVector() {
    std::vector<TestIx> txarray(2,TestIx(3));
    std::vector<SubTestIx> stxarray(2,SubTestIx(4));
    std::vector<SmallIx> sxarray(2,SmallIx(1));
    TestIx tx; SmallIx sx;
    // tx = sx;  // should fail to compile
    tx = TestIx(sx); // allowed
    //txarray = stxarray; // <-- fails despite implicit conversion
    // txarray = sxarray; // should fail to compile

    //argConversion(sxarray); // should fail to compile
    //argConversion(stxarray); //<-- fails despite implicit conversion
}

int main() {

    SimTK_START_TEST("TestArray");

        SimTK_SUBTEST(testTypeMismatch);
        SimTK_SUBTEST(testInitializerList);
        SimTK_SUBTEST(testMoveConstructionAndAssignment);
        SimTK_SUBTEST(testInsert);
        SimTK_SUBTEST(testArrayViewAssignment);
        SimTK_SUBTEST(testInputIterator);
        SimTK_SUBTEST(testNiceTypeName);
        SimTK_SUBTEST(testMemoryFootprint);
        SimTK_SUBTEST(testConstruction);
        SimTK_SUBTEST(testConversion);
        SimTK_SUBTEST(testBoolIndex);
        SimTK_SUBTEST(testNonRandomIterator);
        SimTK_SUBTEST(testSpeedStdVector);
        SimTK_SUBTEST(testSpeedSimTKArray);

    SimTK_END_TEST();
}