File: TestMassProperties.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 72,876 kB
  • sloc: cpp: 248,828; ansic: 18,240; sh: 29; makefile: 24
file content (434 lines) | stat: -rw-r--r-- 16,557 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
/* -------------------------------------------------------------------------- *
 *                       Simbody(tm): SimTKcommon                             *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2009-12 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

#include "SimTKcommon.h"
#include "SimTKcommon/Testing.h"

#include <iostream>
using std::cout;
using std::endl;

using namespace SimTK;

// We use cross product and cross product matrices extensively in shifting
// mass properties around.

void testCrossProduct() {
    // These are exactly representable in base 2.
    Vec3 w(1.25, 3, -2.5), v(-2.75, 2.125, 5);
    Vec<3,float> wf(1.25, 3, -2.5), vf(-2.75, 2.125, 5);
    Vec3 wxv = w % v, vxw = v % w;
    Vec<3,float> wxvf = wf % vf, vxwf = vf % wf;
    SimTK_TEST(wxv == Vec3(20.3125, 0.625, 10.90625));
    SimTK_TEST(wxvf == (Vec<3,float>(20.3125, 0.625, 10.90625)));
    SimTK_TEST(vxw == -wxv);
    SimTK_TEST(vxwf == -wxvf);

    // Cross product involving one or more rows returns a row.
    SimTK_TEST((~w)%v == ~wxv);
    SimTK_TEST(w % ~v == ~wxv);
    SimTK_TEST((~w) % (~v) == ~wxv);

    SimTK_TEST( crossMat(w) == Mat33( 0,   2.5,  3,
                                     -2.5, 0,   -1.25,
                                     -3,   1.25, 0) );

    SimTK_TEST( crossMatSq(w) == ~crossMat(w)*crossMat(w) );

    const Mat33 full33 = Test::randMat33();
    const SymMat33 sym33 = Test::randSymMat33();
    const Mat33 fsym33(sym33);
    SimTK_TEST(fsym33 == sym33);

    SimTK_TEST_EQ(v % full33, Mat33( v%full33(0), v%full33(1), v%full33(2) ));
    SimTK_TEST_EQ(v % full33, crossMat(v)*full33);
    SimTK_TEST_EQ(v % sym33,  Mat33( v%fsym33(0), v%fsym33(1), v%fsym33(2) ));
    SimTK_TEST_EQ(v % sym33, crossMat(v)*fsym33);

    // m % v == m * crossMat(v) == -~(v % ~m)
    SimTK_TEST_EQ(full33 % v, full33 * crossMat(v));
    SimTK_TEST_EQ(full33 % v, -~(v % ~full33));
    SimTK_TEST_EQ(full33 % v, ~(-v % ~full33));
    SimTK_TEST_EQ(sym33 % v, fsym33 * crossMat(v));
    SimTK_TEST_EQ(sym33 % v, -~(v % sym33));
    SimTK_TEST_EQ(sym33 % v, ~(-v % sym33));

    // gratuitous det() test
    SimTK_TEST_EQ(det(sym33), det(fsym33));

    // 2D

    // These are exactly representable in base 2.
    Vec2 w2(1.25, 3), v2(-2.75, 2.125);
    Vec<2,float> w2f(1.25, 3), v2f(-2.75, 2.125);
    Real wxv2 = w2 % v2, vxw2 = v2 % w2;
    float wxv2f = w2f % v2f, vxw2f = v2f % w2f;
    // 2D cross product is the z component of the 3D cross product where
    // the z coordinates of the two vectors are zero (i.e., they lie in the x-y plane).
    SimTK_TEST(wxv2 ==  (Vec3(w2[0],w2[1],0)           % Vec3(v2[0],v2[1],0))[2]);
    SimTK_TEST(wxv2f == (Vec<3,float>(w2f[0],w2f[1],0) % Vec<3,float>(v2f[0],v2f[1],0))[2]);
    SimTK_TEST(vxw2 == -wxv2);
    SimTK_TEST(vxw2f == -wxv2f);

    // Cross product involving one or more rows returns same result in 2d.
    SimTK_TEST((~w2)%v2 == wxv2);
    SimTK_TEST(w2 % ~v2 == wxv2);
    SimTK_TEST((~w2) % (~v2) == wxv2);

