1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKcommon *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2009-12 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKcommon.h"
#include "SimTKcommon/Testing.h"
#include <iostream>
using std::cout;
using std::endl;
using namespace SimTK;
// We use cross product and cross product matrices extensively in shifting
// mass properties around.
void testCrossProduct() {
// These are exactly representable in base 2.
Vec3 w(1.25, 3, -2.5), v(-2.75, 2.125, 5);
Vec<3,float> wf(1.25, 3, -2.5), vf(-2.75, 2.125, 5);
Vec3 wxv = w % v, vxw = v % w;
Vec<3,float> wxvf = wf % vf, vxwf = vf % wf;
SimTK_TEST(wxv == Vec3(20.3125, 0.625, 10.90625));
SimTK_TEST(wxvf == (Vec<3,float>(20.3125, 0.625, 10.90625)));
SimTK_TEST(vxw == -wxv);
SimTK_TEST(vxwf == -wxvf);
// Cross product involving one or more rows returns a row.
SimTK_TEST((~w)%v == ~wxv);
SimTK_TEST(w % ~v == ~wxv);
SimTK_TEST((~w) % (~v) == ~wxv);
SimTK_TEST( crossMat(w) == Mat33( 0, 2.5, 3,
-2.5, 0, -1.25,
-3, 1.25, 0) );
SimTK_TEST( crossMatSq(w) == ~crossMat(w)*crossMat(w) );
const Mat33 full33 = Test::randMat33();
const SymMat33 sym33 = Test::randSymMat33();
const Mat33 fsym33(sym33);
SimTK_TEST(fsym33 == sym33);
SimTK_TEST_EQ(v % full33, Mat33( v%full33(0), v%full33(1), v%full33(2) ));
SimTK_TEST_EQ(v % full33, crossMat(v)*full33);
SimTK_TEST_EQ(v % sym33, Mat33( v%fsym33(0), v%fsym33(1), v%fsym33(2) ));
SimTK_TEST_EQ(v % sym33, crossMat(v)*fsym33);
// m % v == m * crossMat(v) == -~(v % ~m)
SimTK_TEST_EQ(full33 % v, full33 * crossMat(v));
SimTK_TEST_EQ(full33 % v, -~(v % ~full33));
SimTK_TEST_EQ(full33 % v, ~(-v % ~full33));
SimTK_TEST_EQ(sym33 % v, fsym33 * crossMat(v));
SimTK_TEST_EQ(sym33 % v, -~(v % sym33));
SimTK_TEST_EQ(sym33 % v, ~(-v % sym33));
// gratuitous det() test
SimTK_TEST_EQ(det(sym33), det(fsym33));
// 2D
// These are exactly representable in base 2.
Vec2 w2(1.25, 3), v2(-2.75, 2.125);
Vec<2,float> w2f(1.25, 3), v2f(-2.75, 2.125);
Real wxv2 = w2 % v2, vxw2 = v2 % w2;
float wxv2f = w2f % v2f, vxw2f = v2f % w2f;
// 2D cross product is the z component of the 3D cross product where
// the z coordinates of the two vectors are zero (i.e., they lie in the x-y plane).
SimTK_TEST(wxv2 == (Vec3(w2[0],w2[1],0) % Vec3(v2[0],v2[1],0))[2]);
SimTK_TEST(wxv2f == (Vec<3,float>(w2f[0],w2f[1],0) % Vec<3,float>(v2f[0],v2f[1],0))[2]);
SimTK_TEST(vxw2 == -wxv2);
SimTK_TEST(vxw2f == -wxv2f);
// Cross product involving one or more rows returns same result in 2d.
