1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKcommon *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2007-15 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: Michael Sherman *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKcommon.h"
#include "SimTKcommon/Testing.h"
#include <iostream>
#define ASSERT(cond) {SimTK_ASSERT_ALWAYS(cond, "Assertion failed");}
using std::cout;
using std::endl;
using namespace SimTK;
using namespace std;
template <class T>
static bool isNaN(const T& v) { return v.isNaN(); }
template<> bool isNaN(const double& v) {return SimTK::isNaN(v);}
template<> bool isNaN(const float& v) {return SimTK::isNaN(v);}
template<> bool isNaN(const negator<double>& v) {return SimTK::isNaN(v);}
template<> bool isNaN(const negator<float>& v) {return SimTK::isNaN(v);}
template <class T, int N>
void testVector(const T& value, const Vec<N>& expected) {
ASSERT(value.size() == N);
for (int i = 0; i < N; ++i) {
if (isNaN(expected[i])) {
ASSERT(isNaN(value[i]));
}
else {
ASSERT(value[i] == expected[i]);
}
}
}
template <class T, int M, int N>
void testMatrix(const T& value, const Mat<M, N, typename T::E>& expected) {
ASSERT(value.nrow() == M);
ASSERT(value.ncol() == N);
for (int i = 0; i < M; ++i)
for (int j = 0; j < N; ++j) {
if (isNaN(expected(i, j))) {
ASSERT(isNaN(value(i, j)));
}
else {
ASSERT(value(i, j) == expected(i, j));
}
}
}
void testMatDivision() {
Mat22 m1( 4, 0,
0, 1);
Mat22 oom1( .25, 0,
0, 1 );
Mat<2,2,Mat22> m2(Mat22( 2, 0,
0, 3 ));
Mat<2,2,Mat22> oom2(Mat22( .5, 0,
0, OneThird));
SimTK_TEST_EQ(1/m1, oom1);
SimTK_TEST_EQ(1/m2, oom2);
}
static void f(const Vec3& v) {
cout << "f(v)=" << v << endl;
}
void testTransform() {
Transform X;
Rotation R;
Mat33 m;
Vec3 v;
Vec<3,Real,6> vs(1,2,3); // funny stride
Vec<4,Real,9> vs2(1,2,3,0); // funny stride
f(vs);
SimTK_TEST(X*vs == -(X*-vs));
SimTK_TEST(X*vs2 == -(X*-vs2));
SimTK_TEST(R*vs == -(R*-vs));
SimTK_TEST(~vs*R == -(-~vs*R));
}
// Make sure we can instantiate all of these successfully.
namespace SimTK {
template class MatrixBase<double>;
template class VectorBase<double>;
template class RowVectorBase<double>;
template class MatrixView_<double>;
template class VectorView_<double>;
template class RowVectorView_<double>;
template class Matrix_<double>;
template class Vector_<double>;
template class RowVector_<double>;
template class MatrixBase<negator<double> >;
template class VectorBase<negator<double> >;
template class RowVectorBase<negator<double> >;
template class MatrixView_<negator<double> >;
template class VectorView_<negator<double> >;
template class RowVectorView_<negator<double> >;
template class Matrix_<negator<double> >;
template class Vector_<negator<double> >;
template class RowVector_<negator<double> >;
}
int main() {
try {
// Currently, this only tests a small number of operations that were recently added.
// It should be expanded into a more comprehensive test of the big matrix classes.
// Test matrix elementwise initialization.