    SimTK_TEST( crossMat(w2) == Row2( -w2[1], w2[0] ) );
    SimTK_TEST( crossMat(w2)*v2 == w2 % v2 );

    const Mat22 full22 = Test::randMat<2,2>();
    const SymMat22 sym22 = Test::randSymMat<2>();
    const Mat22 fsym22(sym22);
    SimTK_TEST(fsym22 == sym22);

    /* These don't exist in 2D
    SimTK_TEST_EQ(v2 % full22, Row2( v2%full22(0), v2%full22(1) ));
    SimTK_TEST_EQ(v2 % full22, crossMat(v2)*full22);
    SimTK_TEST_EQ(v2 % sym22,  Row2( v2%fsym22(0), v2%fsym22(1) ));
    SimTK_TEST_EQ(v2 % sym22, crossMat(v2)*fsym22);

    // m % v == m * crossMat(v) == -~(v % ~m)
    SimTK_TEST_EQ(full22 % v2, full22 * crossMat(v2));
    SimTK_TEST_EQ(full22 % v2, -~(v2 % ~full22));
    SimTK_TEST_EQ(full22 % v2, ~(-v2 % ~full22));
    SimTK_TEST_EQ(sym22 % v2, fsym22 * crossMat(v2));
    SimTK_TEST_EQ(sym22 % v2, -~(v2 % sym22));
    SimTK_TEST_EQ(sym22 % v2, ~(-v2 % sym22));
    */

    // gratuitous det() test
    SimTK_TEST_EQ(det(sym22), det(fsym22));
}

void testInertia() {
    const Real mass = std::abs(Test::randReal());
    const UnitInertia_<Real> G( Vec3(1,2,2.5),       // moments
                                Vec3(0.1,0.2,0.3) ); // products
    const Real Gtrace = 1+2+2.5;

    SimTK_TEST(G.trace() == Gtrace); // should be exact because .5 is power of 2

    const Inertia_<Real>  I = mass*G;
    SymMat33 sI = I.asSymMat33();
    Mat33    mI = I.toMat33();

    SimTK_TEST_EQ( sI, mass*SymMat33(1,
                                     0.1, 2,
                                     0.2, 0.3, 2.5) );

    SimTK_TEST(mI.isExactlySymmetric());
    SimTK_TEST(mI == Mat33(sI));
    SimTK_TEST(sI == SymMat33(mI));

    SimTK_TEST_EQ( I.trace(), mass*Gtrace );

    // Test Inertia*scalar
    const Real s = std::abs(Test::randReal()) + 1;
    SimTK_TEST_EQ( (I*s).toMat33(), I.toMat33()*s );
    SimTK_TEST_EQ( (s*I).toMat33(), I.toMat33()*s );
    SimTK_TEST_EQ( (G*s).toMat33(), G.toMat33()*s );
    SimTK_TEST_EQ( (s*G).toMat33(), G.toMat33()*s );
    SimTK_TEST_EQ( (I*s).asSymMat33(), I.asSymMat33()*s );
    SimTK_TEST_EQ( (s*I).asSymMat33(), I.asSymMat33()*s );
    SimTK_TEST_EQ( (G*s).asSymMat33(), G.asSymMat33()*s );
    SimTK_TEST_EQ( (s*G).asSymMat33(), G.asSymMat33()*s );

    // Test Inertia*vec (I*w)
    const Vec3 w = Test::randVec3();
    SimTK_TEST_EQ( I*w, I.toMat33()*w );
    SimTK_TEST_EQ( G*w, G.toMat33()*w );
    SimTK_TEST_EQ( I*w, I.asSymMat33()*w );
    SimTK_TEST_EQ( G*w, G.asSymMat33()*w );

    // Test inertia rotation

    const Rotation R = Test::randRotation();
    Inertia_<Real> mIR = Inertia_<Real>(~R*I.toMat33()*R);

    SimTK_TEST_EQ(mIR.asSymMat33(), I.reexpress(R).asSymMat33());
    SimTK_TEST_EQ(I.asSymMat33(),   mIR.reexpress(~R).asSymMat33());

