File: TestScalar.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 72,876 kB
  • sloc: cpp: 248,828; ansic: 18,240; sh: 29; makefile: 24
file content (752 lines) | stat: -rw-r--r-- 32,836 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
/* -------------------------------------------------------------------------- *
 *                       Simbody(tm): SimTKcommon                             *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2008-12 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

#include "SimTKcommon.h"
#include "SimTKcommon/Testing.h"

#include <iostream>
using std::cout;
using std::endl;

using namespace SimTK;


void testIsNaN() {
    const float  fltRegular = -12.34f;
    const double dblRegular = -12.34;
    const float fltNaN = NTraits<float>::getNaN();
    const double dblNaN = NTraits<double>::getNaN();
    const float nfltNaN = -fltNaN;
    const double ndblNaN = -dblNaN;

    SimTK_TEST(isNaN(fltNaN) && isNaN(dblNaN));
    SimTK_TEST(isNaN(nfltNaN) && isNaN(ndblNaN));
    SimTK_TEST(!isNaN(fltRegular) && !isNaN(dblRegular));

    std::complex<float> cflt(fltRegular, -2*fltRegular);
    std::complex<double> cdbl(dblRegular, -2*dblRegular);
    conjugate<float> cjflt(fltRegular, -2*fltRegular);
    conjugate<double> cjdbl(dblRegular, -2*dblRegular);

    SimTK_TEST(!isNaN(cflt) && !isNaN(cdbl));
    SimTK_TEST(!isNaN(cjflt) && !isNaN(cjdbl));

    // Reference the same memory as a negator of its contents.
    const negator<float>&           nflt   = reinterpret_cast<const negator<float>&>(fltRegular);
    const negator<double>&          ndbl   = reinterpret_cast<const negator<double>&>(dblRegular);
    negator<std::complex<float> >&   ncflt  = reinterpret_cast<negator<std::complex<float> >&> (cflt);
    negator<std::complex<double> >&  ncdbl  = reinterpret_cast<negator<std::complex<double> >&>(cdbl);
    negator<conjugate<float> >&      ncjflt = reinterpret_cast<negator<conjugate<float> >&>    (cjflt);
    negator<conjugate<double> >&     ncjdbl = reinterpret_cast<negator<conjugate<double> >&>   (cjdbl);

    // Test that negators are working properly.
    SimTK_TEST_EQ(nflt, -fltRegular);
    SimTK_TEST_EQ(ndbl, -dblRegular);
    SimTK_TEST_EQ(ncflt, -cflt);
    SimTK_TEST_EQ(-ncflt, cflt);
    SimTK_TEST_EQ(ncjflt, -cjflt);
    SimTK_TEST_EQ(-ncjflt, cjflt);

    SimTK_TEST(!isNaN(nflt) && !isNaN(ndbl));
    SimTK_TEST(!isNaN(ncflt) && !isNaN(ncdbl));
    SimTK_TEST(!isNaN(ncjflt) && !isNaN(ncjdbl));

    // Should be NaN if either or both parts are NaN.
    cflt = std::complex<float>(cflt.real(), fltNaN);
    cdbl = std::complex<double>(cdbl.real(), dblNaN);
    cjflt = conjugate<float>(cjflt.real(), fltNaN);
    cjdbl = conjugate<double>(cjdbl.real(), dblNaN);

    // Imaginary only is NaN.
    SimTK_TEST(isNaN(cflt) && isNaN(cdbl));
    SimTK_TEST(isNaN(cjflt) && isNaN(cjdbl));
    SimTK_TEST(isNaN(ncflt) && isNaN(ncdbl));
    SimTK_TEST(isNaN(ncjflt) && isNaN(ncjdbl));

    cflt = std::complex<float>(fltNaN, cflt.imag());
    cdbl = std::complex<double>(dblNaN, cdbl.imag());
    cjflt = conjugate<float>(fltNaN, cjflt.imag());
    cjdbl = conjugate<double>(dblNaN, cjdbl.imag());

    // Both parts are NaN.
    SimTK_TEST(isNaN(cflt) && isNaN(cdbl));
    SimTK_TEST(isNaN(cjflt) && isNaN(cjdbl));
    SimTK_TEST(isNaN(ncflt) && isNaN(ncdbl));
    SimTK_TEST(isNaN(ncjflt) && isNaN(ncjdbl));