Matrix minit(2,3, 5.25);
testMatrix<Matrix,2,3>(minit, Mat23(5.25, 5.25, 5.25,
5.25, 5.25, 5.25));
const Vec2 v12(1,2);
Matrix_<Vec2> mvinit(3,2, v12);
testMatrix<Matrix_<Vec2>,3,2>(mvinit, Mat<3,2,Vec2>(v12,v12,
v12,v12,
v12,v12));
testMatDivision();
testTransform();
Matrix m(Mat22(1, 2, 3, 4));
testMatrix<Matrix,2,2>(m, Mat22(1, 2, 3, 4));
m += 3;
testMatrix<Matrix,2,2>(m, Mat22(4, 2, 3, 7));
m -= 3;
testMatrix<Matrix,2,2>(m, Mat22(1, 2, 3, 4));
testMatrix<Matrix,2,2>(m-1, Mat22(0, 2, 3, 3));
testMatrix<Matrix,2,2>(m+1, Mat22(2, 2, 3, 5));
testMatrix<Matrix,2,2>(1-m, Mat22(0, -2, -3, -3));
testMatrix<Matrix,2,2>(1+m, Mat22(2, 2, 3, 5));
Vector v(Vec3(1, 2, 3));
testVector(v, Vec3(1, 2, 3));
v += 2;
testVector(v, Vec3(3, 4, 5));
v -= 2;
testVector(v, Vec3(1, 2, 3));
testVector(v-1, Vec3(0, 1, 2));
testVector(v+1, Vec3(2, 3, 4));
testVector(1-v, Vec3(0, -1, -2));
testVector(1+v, Vec3(2, 3, 4));
RowVector r(Row3(1, 2, 3));
testVector(r, Vec3(1, 2, 3));
r += 2;
testVector(r, Vec3(3, 4, 5));
r -= 2;
testVector(r, Vec3(1, 2, 3));
testVector(r-1, Vec3(0, 1, 2));
testVector(r+1, Vec3(2, 3, 4));
testVector(1-r, Vec3(0, -1, -2));
testVector(1+r, Vec3(2, 3, 4));
Matrix mm( Mat23( 1, 2, 3,
7, 8, 9 ) );
testMatrix<Matrix,2,3>(mm, Mat23(1,2,3,7,8,9));
// Test copying a column or row of a Matrix into
// a Vector or RowVector.
// Test assignment constructor
Vector vv = mm(1); testVector(vv, Vec2(2,8));
// Test copy assignment
vv = mm(0); testVector(vv, Vec2(1,7));
// Test assignment constructor
RowVector rr = mm[1]; testVector(rr, Vec3(7,8,9));
// Test copy assignment
rr = mm[0]; testVector(rr, Vec3(1,2,3));
// Test copying a row into a Vector and column into RowVector.
// Test assignment (copy) constructor
RowVector rrr = ~mm(1);
testVector(rrr, Vec2(2,8));
// Test copy assignment
rrr = ~mm(0); testVector(rrr, Vec2(1,7));
// Test assignment (copy) constructor
Vector vvv = ~mm[1];
testVector(vvv, Vec3(7,8,9));
// Test copy assignment
vvv = ~mm[0]; testVector(vvv, Vec3(1,2,3));
// Test creating a Matrix that shares space with an Array
// Easy case: sizeof(element) == sizeof(scalar)
Array_<Real> rarrmat;
rarrmat.push_back(1.1); rarrmat.push_back(2.2); // col(0)
rarrmat.push_back(3.3); rarrmat.push_back(4.4); // col(1)
Matrix rmatrix(2,2, 2/*lda*/, &rarrmat[0]);
testMatrix<Matrix,2,2>(rmatrix, Mat22(1.1, 3.3,
2.2, 4.4));
// Here sizeof(element) != sizeof(scalar)
Array_<SpatialVec> svarrmat;
svarrmat.push_back(SpatialVec(Vec3(1,2,3),Vec3(4,5,6)));
svarrmat.push_back(SpatialVec(Vec3(1.1,2.1,3.1),Vec3(4.1,5.1,6.1)));
svarrmat.push_back(SpatialVec(Vec3(1.2,2.2,3.2),Vec3(4.2,5.2,6.2)));
svarrmat.push_back(SpatialVec(Vec3(1.3,2.3,3.3),Vec3(4.3,5.3,6.3)));
const int szInScalars = sizeof(SpatialVec)/sizeof(Real);
Matrix_<SpatialVec> svmatrix(2,2, 2*szInScalars/*lda*/,
(Real*)&svarrmat[0]);
Matrix_<SpatialVec> svmatans(2,2);
svmatans(0,0) = svarrmat[0]; svmatans(1,0)=svarrmat[1];
svmatans(0,1) = svarrmat[2]; svmatans(1,1)=svarrmat[3];
SimTK_TEST_EQ_TOL(svmatrix, svmatans, 1e-16); // should be exact
// Test creating a Vector that shares space with an Array
// Easy case: sizeof(element) == sizeof(scalar)
Array_<Real> rarray;
rarray.push_back(1.1); rarray.push_back(2.2); rarray.push_back(3.3);
Vector rvector(3, &rarray[0], true);
testVector(rarray, Vec3(1.1,2.2,3.3));
// Here sizeof(element) != sizeof(scalar)
Array_<SpatialVec> svarray;
svarray.push_back(SpatialVec(Vec3(1,2,3),Vec3(4,5,6)));
svarray.push_back(SpatialVec(Vec3(1.1,2.1,3.1),Vec3(4.1,5.1,6.1)));
svarray.push_back(SpatialVec(Vec3(1.2,2.2,3.2),Vec3(4.2,5.2,6.2)));
Vector_<SpatialVec> svvector(3, (Real*)&svarray[0], true);
Vector_<SpatialVec> svanswer(3);
svanswer[0]=svarray[0];svanswer[1]=svarray[1];svanswer[2]=svarray[2];
SimTK_TEST_EQ_TOL(svvector, svanswer, 1e-16); // should be exact
// Create 0-width slices of Matrix that has general shape,
// vector shape, and row vector shape. This caused trouble before
// because vector and row shapes use 1d matrix storage; when making
// a 0-width slice of those they have to go back to general shape.
