1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKcommon *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2008-12 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: Michael Sherman *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
// Note: this file was moved from Simmath to SimTKcommon 20100601; see the
// Simmath repository for earlier history.
#include "SimTKcommon.h"
#include "SimTKcommon/Testing.h"
// We'll use some std::vectors to check interoperability between Array_<T>
// and std::vector<T>.
#include <vector>
using namespace SimTK;
using namespace std;
const Real TOL = 1e-10;
#define ASSERT(cond) {SimTK_ASSERT_ALWAYS(cond, "Assertion failed");}
void assertEqual(Real val1, Real val2, double tol=TOL) {
ASSERT(abs(val1-val2) < tol);
}
template <int N>
void assertEqual(Vec<N> val1, Vec<N> val2, double tol=TOL) {
for (int i = 0; i < N; ++i)
ASSERT(abs(val1[i]-val2[i]) < tol);
}
template <class T>
void assertEqual(Vector_<T> val1, Vector_<T> val2, double tol=TOL) {
ASSERT(val1.size() == val2.size());
for (int i = 0; i < val1.size(); ++i)
assertEqual(val1[i], val2[i], tol);
}
void testConstant() {
Function_<Vec3>::Constant f(Vec3(1, 2, 3), 2);
ASSERT(f.getArgumentSize() == 2);
Vector x(2);
assertEqual(Vec3(1, 2, 3), f.calcValue(x));
Array_<int> derivComponents(1);
const Vec3 df = f.calcDerivative(derivComponents, x);
assertEqual(Vec3(0), df);
}
void testLinear() {
Vector_<Vec3> coeff(3);
coeff[0] = Vec3(1, 2, 3);
coeff[1] = Vec3(4, 3, 2);
coeff[2] = Vec3(-1, -2, -3);
Function_<Vec3>::Linear f(coeff);
ASSERT(f.getArgumentSize() == 2);
assertEqual(Vec3(-1, -2, -3), f.calcValue(Vector(Vec2(0, 0))));
assertEqual(Vec3(0, 0, 0), f.calcValue(Vector(Vec2(1, 0))));
assertEqual(Vec3(-2.5, -2.5, -2.5), f.calcValue(Vector(Vec2(0.5, -0.5))));
std::vector<int> derivComponents(1);
derivComponents[0] = 1;
assertEqual(Vec3(4, 3, 2), f.calcDerivative(derivComponents, Vector(Vec2(1, 0))));
std::vector<int> derivComponents2(2);
assertEqual(Vec3(0, 0, 0), f.calcDerivative(derivComponents2, Vector(Vec2(1, 0))));
}
void testPolynomial() {
Vector_<Vec3> coeff(3);
coeff[0] = Vec3(1, 2, 3);
coeff[1] = Vec3(4, 3, 2);
coeff[2] = Vec3(-1, -2, -3);
Function_<Vec3>::Polynomial f(coeff);
ASSERT(f.getArgumentSize() == 1);
assertEqual(Vec3(-1, -2, -3), f.calcValue(Vector(Vec1(0))));
assertEqual(Vec3(4, 3, 2), f.calcValue(Vector(Vec1(1))));
assertEqual(Vec3(11, 12, 13), f.calcValue(Vector(Vec1(2))));
std::vector<int> derivComponents(1);
assertEqual(Vec3(4, 3, 2), f.calcDerivative(derivComponents, Vector(Vec1(0))));
assertEqual(Vec3(6, 7, 8), f.calcDerivative(derivComponents, Vector(Vec1(1))));
assertEqual(Vec3(8, 11, 14), f.calcDerivative(derivComponents, Vector(Vec1(2))));
std::vector<int> derivComponents2(2);
assertEqual(Vec3(2, 4, 6), f.calcDerivative(derivComponents2, Vector(Vec1(0))));
assertEqual(Vec3(2, 4, 6), f.calcDerivative(derivComponents2, Vector(Vec1(1))));
std::vector<int> derivComponents3(3);
assertEqual(Vec3(0, 0, 0), f.calcDerivative(derivComponents3, Vector(Vec1(1))));
}
void testRealFunction() {
Vector coeff(3);
coeff[0] = 1.0;
coeff[1] = 4.0;
coeff[2] = -1.0;
Function::Linear f(coeff);
ASSERT(f.getArgumentSize() == 2);
assertEqual(-1, f.calcValue(Vector(Vec2(0, 0))));
assertEqual(0, f.calcValue(Vector(Vec2(1, 0))));
assertEqual(-2.5, f.calcValue(Vector(Vec2(0.5, -0.5))));
Array_<int> derivComponents(1);
derivComponents[0] = 1;
assertEqual(4, f.calcDerivative(derivComponents, Vector(Vec2(1, 0))));
Array_<int> derivComponents2(2);
assertEqual(0, f.calcDerivative(derivComponents2, Vector(Vec2(1, 0))));
}
void testSinusoid() {
Real a=11.23, w=1.1, p=Pi/4;
Vector t1(1,.23), t2(1,-3.2), t3(1,14.1);
Function::Sinusoid s1(a,w,p);
SimTK_TEST_EQ(s1.calcValue(Vector(1,0.)), a*std::sin(p));
SimTK_TEST_EQ(s1.calcValue(t1), a*std::sin(w*t1[0]+p));
SimTK_TEST_EQ(s1.calcValue(t2), a*std::sin(w*t2[0]+p));
SimTK_TEST_EQ(s1.calcValue(t3), a*std::sin(w*t3[0]+p));
// Do enough of these to make sure we reach the general forumula.