SimTK_TEST((~w2)%v2 == wxv2);
SimTK_TEST(w2 % ~v2 == wxv2);
SimTK_TEST((~w2) % (~v2) == wxv2);
SimTK_TEST( crossMat(w2) == Row2( -w2[1], w2[0] ) );
SimTK_TEST( crossMat(w2)*v2 == w2 % v2 );
const Mat22 full22 = Test::randMat<2,2>();
const SymMat22 sym22 = Test::randSymMat<2>();
const Mat22 fsym22(sym22);
SimTK_TEST(fsym22 == sym22);
/* These don't exist in 2D
SimTK_TEST_EQ(v2 % full22, Row2( v2%full22(0), v2%full22(1) ));
SimTK_TEST_EQ(v2 % full22, crossMat(v2)*full22);
SimTK_TEST_EQ(v2 % sym22, Row2( v2%fsym22(0), v2%fsym22(1) ));
SimTK_TEST_EQ(v2 % sym22, crossMat(v2)*fsym22);
// m % v == m * crossMat(v) == -~(v % ~m)
SimTK_TEST_EQ(full22 % v2, full22 * crossMat(v2));
SimTK_TEST_EQ(full22 % v2, -~(v2 % ~full22));
SimTK_TEST_EQ(full22 % v2, ~(-v2 % ~full22));
SimTK_TEST_EQ(sym22 % v2, fsym22 * crossMat(v2));
SimTK_TEST_EQ(sym22 % v2, -~(v2 % sym22));
SimTK_TEST_EQ(sym22 % v2, ~(-v2 % sym22));
*/
// gratuitous det() test
SimTK_TEST_EQ(det(sym22), det(fsym22));
}
void testInertia() {
const Real mass = std::abs(Test::randReal());
const UnitInertia_<Real> G( Vec3(1,2,2.5), // moments
Vec3(0.1,0.2,0.3) ); // products
const Real Gtrace = 1+2+2.5;
SimTK_TEST(G.trace() == Gtrace); // should be exact because .5 is power of 2
const Inertia_<Real> I = mass*G;
SymMat33 sI = I.asSymMat33();
Mat33 mI = I.toMat33();
SimTK_TEST_EQ( sI, mass*SymMat33(1,
0.1, 2,
0.2, 0.3, 2.5) );
SimTK_TEST(mI.isExactlySymmetric());
SimTK_TEST(mI == Mat33(sI));
SimTK_TEST(sI == SymMat33(mI));
SimTK_TEST_EQ( I.trace(), mass*Gtrace );
// Test Inertia*scalar
const Real s = std::abs(Test::randReal()) + 1;
SimTK_TEST_EQ( (I*s).toMat33(), I.toMat33()*s );
SimTK_TEST_EQ( (s*I).toMat33(), I.toMat33()*s );
SimTK_TEST_EQ( (G*s).toMat33(), G.toMat33()*s );
SimTK_TEST_EQ( (s*G).toMat33(), G.toMat33()*s );
SimTK_TEST_EQ( (I*s).asSymMat33(), I.asSymMat33()*s );
SimTK_TEST_EQ( (s*I).asSymMat33(), I.asSymMat33()*s );
SimTK_TEST_EQ( (G*s).asSymMat33(), G.asSymMat33()*s );
SimTK_TEST_EQ( (s*G).asSymMat33(), G.asSymMat33()*s );
// Test Inertia*vec (I*w)
const Vec3 w = Test::randVec3();
SimTK_TEST_EQ( I*w, I.toMat33()*w );
SimTK_TEST_EQ( G*w, G.toMat33()*w );
SimTK_TEST_EQ( I*w, I.asSymMat33()*w );
SimTK_TEST_EQ( G*w, G.asSymMat33()*w );
// Test inertia rotation
const Rotation R = Test::randRotation();
Inertia_<Real> mIR = Inertia_<Real>(~R*I.toMat33()*R);
SimTK_TEST_EQ(mIR.asSymMat33(), I.reexpress(R).asSymMat33());
SimTK_TEST_EQ(I.asSymMat33(), mIR.reexpress(~R).asSymMat33());
Inertia_<Real> J=I;
J.reexpressInPlace(R);
SimTK_TEST_EQ(J.asSymMat33(), mIR.asSymMat33());
// Test inertia shifting
// Calculate the inertia of a point mass with the same mass
// we used above.
const Vec3 pLoc = Test::randVec3();
const SymMat33 psG = crossMatSq(pLoc); // unit inertia
const SymMat33 psI = mass*psG; // inertia
const UnitInertia_<Real> pG(psG);
const Inertia_<Real> pI(psI);
// Assuming I and G are central, shifting them to pLoc should be
// the same as adding the point inertias above.