    // Restore imaginary part to normal.
    cflt = std::complex<float>(cflt.real(), fltRegular);
    cdbl = std::complex<double>(cdbl.real(), dblRegular);
    cjflt = conjugate<float>(cjflt.real(), fltRegular);
    cjdbl = conjugate<double>(cjdbl.real(), dblRegular);

    // Real part only is NaN;
    SimTK_TEST(isNaN(cflt) && isNaN(cdbl));
    SimTK_TEST(isNaN(cjflt) && isNaN(cjdbl));
    SimTK_TEST(isNaN(ncflt) && isNaN(ncdbl));
    SimTK_TEST(isNaN(ncjflt) && isNaN(ncjdbl));
}

void testIsInf() {
    const float  fltRegular = -12.34f;
    const double dblRegular = -12.34;
    const float fltInf = NTraits<float>::getInfinity();
    const double dblInf = NTraits<double>::getInfinity();
    const float mfltInf = -fltInf;
    const double mdblInf = -dblInf;
    const negator<float>& nfltInf = reinterpret_cast<const negator<float>&>(fltInf);
    const negator<double>& ndblInf = reinterpret_cast<const negator<double>&>(dblInf);

    SimTK_TEST(nfltInf == -fltInf);
    SimTK_TEST(ndblInf == -dblInf);

    SimTK_TEST(isInf(fltInf) && isInf(dblInf));
    SimTK_TEST(isInf(mfltInf) && isInf(mdblInf));
    SimTK_TEST(isInf(nfltInf) && isInf(ndblInf));
    SimTK_TEST(!isInf(fltRegular) && !isInf(dblRegular));

    std::complex<float> cflt(fltRegular, -2*fltRegular);
    std::complex<double> cdbl(dblRegular, -2*dblRegular);
    conjugate<float> cjflt(fltRegular, -2*fltRegular);
    conjugate<double> cjdbl(dblRegular, -2*dblRegular);

    SimTK_TEST(!isInf(cflt) && !isInf(cdbl));
    SimTK_TEST(!isInf(cjflt) && !isInf(cjdbl));

    // Reference the same memory as a negator of its contents.
    const negator<float>&           nflt   = reinterpret_cast<const negator<float>&>(fltRegular);
    const negator<double>&          ndbl   = reinterpret_cast<const negator<double>&>(dblRegular);
    negator<std::complex<float> >&   ncflt  = reinterpret_cast<negator<std::complex<float> >&> (cflt);
    negator<std::complex<double> >&  ncdbl  = reinterpret_cast<negator<std::complex<double> >&>(cdbl);
    negator<conjugate<float> >&      ncjflt = reinterpret_cast<negator<conjugate<float> >&>    (cjflt);
    negator<conjugate<double> >&     ncjdbl = reinterpret_cast<negator<conjugate<double> >&>   (cjdbl);

    // Test that negators are working properly.
    SimTK_TEST_EQ(nflt, -fltRegular);
    SimTK_TEST_EQ(ndbl, -dblRegular);
    SimTK_TEST_EQ(ncflt, -cflt);
    SimTK_TEST_EQ(-ncflt, cflt);
    SimTK_TEST_EQ(ncjflt, -cjflt);
    SimTK_TEST_EQ(-ncjflt, cjflt);

    SimTK_TEST(!isInf(nflt) && !isInf(ndbl));
    SimTK_TEST(!isInf(ncflt) && !isInf(ncdbl));
    SimTK_TEST(!isInf(ncjflt) && !isInf(ncjdbl));

    // Should be Inf if either or both parts are Inf, as long as neither
    // part is NaN.
    cflt = std::complex<float>(cflt.real(), fltInf);
    cdbl = std::complex<double>(cdbl.real(), dblInf);
    cjflt = conjugate<float>(cjflt.real(), fltInf);
    cjdbl = conjugate<double>(cjdbl.real(), dblInf);

    // Imaginary only is Inf.
    SimTK_TEST(isInf(cflt) && isInf(cdbl));
    SimTK_TEST(isInf(cjflt) && isInf(cjdbl));
    SimTK_TEST(isInf(ncflt) && isInf(ncdbl));
    SimTK_TEST(isInf(ncjflt) && isInf(ncjdbl));

    cflt = std::complex<float>(fltInf, cflt.imag());
    cdbl = std::complex<double>(dblInf, cdbl.imag());
    cjflt = conjugate<float>(fltInf, cjflt.imag());
    cjdbl = conjugate<double>(dblInf, cjdbl.imag());