    Inertia_<Real> J=I;
    J.reexpressInPlace(R);
    SimTK_TEST_EQ(J.asSymMat33(), mIR.asSymMat33());

    // Test inertia shifting

    // Calculate the inertia of a point mass with the same mass
    // we used above.
    const Vec3     pLoc = Test::randVec3();
    const SymMat33 psG = crossMatSq(pLoc); // unit inertia
    const SymMat33 psI = mass*psG; // inertia
    const UnitInertia_<Real> pG(psG);
    const Inertia_<Real>     pI(psI);

    // Assuming I and G are central, shifting them to pLoc should be
    // the same as adding the point inertias above.
    SimTK_TEST_EQ( G.shiftFromCentroid(pLoc), G + pG );
    SimTK_TEST_EQ( I.shiftFromMassCenter(pLoc, mass), I + pI );

    // Now try in place shifts and shifting back.
    UnitInertia_<Real> Gshft(G); Gshft.shiftFromCentroidInPlace(pLoc);
    Inertia_<Real>     Ishft(I); Ishft.shiftFromMassCenterInPlace(pLoc, mass);
    SimTK_TEST_EQ(Gshft, G+pG);
    SimTK_TEST_EQ(Ishft, I+pI);

    SimTK_TEST_EQ(Gshft.shiftToCentroid(pLoc), G);
    SimTK_TEST_EQ(Ishft.shiftToMassCenter(pLoc, mass), I);

    Gshft.shiftToCentroidInPlace(pLoc);
    Ishft.shiftToMassCenterInPlace(pLoc, mass);
    SimTK_TEST_EQ(Gshft, G);
    SimTK_TEST_EQ(Ishft, I);

    // Check that we catch bad inertias in debug mode
#ifndef NDEBUG
    Inertia bad1;
    SimTK_TEST_MUST_THROW(bad1 = Inertia(1,2,NaN));
    SimTK_TEST_MUST_THROW(bad1 = Inertia(1,2,-.000003)); // negative diag
    SimTK_TEST_MUST_THROW(bad1 = Inertia(5,1,2)); // triangle inequality violated

    // A little slop should be allowed for the triangle inequality.
    Real tooMuchSlop = 1e-3;
    Real okSlop = SignificantReal;
    SimTK_TEST_MUST_THROW(bad1 = Inertia(1, 2+tooMuchSlop, 1));
    bad1 = Inertia(1, 2+okSlop, 1);


#endif

}

// Calculate the lower half of vx*F where vx is the cross product matrix
// of v and F is a full 3x3 matrix. This result would normally be a full 
// 3x3 but for the uses below we know we're only going to need the diagonal 
// and lower triangle so we can save some flops by working this out by hand.
// The method is templatized so that it will work on a transposed matrix
// as efficiently as an untransposed one. (18 flops)
template <class P, int CS, int RS> 
static inline SymMat<3,P>
halfCross(const Vec<3,P>& v, const Mat<3,3,P,CS,RS>& F) {
    return SymMat<3,P>
      ( v[1]*F(2,0)-v[2]*F(1,0),
        v[2]*F(0,0)-v[0]*F(2,0), v[2]*F(0,1)-v[0]*F(2,1),
        v[0]*F(1,0)-v[1]*F(0,0), v[0]*F(1,1)-v[1]*F(0,1), v[0]*F(1,2)-v[1]*F(0,2) );
}

// Calculate the lower half of G*vx where G is a full 3x3 matrix and vx
// is the cross product matrix of v. See comment above for details.
// (18 flops)
template <class P, int CS, int RS> 
static inline SymMat<3,P>
halfCross(const Mat<3,3,P,CS,RS>& G, const Vec<3,P>& v) {
    return SymMat<3,P>
      ( v[2]*G(0,1)-v[1]*G(0,2),
        v[2]*G(1,1)-v[1]*G(1,2), v[0]*G(1,2)-v[2]*G(1,0),
        v[2]*G(2,1)-v[1]*G(2,2), v[0]*G(2,2)-v[2]*G(2,0), v[1]*G(2,0)-v[0]*G(2,1) );
}

