File: TestBigMatrix.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 72,876 kB
  • sloc: cpp: 248,828; ansic: 18,240; sh: 29; makefile: 24
file content (312 lines) | stat: -rw-r--r-- 12,525 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/* -------------------------------------------------------------------------- *
 *                       Simbody(tm): SimTKcommon                             *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2007-15 Stanford University and the Authors.        *
 * Authors: Peter Eastman                                                     *
 * Contributors: Michael Sherman                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

#include "SimTKcommon.h"
#include "SimTKcommon/Testing.h"

#include <iostream>

#define ASSERT(cond) {SimTK_ASSERT_ALWAYS(cond, "Assertion failed");}

using std::cout;
using std::endl;
using namespace SimTK;
using namespace std;

template <class T>
static bool isNaN(const T& v) { return v.isNaN(); }

template<> bool isNaN(const double& v) {return SimTK::isNaN(v);}
template<> bool isNaN(const float& v) {return SimTK::isNaN(v);}
template<> bool isNaN(const negator<double>& v) {return SimTK::isNaN(v);}
template<> bool isNaN(const negator<float>& v) {return SimTK::isNaN(v);}

template <class T, int N>
void testVector(const T& value, const Vec<N>& expected) {
    ASSERT(value.size() == N);
    for (int i = 0; i < N; ++i) {
        if (isNaN(expected[i])) {
            ASSERT(isNaN(value[i]));
        }
        else {
            ASSERT(value[i] == expected[i]);
        }
    }
}

template <class T, int M, int N>
void testMatrix(const T& value, const Mat<M, N, typename T::E>& expected) {
    ASSERT(value.nrow() == M);
    ASSERT(value.ncol() == N);
    for (int i = 0; i < M; ++i)
        for (int j = 0; j < N; ++j) {
            if (isNaN(expected(i, j))) {
                ASSERT(isNaN(value(i, j)));
            }
            else {
                ASSERT(value(i, j) == expected(i, j));
            }
        }
}


void testMatDivision() {
    Mat22 m1( 4, 0,
              0, 1);
    Mat22 oom1( .25, 0,
                  0, 1 );
    Mat<2,2,Mat22> m2(Mat22( 2, 0,
                             0, 3 ));
    Mat<2,2,Mat22> oom2(Mat22( .5, 0,
                               0, OneThird));

    SimTK_TEST_EQ(1/m1, oom1); 
    SimTK_TEST_EQ(1/m2, oom2);
}

static void f(const Vec3& v) {
    cout << "f(v)=" << v << endl;
}

void testTransform() {
    Transform X;
    Rotation R;
    Mat33 m;
    Vec3 v;
    Vec<3,Real,6> vs(1,2,3); // funny stride
    Vec<4,Real,9> vs2(1,2,3,0); // funny stride
    f(vs);

    SimTK_TEST(X*vs == -(X*-vs));
    SimTK_TEST(X*vs2 == -(X*-vs2));
    
    SimTK_TEST(R*vs == -(R*-vs));
    SimTK_TEST(~vs*R == -(-~vs*R));
}

// Make sure we can instantiate all of these successfully.
namespace SimTK {
template class MatrixBase<double>;
template class VectorBase<double>;
template class RowVectorBase<double>;
template class MatrixView_<double>;
template class VectorView_<double>;
template class RowVectorView_<double>;
template class Matrix_<double>;
template class Vector_<double>;
template class RowVector_<double>;

template class MatrixBase<negator<double> >;
template class VectorBase<negator<double> >;
template class RowVectorBase<negator<double> >;
template class MatrixView_<negator<double> >;
template class VectorView_<negator<double> >;
template class RowVectorView_<negator<double> >;
template class Matrix_<negator<double> >;
template class Vector_<negator<double> >;
template class RowVector_<negator<double> >;
}

int main() {
    try {
        // Currently, this only tests a small number of operations that were recently added.
        // It should be expanded into a more comprehensive test of the big matrix classes.