    // Both parts are Inf.
    SimTK_TEST(isInf(cflt) && isInf(cdbl));
    SimTK_TEST(isInf(cjflt) && isInf(cjdbl));
    SimTK_TEST(isInf(ncflt) && isInf(ncdbl));
    SimTK_TEST(isInf(ncjflt) && isInf(ncjdbl));

    // Restore imaginary part to normal.
    cflt = std::complex<float>(cflt.real(), fltRegular);
    cdbl = std::complex<double>(cdbl.real(), dblRegular);
    cjflt = conjugate<float>(cjflt.real(), fltRegular);
    cjdbl = conjugate<double>(cjdbl.real(), dblRegular);

    // Real part only is Inf;
    SimTK_TEST(isInf(cflt) && isInf(cdbl));
    SimTK_TEST(isInf(cjflt) && isInf(cjdbl));
    SimTK_TEST(isInf(ncflt) && isInf(ncdbl));
    SimTK_TEST(isInf(ncjflt) && isInf(ncjdbl));

    // Set real part to minus infinity.
    cflt = std::complex<float>(mfltInf, cflt.imag());
    cdbl = std::complex<double>(mdblInf, cdbl.imag());
    cjflt = conjugate<float>(mfltInf, cjflt.imag());
    cjdbl = conjugate<double>(mdblInf, cjdbl.imag());

    SimTK_TEST(isInf(cflt) && isInf(cdbl));
    SimTK_TEST(isInf(cjflt) && isInf(cjdbl));
    SimTK_TEST(isInf(ncflt) && isInf(ncdbl));
    SimTK_TEST(isInf(ncjflt) && isInf(ncjdbl));

    // Set real part to NaN.
    const float fltNaN = NTraits<float>::getNaN();
    const double dblNaN = NTraits<double>::getNaN();
    cflt = std::complex<float>(fltNaN, cflt.imag());
    cdbl = std::complex<double>(dblNaN, cdbl.imag());
    cjflt = conjugate<float>(fltNaN, cjflt.imag());
    cjdbl = conjugate<double>(dblNaN, cjdbl.imag());

    SimTK_TEST(!isInf(cflt) && !isInf(cdbl));
    SimTK_TEST(!isInf(cjflt) && !isInf(cjdbl));
    SimTK_TEST(!isInf(ncflt) && !isInf(ncdbl));
    SimTK_TEST(!isInf(ncjflt) && !isInf(ncjdbl));
}

void testIsFinite() {
    const float  fltRegular = -12.34f;
    const double dblRegular = -12.34;
    const float fltNaN = NTraits<float>::getNaN();
    const double dblNaN = NTraits<double>::getNaN();
    const float nfltNaN = -fltNaN;
    const double ndblNaN = -dblNaN;
    const float fltInf = NTraits<float>::getInfinity();
    const double dblInf = NTraits<double>::getInfinity();
    const float mfltInf = -fltInf;
    const double mdblInf = -dblInf;

    SimTK_TEST(isFinite(fltRegular) && isFinite(dblRegular));
    SimTK_TEST(!isFinite(fltNaN) && !isFinite(dblNaN));
    SimTK_TEST(!isFinite(fltInf) && !isFinite(dblInf));
    SimTK_TEST(!isFinite(mfltInf) && !isFinite(mdblInf));

    std::complex<float> cflt(fltRegular, -2*fltRegular);
    std::complex<double> cdbl(dblRegular, -2*dblRegular);
    conjugate<float> cjflt(fltRegular, -2*fltRegular);
    conjugate<double> cjdbl(dblRegular, -2*dblRegular);

    SimTK_TEST(isFinite(cflt) && isFinite(cdbl));
    SimTK_TEST(isFinite(cjflt) && isFinite(cjdbl));

    // Reference the same memory as a negator of its contents.
    const negator<float>&           nflt   = reinterpret_cast<const negator<float>&>(fltRegular);
    const negator<double>&          ndbl   = reinterpret_cast<const negator<double>&>(dblRegular);
    negator<std::complex<float> >&   ncflt  = reinterpret_cast<negator<std::complex<float> >&> (cflt);
    negator<std::complex<double> >&  ncdbl  = reinterpret_cast<negator<std::complex<double> >&>(cdbl);
    negator<conjugate<float> >&      ncjflt = reinterpret_cast<negator<conjugate<float> >&>    (cjflt);
    negator<conjugate<double> >&     ncjdbl = reinterpret_cast<negator<conjugate<double> >&>   (cjdbl);