SimTK_TEST_EQ( G.shiftFromCentroid(pLoc), G + pG );
SimTK_TEST_EQ( I.shiftFromMassCenter(pLoc, mass), I + pI );
// Now try in place shifts and shifting back.
UnitInertia_<Real> Gshft(G); Gshft.shiftFromCentroidInPlace(pLoc);
Inertia_<Real> Ishft(I); Ishft.shiftFromMassCenterInPlace(pLoc, mass);
SimTK_TEST_EQ(Gshft, G+pG);
SimTK_TEST_EQ(Ishft, I+pI);
SimTK_TEST_EQ(Gshft.shiftToCentroid(pLoc), G);
SimTK_TEST_EQ(Ishft.shiftToMassCenter(pLoc, mass), I);
Gshft.shiftToCentroidInPlace(pLoc);
Ishft.shiftToMassCenterInPlace(pLoc, mass);
SimTK_TEST_EQ(Gshft, G);
SimTK_TEST_EQ(Ishft, I);
// Check that we catch bad inertias in debug mode
#ifndef NDEBUG
Inertia bad1;
SimTK_TEST_MUST_THROW(bad1 = Inertia(1,2,NaN));
SimTK_TEST_MUST_THROW(bad1 = Inertia(1,2,-.000003)); // negative diag
SimTK_TEST_MUST_THROW(bad1 = Inertia(5,1,2)); // triangle inequality violated
// A little slop should be allowed for the triangle inequality.
Real tooMuchSlop = 1e-3;
Real okSlop = SignificantReal;
SimTK_TEST_MUST_THROW(bad1 = Inertia(1, 2+tooMuchSlop, 1));
bad1 = Inertia(1, 2+okSlop, 1);
#endif
}
// Calculate the lower half of vx*F where vx is the cross product matrix
// of v and F is a full 3x3 matrix. This result would normally be a full
// 3x3 but for the uses below we know we're only going to need the diagonal
// and lower triangle so we can save some flops by working this out by hand.
// The method is templatized so that it will work on a transposed matrix
// as efficiently as an untransposed one. (18 flops)
template <class P, int CS, int RS>
static inline SymMat<3,P>
halfCross(const Vec<3,P>& v, const Mat<3,3,P,CS,RS>& F) {
return SymMat<3,P>
( v[1]*F(2,0)-v[2]*F(1,0),
v[2]*F(0,0)-v[0]*F(2,0), v[2]*F(0,1)-v[0]*F(2,1),
v[0]*F(1,0)-v[1]*F(0,0), v[0]*F(1,1)-v[1]*F(0,1), v[0]*F(1,2)-v[1]*F(0,2) );
}
// Calculate the lower half of G*vx where G is a full 3x3 matrix and vx
// is the cross product matrix of v. See comment above for details.
// (18 flops)
template <class P, int CS, int RS>
static inline SymMat<3,P>
halfCross(const Mat<3,3,P,CS,RS>& G, const Vec<3,P>& v) {
return SymMat<3,P>
( v[2]*G(0,1)-v[1]*G(0,2),
v[2]*G(1,1)-v[1]*G(1,2), v[0]*G(1,2)-v[2]*G(1,0),
v[2]*G(2,1)-v[1]*G(2,2), v[0]*G(2,2)-v[2]*G(2,0), v[1]*G(2,0)-v[0]*G(2,1) );
}
// This method computes the lower half of the difference vx*F-G*vx using
// the same methods as above, but done together in order to pull out the
// common v terms. This is 33 flops, down from 42 if you call the two
// methods above and add them.