        // Test matrix elementwise initialization.
        Matrix minit(2,3, 5.25);
        testMatrix<Matrix,2,3>(minit, Mat23(5.25, 5.25, 5.25,
                                            5.25, 5.25, 5.25));

        const Vec2 v12(1,2);
        Matrix_<Vec2> mvinit(3,2, v12);
        testMatrix<Matrix_<Vec2>,3,2>(mvinit, Mat<3,2,Vec2>(v12,v12,
                                                            v12,v12,
                                                            v12,v12));

        testMatDivision();
        testTransform();
        
        Matrix m(Mat22(1, 2, 3, 4));
        testMatrix<Matrix,2,2>(m, Mat22(1, 2, 3, 4));
        m += 3;
        testMatrix<Matrix,2,2>(m, Mat22(4, 2, 3, 7));
        m -= 3;
        testMatrix<Matrix,2,2>(m, Mat22(1, 2, 3, 4));
        testMatrix<Matrix,2,2>(m-1, Mat22(0, 2, 3, 3));
        testMatrix<Matrix,2,2>(m+1, Mat22(2, 2, 3, 5));
        testMatrix<Matrix,2,2>(1-m, Mat22(0, -2, -3, -3));
        testMatrix<Matrix,2,2>(1+m, Mat22(2, 2, 3, 5));
        Vector v(Vec3(1, 2, 3));
        testVector(v, Vec3(1, 2, 3));
        v += 2;
        testVector(v, Vec3(3, 4, 5));
        v -= 2;
        testVector(v, Vec3(1, 2, 3));
        testVector(v-1, Vec3(0, 1, 2));
        testVector(v+1, Vec3(2, 3, 4));
        testVector(1-v, Vec3(0, -1, -2));
        testVector(1+v, Vec3(2, 3, 4));
        RowVector r(Row3(1, 2, 3));
        testVector(r, Vec3(1, 2, 3));
        r += 2;
        testVector(r, Vec3(3, 4, 5));
        r -= 2;
        testVector(r, Vec3(1, 2, 3));
        testVector(r-1, Vec3(0, 1, 2));
        testVector(r+1, Vec3(2, 3, 4));
        testVector(1-r, Vec3(0, -1, -2));
        testVector(1+r, Vec3(2, 3, 4));

        Matrix mm( Mat23( 1, 2, 3,
                          7, 8, 9 ) );
        testMatrix<Matrix,2,3>(mm, Mat23(1,2,3,7,8,9));

            // Test copying a column or row of a Matrix into
            // a Vector or RowVector.

        // Test assignment constructor
        Vector vv = mm(1); testVector(vv, Vec2(2,8));
        // Test copy assignment
        vv = mm(0); testVector(vv, Vec2(1,7));
        // Test assignment constructor
        RowVector rr = mm[1]; testVector(rr, Vec3(7,8,9));
        // Test copy assignment
        rr = mm[0]; testVector(rr, Vec3(1,2,3));

            // Test copying a row into a Vector and column into RowVector.

        // Test assignment (copy) constructor
        RowVector rrr = ~mm(1); 
        testVector(rrr, Vec2(2,8));
        // Test copy assignment
        rrr = ~mm(0); testVector(rrr, Vec2(1,7));

        // Test assignment (copy) constructor
        Vector vvv = ~mm[1]; 
        testVector(vvv, Vec3(7,8,9));
        // Test copy assignment
        vvv = ~mm[0]; testVector(vvv, Vec3(1,2,3));

            // Test creating a Matrix that shares space with an Array

        // Easy case: sizeof(element) == sizeof(scalar)
        Array_<Real> rarrmat;
        rarrmat.push_back(1.1); rarrmat.push_back(2.2); // col(0)
        rarrmat.push_back(3.3); rarrmat.push_back(4.4); // col(1)
        Matrix rmatrix(2,2, 2/*lda*/, &rarrmat[0]);
        testMatrix<Matrix,2,2>(rmatrix, Mat22(1.1, 3.3,
                                              2.2, 4.4));

        // Here sizeof(element) != sizeof(scalar)
        Array_<SpatialVec> svarrmat;                                 
        svarrmat.push_back(SpatialVec(Vec3(1,2,3),Vec3(4,5,6)));
        svarrmat.push_back(SpatialVec(Vec3(1.1,2.1,3.1),Vec3(4.1,5.1,6.1)));
        svarrmat.push_back(SpatialVec(Vec3(1.2,2.2,3.2),Vec3(4.2,5.2,6.2)));
        svarrmat.push_back(SpatialVec(Vec3(1.3,2.3,3.3),Vec3(4.3,5.3,6.3)));
        const int szInScalars = sizeof(SpatialVec)/sizeof(Real);
        Matrix_<SpatialVec> svmatrix(2,2, 2*szInScalars/*lda*/, 
                                    (Real*)&svarrmat[0]); 
        Matrix_<SpatialVec> svmatans(2,2);
        svmatans(0,0) = svarrmat[0]; svmatans(1,0)=svarrmat[1];
        svmatans(0,1) = svarrmat[2]; svmatans(1,1)=svarrmat[3];
        SimTK_TEST_EQ_TOL(svmatrix, svmatans, 1e-16); // should be exact