    // Test that negators are working properly.
    SimTK_TEST_EQ(nflt, -fltRegular);
    SimTK_TEST_EQ(ndbl, -dblRegular);
    SimTK_TEST_EQ(ncflt, -cflt);
    SimTK_TEST_EQ(-ncflt, cflt);
    SimTK_TEST_EQ(ncjflt, -cjflt);
    SimTK_TEST_EQ(-ncjflt, cjflt);

    SimTK_TEST(isFinite(nflt) && isFinite(ndbl));
    SimTK_TEST(isFinite(ncflt) && isFinite(ncdbl));
    SimTK_TEST(isFinite(ncjflt) && isFinite(ncjdbl));

    // Should be finite only if both parts are finite.
    cflt = std::complex<float>(cflt.real(),  fltInf);
    cdbl = std::complex<double>(cdbl.real(), mdblInf);
    cjflt = conjugate<float>(cjflt.real(),   fltNaN);
    cjdbl = conjugate<double>(cjdbl.real(),  dblInf);

    // Imaginary only is NaN.
    SimTK_TEST(!isFinite(cflt) && !isFinite(cdbl));
    SimTK_TEST(!isFinite(cjflt) && !isFinite(cjdbl));
    SimTK_TEST(!isFinite(ncflt) && !isFinite(ncdbl));
    SimTK_TEST(!isFinite(ncjflt) && !isFinite(ncjdbl));

    cflt = std::complex<float> (fltInf, cflt.imag());
    cdbl = std::complex<double>(mdblInf, cdbl.imag());
    cjflt = conjugate<float>   (fltNaN, cjflt.imag());
    cjdbl = conjugate<double>  (dblInf, cjdbl.imag());

    // Both parts are non-finite.
    SimTK_TEST(!isFinite(cflt) && !isFinite(cdbl));
    SimTK_TEST(!isFinite(cjflt) && !isFinite(cjdbl));
    SimTK_TEST(!isFinite(ncflt) && !isFinite(ncdbl));
    SimTK_TEST(!isFinite(ncjflt) && !isFinite(ncjdbl));

    // Restore imaginary part to normal.
    cflt = std::complex<float>(cflt.real(), fltRegular);
    cdbl = std::complex<double>(cdbl.real(), dblRegular);
    cjflt = conjugate<float>(cjflt.real(), fltRegular);
    cjdbl = conjugate<double>(cjdbl.real(), dblRegular);

    // Real part only is non-finite;
    SimTK_TEST(!isFinite(cflt) && !isFinite(cdbl));
    SimTK_TEST(!isFinite(cjflt) && !isFinite(cjdbl));
    SimTK_TEST(!isFinite(ncflt) && !isFinite(ncdbl));
    SimTK_TEST(!isFinite(ncjflt) && !isFinite(ncjdbl));
}

void testSignBit() {
    const unsigned char ucm=0xff, ucz=0, ucp=27;
    const unsigned short usm=0xffff, usz=0, usp=2342;
    const unsigned int   uim=0xffffffff, uiz=0, uip=2342344;
    const unsigned long ulm=(unsigned long)-23423L, ulz=0, ulp=234234UL;
    const unsigned long long ullm=(unsigned long long)-234234234LL, ullz=0, ullp=234234234ULL;

    SimTK_TEST(!(signBit(ucm)||signBit(ucz)||signBit(ucp)));
    SimTK_TEST(!(signBit(usm)||signBit(usz)||signBit(usp)));
    SimTK_TEST(!(signBit(uim)||signBit(uiz)||signBit(uip)));
    SimTK_TEST(!(signBit(ulm)||signBit(ulz)||signBit(ulp)));
    SimTK_TEST(!(signBit(ullm)||signBit(ullz)||signBit(ullp)));
    
    // Note that signBit(char) doesn't exist.

    const signed char cm=-23, cz=0, cp=99;
    const short sm=-1234, sz=0, sp=23423;
    const int im=-2342343, iz=0, ip=29472383;
    const long lm=-43488, lz=0, lp=3454545;
    const long long llm=-2342342343433LL, llz=0, llp=874578478478574LL;