template <class P, int CS1, int RS1, int CS2, int RS2>
static inline SymMat<3,P>
halfCrossDiff(const Vec<3,P>& v, const Mat<3,3,P,CS1,RS1>& F, const Mat<3,3,P,CS2,RS2>& G) {
return SymMat<3,P>
( v[1]*(F(2,0)+G(0,2)) - v[2]*(F(1,0)+G(0,1)),
v[2]*(F(0,0)-G(1,1)) - v[0]*F(2,0) + v[1]*G(1,2),
v[2]*(F(0,1)+G(1,0)) - v[0]*(F(2,1)+G(1,2)),
v[0]*F(1,0) - v[2]*G(2,1) - v[1]*(F(0,0)-G(2,2)),
v[0]*(F(1,1)-G(2,2)) - v[1]*F(0,1) + v[2]*G(2,0),
v[0]*(F(1,2)+G(2,1)) - v[1]*(F(0,2)+G(2,0)) );
}
void testHalfCross() {
const Vec3 v = Test::randVec3();
const Mat33 F = Test::randMat33();
const Mat33 G = Test::randMat33();
const Mat33 vx = crossMat(v);
const Mat33 vxF = v % F;
const Mat33 Gxv = G % v;
SimTK_TEST_EQ(vxF, vx * F);
SimTK_TEST_EQ(Gxv, G * vx);
const SymMat33 hvxF( vxF(0,0),
vxF(1,0), vxF(1,1),
vxF(2,0), vxF(2,1), vxF(2,2) );
SimTK_TEST_EQ(halfCross(v, F), hvxF);
const SymMat33 hGxv( Gxv(0,0),
Gxv(1,0), Gxv(1,1),
Gxv(2,0), Gxv(2,1), Gxv(2,2) );
SimTK_TEST_EQ(halfCross(G, v), hGxv);
const SymMat33 hdiff = hvxF-hGxv;
SimTK_TEST_EQ(halfCrossDiff(v, F, G), hdiff);
}
void testSpatialInertia() {
const Real mass = 1.125;
const Vec3 com(.1, .2, .25);
const UnitInertia gyration(1.8, 1.9, 2.1, .01, .03, .02);
SpatialInertia si(mass,com,gyration);
const SpatialMat msi = si.toSpatialMat();
SimTK_TEST( msi(0,0) == mass*gyration.toMat33() );
SimTK_TEST( msi(0,1) == mass*crossMat(com) );
SimTK_TEST( msi(1,0) == mass*~crossMat(com) );
SimTK_TEST( msi(1,1) == mass*Mat33(1) );
// Using phi shifts by the negative of the shift vector.
const Vec3 shiftVec(1,2,3);
const SpatialMat shiftMat(Mat33(1), crossMat(-shiftVec),
Mat33(0), Mat33(1));
const SpatialMat msiShiftedManually = shiftMat*msi*~shiftMat;
const PhiMatrix phi(-shiftVec);
const SpatialMat msiShiftedByPhi = phi*msi*~phi;
SimTK_TEST_EQ(msiShiftedByPhi, msiShiftedManually);
// The SpatialInertia shift() method behaves correctly; the Articulated
// one currently has the reverse sense, see below.
const SpatialInertia shiftSi = si.shift(shiftVec);
SimTK_TEST_EQ(shiftSi.toSpatialMat(), msiShiftedManually);
SimTK_TEST_EQ(shiftSi.shift(-shiftVec).toSpatialMat(),
si.toSpatialMat());
si.shiftInPlace(shiftVec);
SimTK_TEST_EQ(si.toSpatialMat(), msiShiftedManually);
SimTK_TEST_EQ(si.shiftInPlace(-shiftVec).toSpatialMat(), msi);
}
void testArticulatedInertia() {
const SymMat33 mass = Test::randSymMat33();
const Mat33 massMoment = Test::randMat33();
const SymMat33 inertia = crossMatSq(Test::randVec3());
ArticulatedInertia abi(mass,massMoment,inertia);
const SpatialMat mabi = abi.toSpatialMat();
SimTK_TEST( mabi(0,0) == inertia );
SimTK_TEST( mabi(0,1) == massMoment );
SimTK_TEST( mabi(1,0) == ~massMoment );
SimTK_TEST( mabi(1,1) == mass );
// Using phi shifts by the negative of the shift vector.