// This method computes the lower half of the difference vx*F-G*vx using
// the same methods as above, but done together in order to pull out the
// common v terms. This is 33 flops, down from 42 if you call the two
// methods above and add them.
template <class P, int CS1, int RS1, int CS2, int RS2>
static inline SymMat<3,P>
halfCrossDiff(const Vec<3,P>& v, const Mat<3,3,P,CS1,RS1>& F, const Mat<3,3,P,CS2,RS2>& G) {
    return SymMat<3,P>
      ( v[1]*(F(2,0)+G(0,2)) - v[2]*(F(1,0)+G(0,1)),
        v[2]*(F(0,0)-G(1,1)) - v[0]*F(2,0) + v[1]*G(1,2), 
                v[2]*(F(0,1)+G(1,0)) - v[0]*(F(2,1)+G(1,2)),
        v[0]*F(1,0) - v[2]*G(2,1) - v[1]*(F(0,0)-G(2,2)), 
                v[0]*(F(1,1)-G(2,2)) - v[1]*F(0,1) + v[2]*G(2,0), 
                        v[0]*(F(1,2)+G(2,1)) - v[1]*(F(0,2)+G(2,0)) );
}

void testHalfCross() {
    const Vec3 v = Test::randVec3();
    const Mat33 F = Test::randMat33();
    const Mat33 G = Test::randMat33();
    const Mat33 vx = crossMat(v);
    const Mat33 vxF = v % F;
    const Mat33 Gxv = G % v;

    SimTK_TEST_EQ(vxF, vx * F);
    SimTK_TEST_EQ(Gxv, G * vx);

    const SymMat33 hvxF( vxF(0,0),
                         vxF(1,0), vxF(1,1),
                         vxF(2,0), vxF(2,1), vxF(2,2) );
    SimTK_TEST_EQ(halfCross(v, F), hvxF);

    const SymMat33 hGxv( Gxv(0,0),
                         Gxv(1,0), Gxv(1,1),
                         Gxv(2,0), Gxv(2,1), Gxv(2,2) );
    SimTK_TEST_EQ(halfCross(G, v), hGxv);

    const SymMat33 hdiff = hvxF-hGxv;
    SimTK_TEST_EQ(halfCrossDiff(v, F, G), hdiff);

}

void testSpatialInertia() {
    const Real     mass = 1.125;
    const Vec3     com(.1, .2, .25);
    const UnitInertia gyration(1.8, 1.9, 2.1, .01, .03, .02);

    SpatialInertia si(mass,com,gyration);

    const SpatialMat msi = si.toSpatialMat();
    SimTK_TEST( msi(0,0) == mass*gyration.toMat33() );
    SimTK_TEST( msi(0,1) == mass*crossMat(com) );
    SimTK_TEST( msi(1,0) == mass*~crossMat(com) );
    SimTK_TEST( msi(1,1) == mass*Mat33(1) );

    // Using phi shifts by the negative of the shift vector.
    const Vec3 shiftVec(1,2,3);
    const SpatialMat shiftMat(Mat33(1), crossMat(-shiftVec),
                              Mat33(0),    Mat33(1));
    const SpatialMat msiShiftedManually = shiftMat*msi*~shiftMat;

    const PhiMatrix phi(-shiftVec);
    const SpatialMat msiShiftedByPhi = phi*msi*~phi;

    SimTK_TEST_EQ(msiShiftedByPhi, msiShiftedManually);

    // The SpatialInertia shift() method behaves correctly; the Articulated
    // one currently has the reverse sense, see below.
    const SpatialInertia shiftSi = si.shift(shiftVec);

    SimTK_TEST_EQ(shiftSi.toSpatialMat(), msiShiftedManually);

    SimTK_TEST_EQ(shiftSi.shift(-shiftVec).toSpatialMat(),
                  si.toSpatialMat());

    si.shiftInPlace(shiftVec);
    SimTK_TEST_EQ(si.toSpatialMat(), msiShiftedManually);

    SimTK_TEST_EQ(si.shiftInPlace(-shiftVec).toSpatialMat(), msi);
}

void testArticulatedInertia() {
    const SymMat33 mass = Test::randSymMat33();
    const Mat33    massMoment = Test::randMat33();
    const SymMat33 inertia = crossMatSq(Test::randVec3());