Array_<int> deriv; // 0th derivative is function
SimTK_TEST_EQ(s1.calcDerivative(deriv, t1), s1.calcValue(t1)); // 0th
deriv.push_back(0); // 1st deriv
SimTK_TEST_EQ(s1.calcDerivative(deriv, t2), a*w*std::cos(w*t2[0]+p));
deriv.push_back(0); // 2nd deriv
SimTK_TEST_EQ(s1.calcDerivative(deriv, t3), -a*w*w*std::sin(w*t3[0]+p));
deriv.push_back(0); // 3rd deriv
SimTK_TEST_EQ(s1.calcDerivative(deriv, t1), -a*w*w*w*std::cos(w*t1[0]+p));
deriv.push_back(0); // 4th deriv
SimTK_TEST_EQ(s1.calcDerivative(deriv, t1), a*w*w*w*w*std::sin(w*t1[0]+p));
deriv.push_back(0); // 5th deriv
SimTK_TEST_EQ(s1.calcDerivative(deriv, t2), a*w*w*w*w*w*std::cos(w*t2[0]+p));
deriv.push_back(0); // 6th deriv
SimTK_TEST_EQ(s1.calcDerivative(deriv, t2), -a*w*w*w*w*w*w*std::sin(w*t2[0]+p));
deriv.push_back(0); // 7th deriv
SimTK_TEST_EQ(s1.calcDerivative(deriv, t2), -a*w*w*w*w*w*w*w*std::cos(w*t2[0]+p));
}
void testStep() {
Function::Step s1(-1,1,0,1); // y in [-1,1] as x in [0,1]
SimTK_TEST(s1.calcValue(Vector(1,Zero)) == -1); // x0 -> y0
SimTK_TEST(s1.calcValue(Vector(1,One)) == 1); // x1 -> y1
SimTK_TEST(s1.calcValue(Vector(1,OneHalf)) == 0); // 1/2 -> (y1+y0)/2
SimTK_TEST(s1.calcValue(Vector(1,Real(-29))) == -1);
SimTK_TEST(s1.calcValue(Vector(1,Real(234.3))) == 1);
// First & second derivs should be zero at either end.
Array_<int> derivOrder1(1);
SimTK_TEST(s1.calcDerivative(derivOrder1, Vector(1,Zero)) == 0);
SimTK_TEST(s1.calcDerivative(derivOrder1, Vector(1,One)) == 0);
SimTK_TEST(s1.calcDerivative(derivOrder1, Vector(1,Real(-29))) == 0);
SimTK_TEST(s1.calcDerivative(derivOrder1, Vector(1,Real(234.3))) == 0);
Array_<int> derivOrder2(2);
SimTK_TEST(s1.calcDerivative(derivOrder2, Vector(1,Zero)) == 0);
SimTK_TEST(s1.calcDerivative(derivOrder2, Vector(1,One)) == 0);
SimTK_TEST(s1.calcDerivative(derivOrder2, Vector(1,Real(-29))) == 0);
SimTK_TEST(s1.calcDerivative(derivOrder2, Vector(1,Real(234.3))) == 0);
Array_<int> derivOrder3(3); // don't know much about 3rd derivative
SimTK_TEST(s1.calcDerivative(derivOrder3, Vector(1,Real(-29))) == 0);
SimTK_TEST(s1.calcDerivative(derivOrder3, Vector(1,Real(234.3))) == 0);
// Try a more general step with x0,x1 reversed also.
// Here y goes from -221.3 to 47.9 as x goes from 1000 down to -333.
const Real y0=-221.3, y1=47.9, x0=1000, x1=-333;
Function::Step s2(y0,y1,x0,x1);
SimTK_TEST(s2.calcValue(Vector(1,x0)) == y0); // x0 -> y0
SimTK_TEST(s2.calcValue(Vector(1,x1)) == y1); // x1 -> y1
SimTK_TEST_EQ(s2.calcValue(Vector(1,(x1+x0)/2)), (y1+y0)/2); // (x1+x0)/2 -> (y1+y0)/2
SimTK_TEST(s2.calcValue(Vector(1,x0+100)) == y0); // note sign
SimTK_TEST(s2.calcValue(Vector(1,x1-100)) == y1);
// Calculate 3rd deriv by differencing 2nd
const Real x = -22.701, dx = 1e-6;
const Real d2m=s2.calcDerivative(derivOrder2, Vector(1, x-dx));
const Real d2p=s2.calcDerivative(derivOrder2, Vector(1, x+dx));
const Real d3approx = (d2p-d2m)/(2*dx); // approx 10 digits
SimTK_TEST_EQ_TOL(s2.calcDerivative(derivOrder3, Vector(1,x)),
d3approx, 1e-8);
// Try interpolating a Vec3
Function_<Vec3>::Step sv(Vec3(1,2,3), Vec3(4,5,6), 0, 1);
SimTK_TEST(sv.calcValue(Vector(1,OneHalf)) == Vec3(2.5,3.5,4.5));
SimTK_TEST(sv.calcDerivative(derivOrder2, Vector(1, -29.3)) == Vec3(0));
}
int main () {
SimTK_START_TEST("TestFunction");
SimTK_SUBTEST(testConstant);
SimTK_SUBTEST(testLinear);
SimTK_SUBTEST(testPolynomial);
SimTK_SUBTEST(testSinusoid);
SimTK_SUBTEST(testRealFunction);
SimTK_SUBTEST(testStep);
SimTK_END_TEST();
}
|