// Note that you are allowed to index off the bottom and right if
// you make a zero-width slice.
Matrix general(3, 4);
MatrixView gslice1 = general(1,1,0,2); // middle
SimTK_TEST(gslice1.nrow()==0 && gslice1.ncol()==2);
MatrixView gslice2 = general(1,1,1,0); // middle
SimTK_TEST(gslice2.nrow()==1 && gslice2.ncol()==0);
MatrixView gslice3 = general(0,0,3,0); // left side
SimTK_TEST(gslice3.nrow()==3 && gslice3.ncol()==0);
MatrixView gslice4 = general(0,0,0,4); // top
SimTK_TEST(gslice4.nrow()==0 && gslice4.ncol()==4);
MatrixView gslice5 = general(3,0,0,4); // off the bottom
SimTK_TEST(gslice5.nrow()==0 && gslice5.ncol()==4);
MatrixView gslice6 = general(0,4,3,0); // off the right side
SimTK_TEST(gslice6.nrow()==3 && gslice6.ncol()==0);
MatrixView gslice7 = general(0,0,0,0);
SimTK_TEST(gslice7.nrow()==0 && gslice7.ncol()==0);
MatrixView gslice8 = general(1,2,0,0);
SimTK_TEST(gslice8.nrow()==0 && gslice8.ncol()==0);
MatrixView gslice9 = general(2,3,0,0);
SimTK_TEST(gslice9.nrow()==0 && gslice9.ncol()==0);
MatrixView vector = general(0,1,3,1);
SimTK_TEST(vector.nrow()==3 && vector.ncol()==1);
MatrixView vslice1 = vector(0,0,3,0);
SimTK_TEST(vslice1.nrow()==3 && vslice1.ncol()==0);
MatrixView vslice2 = vector(0,0,0,0);
SimTK_TEST(vslice2.nrow()==0 && vslice2.ncol()==0);
MatrixView vslice3 = vector(2,0,1,0);
SimTK_TEST(vslice3.nrow()==1 && vslice3.ncol()==0);
MatrixView vslice4 = vector(3,0,0,1); // off the bottom
SimTK_TEST(vslice4.nrow()==0 && vslice4.ncol()==1);
MatrixView vslice5 = vector(0,1,3,0); // off the right
SimTK_TEST(vslice5.nrow()==3 && vslice5.ncol()==0);
vslice5 = Matrix(3,0);
// Test RowVector with 0 elements.
RowVector rv0;
SimTK_TEST(rv0.size() == 0);
SimTK_TEST(rv0.nrow() == 1);
SimTK_TEST(rv0.ncol() == 0);
SimTK_TEST(rv0.nelt() == 0);
RowVector rv1(0);
SimTK_TEST(rv1.size() == 0);
SimTK_TEST(rv1.nrow() == 1);
SimTK_TEST(rv1.ncol() == 0);
SimTK_TEST(rv1.nelt() == 0);
} catch(const std::exception& e) {
cout << "exception: " << e.what() << endl;
return 1;
}
cout << "Done" << endl;
return 0;
}
|