    ArticulatedInertia abi(mass,massMoment,inertia);

    const SpatialMat mabi = abi.toSpatialMat();
    SimTK_TEST( mabi(0,0) == inertia );
    SimTK_TEST( mabi(0,1) == massMoment );
    SimTK_TEST( mabi(1,0) == ~massMoment );
    SimTK_TEST( mabi(1,1) == mass );

    // Using phi shifts by the negative of the shift vector.
    const Vec3 shiftVec(1,2,3);
    const SpatialMat shiftMat(Mat33(1), crossMat(-shiftVec),
                              Mat33(0),    Mat33(1));
    const SpatialMat mabiShiftedManually = shiftMat*mabi*~shiftMat;

    const PhiMatrix phi(-shiftVec);
    const SpatialMat mabiShiftedByPhi = phi*mabi*~phi;

    SimTK_TEST_EQ(mabiShiftedByPhi, mabiShiftedManually);

    // Unfortunately the abi shift() method is also defined to shift by the
    // negative of the shift vector; that's an API bug.
    const Vec3 negShiftVec(-shiftVec);
    const ArticulatedInertia shiftAbi = abi.shift(negShiftVec);

    SimTK_TEST_EQ(shiftAbi.toSpatialMat(), mabiShiftedManually);

    SimTK_TEST_EQ(shiftAbi.shift(-negShiftVec).toSpatialMat(),
                  abi.toSpatialMat());

    abi.shiftInPlace(negShiftVec);
    SimTK_TEST_EQ(abi.toSpatialMat(), mabiShiftedManually);

    SimTK_TEST_EQ(abi.shiftInPlace(-negShiftVec).toSpatialMat(), mabi);
}

void testManualABIShift(const ArticulatedInertia& abi, const Array_<Vec3>& shifts, Real& out) {
    SpatialMat mabi = abi.toSpatialMat();

    SpatialMat shiftMat(Mat33(1));
    for (unsigned i=0; i<shifts.size(); ++i) {
        shiftMat(0,1) = crossMat(shifts[i]);
        mabi = shiftMat * mabi * ~shiftMat;
    }
    out = mabi(1,1)(2,2);
}

void testPhiABIShift(const ArticulatedInertia& abi, const Array_<Vec3>& shifts, Real& out) {
    SpatialMat mabi = abi.toSpatialMat();

    for (unsigned i=0; i<shifts.size(); ++i) {
        const PhiMatrix phi(shifts[i]);
        mabi = phi * mabi * ~phi;
    }
    out = mabi(1,1)(2,2);
}

void testFastABIShift(const ArticulatedInertia& abi_in, const Array_<Vec3>& shifts, Real& out) {
    ArticulatedInertia abi(abi_in);
    for (unsigned i=0; i<shifts.size(); ++i)
        abi = abi.shift(shifts[i]);
    out = abi.getMass()(2,2);
}

Array_<Vec3> shifts;
#ifdef NDEBUG
    #define NSHIFTS 2000000
#else
    #define NSHIFTS 100000
#endif

int main() {
#ifdef __mips__
    return 0;
#endif
    SimTK_START_TEST("TestMassProperties");

        SimTK_SUBTEST(testCrossProduct);
        SimTK_SUBTEST(testInertia);
        SimTK_SUBTEST(testHalfCross);
        SimTK_SUBTEST(testSpatialInertia);
        SimTK_SUBTEST(testArticulatedInertia);

        // Speed tests.
        shifts.resize(NSHIFTS);
        for (int i=0; i<NSHIFTS; ++i) shifts[i] = Test::randVec3();
        const SymMat33 mass = Test::randSymMat33();
        const Mat33    massMoment = Test::randMat33();
        const SymMat33 inertia = crossMatSq(Test::randVec3());
        const ArticulatedInertia abi(mass,massMoment,inertia);
        Real out1, out2, out3;
        SimTK_SUBTEST3(testManualABIShift, abi, shifts, out1);
        SimTK_SUBTEST3(testPhiABIShift, abi, shifts, out2);
        SimTK_SUBTEST3(testFastABIShift, abi, shifts, out3);
        SimTK_TEST_EQ(out1, out2); SimTK_TEST_EQ(out2, out3);

    SimTK_END_TEST();
}