const Vec3 shiftVec(1,2,3);
const SpatialMat shiftMat(Mat33(1), crossMat(-shiftVec),
Mat33(0), Mat33(1));
const SpatialMat mabiShiftedManually = shiftMat*mabi*~shiftMat;
const PhiMatrix phi(-shiftVec);
const SpatialMat mabiShiftedByPhi = phi*mabi*~phi;
SimTK_TEST_EQ(mabiShiftedByPhi, mabiShiftedManually);
// Unfortunately the abi shift() method is also defined to shift by the
// negative of the shift vector; that's an API bug.
const Vec3 negShiftVec(-shiftVec);
const ArticulatedInertia shiftAbi = abi.shift(negShiftVec);
SimTK_TEST_EQ(shiftAbi.toSpatialMat(), mabiShiftedManually);
SimTK_TEST_EQ(shiftAbi.shift(-negShiftVec).toSpatialMat(),
abi.toSpatialMat());
abi.shiftInPlace(negShiftVec);
SimTK_TEST_EQ(abi.toSpatialMat(), mabiShiftedManually);
SimTK_TEST_EQ(abi.shiftInPlace(-negShiftVec).toSpatialMat(), mabi);
}
void testManualABIShift(const ArticulatedInertia& abi, const Array_<Vec3>& shifts, Real& out) {
SpatialMat mabi = abi.toSpatialMat();
SpatialMat shiftMat(Mat33(1));
for (unsigned i=0; i<shifts.size(); ++i) {
shiftMat(0,1) = crossMat(shifts[i]);
mabi = shiftMat * mabi * ~shiftMat;
}
out = mabi(1,1)(2,2);
}
void testPhiABIShift(const ArticulatedInertia& abi, const Array_<Vec3>& shifts, Real& out) {
SpatialMat mabi = abi.toSpatialMat();
for (unsigned i=0; i<shifts.size(); ++i) {
const PhiMatrix phi(shifts[i]);
mabi = phi * mabi * ~phi;
}
out = mabi(1,1)(2,2);
}
void testFastABIShift(const ArticulatedInertia& abi_in, const Array_<Vec3>& shifts, Real& out) {
ArticulatedInertia abi(abi_in);
for (unsigned i=0; i<shifts.size(); ++i)
abi = abi.shift(shifts[i]);
out = abi.getMass()(2,2);
}
Array_<Vec3> shifts;
#ifdef NDEBUG
#define NSHIFTS 2000000
#else
#define NSHIFTS 100000
#endif
int main() {
#ifdef __mips__
return 0;
#endif
SimTK_START_TEST("TestMassProperties");
SimTK_SUBTEST(testCrossProduct);
SimTK_SUBTEST(testInertia);
SimTK_SUBTEST(testHalfCross);
SimTK_SUBTEST(testSpatialInertia);
SimTK_SUBTEST(testArticulatedInertia);
// Speed tests.
shifts.resize(NSHIFTS);
for (int i=0; i<NSHIFTS; ++i) shifts[i] = Test::randVec3();
const SymMat33 mass = Test::randSymMat33();
const Mat33 massMoment = Test::randMat33();
const SymMat33 inertia = crossMatSq(Test::randVec3());
const ArticulatedInertia abi(mass,massMoment,inertia);
Real out1, out2, out3;
SimTK_SUBTEST3(testManualABIShift, abi, shifts, out1);
SimTK_SUBTEST3(testPhiABIShift, abi, shifts, out2);
SimTK_SUBTEST3(testFastABIShift, abi, shifts, out3);
SimTK_TEST_EQ(out1, out2); SimTK_TEST_EQ(out2, out3);
SimTK_END_TEST();
}
|