            // Test creating a Vector that shares space with an Array

        // Easy case: sizeof(element) == sizeof(scalar)
        Array_<Real> rarray;
        rarray.push_back(1.1); rarray.push_back(2.2); rarray.push_back(3.3);
        Vector rvector(3, &rarray[0], true);
        testVector(rarray, Vec3(1.1,2.2,3.3));

        // Here sizeof(element) != sizeof(scalar)
        Array_<SpatialVec> svarray;
        svarray.push_back(SpatialVec(Vec3(1,2,3),Vec3(4,5,6)));
        svarray.push_back(SpatialVec(Vec3(1.1,2.1,3.1),Vec3(4.1,5.1,6.1)));
        svarray.push_back(SpatialVec(Vec3(1.2,2.2,3.2),Vec3(4.2,5.2,6.2)));
        Vector_<SpatialVec> svvector(3, (Real*)&svarray[0], true);
        Vector_<SpatialVec> svanswer(3); 
        svanswer[0]=svarray[0];svanswer[1]=svarray[1];svanswer[2]=svarray[2];
        SimTK_TEST_EQ_TOL(svvector, svanswer, 1e-16); // should be exact

        // Create 0-width slices of Matrix that has general shape,
        // vector shape, and row vector shape. This caused trouble before
        // because vector and row shapes use 1d matrix storage; when making
        // a 0-width slice of those they have to go back to general shape.
        // Note that you are allowed to index off the bottom and right if
        // you make a zero-width slice.

        Matrix general(3, 4);
        MatrixView gslice1 = general(1,1,0,2); // middle
        SimTK_TEST(gslice1.nrow()==0 && gslice1.ncol()==2);
        MatrixView gslice2 = general(1,1,1,0); // middle
        SimTK_TEST(gslice2.nrow()==1 && gslice2.ncol()==0);
        MatrixView gslice3 = general(0,0,3,0); // left side
        SimTK_TEST(gslice3.nrow()==3 && gslice3.ncol()==0);
        MatrixView gslice4 = general(0,0,0,4); // top
        SimTK_TEST(gslice4.nrow()==0 && gslice4.ncol()==4);
        MatrixView gslice5 = general(3,0,0,4); // off the bottom
        SimTK_TEST(gslice5.nrow()==0 && gslice5.ncol()==4);
        MatrixView gslice6 = general(0,4,3,0); // off the right side
        SimTK_TEST(gslice6.nrow()==3 && gslice6.ncol()==0);
        MatrixView gslice7 = general(0,0,0,0);
        SimTK_TEST(gslice7.nrow()==0 && gslice7.ncol()==0);
        MatrixView gslice8 = general(1,2,0,0);
        SimTK_TEST(gslice8.nrow()==0 && gslice8.ncol()==0);
        MatrixView gslice9 = general(2,3,0,0);
        SimTK_TEST(gslice9.nrow()==0 && gslice9.ncol()==0);

        MatrixView vector = general(0,1,3,1);
        SimTK_TEST(vector.nrow()==3 && vector.ncol()==1);
        MatrixView vslice1 = vector(0,0,3,0);
        SimTK_TEST(vslice1.nrow()==3 && vslice1.ncol()==0);
        MatrixView vslice2 = vector(0,0,0,0);
        SimTK_TEST(vslice2.nrow()==0 && vslice2.ncol()==0);
        MatrixView vslice3 = vector(2,0,1,0);
        SimTK_TEST(vslice3.nrow()==1 && vslice3.ncol()==0);
        MatrixView vslice4 = vector(3,0,0,1); // off the bottom
        SimTK_TEST(vslice4.nrow()==0 && vslice4.ncol()==1);
        MatrixView vslice5 = vector(0,1,3,0); // off the right
        SimTK_TEST(vslice5.nrow()==3 && vslice5.ncol()==0);
        vslice5 = Matrix(3,0);

        // Test RowVector with 0 elements.
        RowVector rv0;
        SimTK_TEST(rv0.size() == 0);
        SimTK_TEST(rv0.nrow() == 1);
        SimTK_TEST(rv0.ncol() == 0);
        SimTK_TEST(rv0.nelt() == 0);

        RowVector rv1(0);
        SimTK_TEST(rv1.size() == 0);
        SimTK_TEST(rv1.nrow() == 1);
        SimTK_TEST(rv1.ncol() == 0);
        SimTK_TEST(rv1.nelt() == 0);

    } catch(const std::exception& e) {
        cout << "exception: " << e.what() << endl;
        return 1;
    }
    cout << "Done" << endl;
    return 0;
}