    SimTK_TEST(signBit(cm) && !(signBit(cz)||signBit(cp)));
    SimTK_TEST(signBit(sm) && !(signBit(sz)||signBit(sp)));
    SimTK_TEST(signBit(im) && !(signBit(iz)||signBit(ip)));
    SimTK_TEST(signBit(lm) && !(signBit(lz)||signBit(lp)));
    SimTK_TEST(signBit(llm) && !(signBit(llz)||signBit(llp)));

    const float fm=-12398.34f, fz=0, fp=4354.331f;
    const double dm=-234234.454, dz=0, dp=345345.2342;
    float mfz=-fz; double mdz=-dz;// -0 for some compilers

    SimTK_TEST(signBit(fm) && !(signBit(fz)||signBit(fp)));
    SimTK_TEST(signBit(dm) && !(signBit(dz)||signBit(dp)));

    // Can't be sure whether the compiler will actually have produced
    // a minus zero here.
    // SimTK_TEST(signBit(mfz) && signBit(mdz));

    // Note: signBit of negated float or double should be the
    // *same* as the underlying float or double; it is the
    // interpretation of that bit that is supposed to be 
    // different.
    const negator<float>& nfm=reinterpret_cast<const negator<float>&>(fm);
    const negator<float>& nfz=reinterpret_cast<const negator<float>&>(fz);
    const negator<float>& nfp=reinterpret_cast<const negator<float>&>(fp);
    const negator<float>& nmfz=reinterpret_cast<const negator<float>&>(mfz);
    const negator<double>& ndm=reinterpret_cast<const negator<double>&>(dm);
    const negator<double>& ndz=reinterpret_cast<const negator<double>&>(dz);
    const negator<double>& ndp=reinterpret_cast<const negator<double>&>(dp);
    const negator<double>& nmdz=reinterpret_cast<const negator<double>&>(mdz);

    SimTK_TEST(signBit(nfm) && !(signBit(nfz)||signBit(nfp)));
    SimTK_TEST(signBit(ndm) && !(signBit(ndz)||signBit(ndp)));
    SimTK_TEST(signBit(nmfz)==signBit(mfz) && signBit(nmdz)==signBit(mdz));

    const float fltInf = NTraits<float>::getInfinity();
    const double dblInf = NTraits<double>::getInfinity();
    const float mfltInf = -fltInf;
    const double mdblInf = -dblInf;

    SimTK_TEST(!signBit(fltInf) && !signBit(dblInf));
    SimTK_TEST(signBit(mfltInf) && signBit(mdblInf));
}


void testSign() {
    const unsigned char ucm=0xff, ucz=0, ucp=27;
    const unsigned short usm=0xffff, usz=0, usp=2342;
    const unsigned int   uim=0xffffffff, uiz=0, uip=2342344;
    const unsigned long ulm=(unsigned long)-23423L, ulz=0, ulp=234234UL;
    const unsigned long long ullm=(unsigned long long)-234234234LL, ullz=0, ullp=234234234ULL;

    SimTK_TEST(sign(ucm)==1 && sign(ucz)==0 && sign(ucp)==1);
    SimTK_TEST(sign(usm)==1 && sign(usz)==0 && sign(usp)==1);
    SimTK_TEST(sign(uim)==1 && sign(uiz)==0 && sign(uip)==1);
    SimTK_TEST(sign(ulm)==1 && sign(ulz)==0 && sign(ulp)==1);
    SimTK_TEST(sign(ullm)==1 && sign(ullz)==0 && sign(ullp)==1);

    // Note that sign(char) doesn't exist.

    const signed char cm=-23, cz=0, cp=99;
    const short sm=-1234, sz=0, sp=23423;
    const int im=-2342343, iz=0, ip=29472383;
    const long lm=-43488, lz=0, lp=3454545;
    const long long llm=-2342342343433LL, llz=0, llp=874578478478574LL;

    SimTK_TEST(sign(cm)==-1 && sign(cz)==0 && sign(cp)==1);
    SimTK_TEST(sign(sm)==-1 && sign(sz)==0 && sign(sp)==1);
    SimTK_TEST(sign(im)==-1 && sign(iz)==0 && sign(ip)==1);
    SimTK_TEST(sign(lm)==-1 && sign(lz)==0 && sign(lp)==1);
    SimTK_TEST(sign(llm)==-1 && sign(llz)==0 && sign(llp)==1);

    const float fm=-12398.34f, fz=0, fp=4354.331f;
    const double dm=-234234.454, dz=0, dp=345345.2342;
    float mfz=-fz; double mdz=-dz;// -0

    SimTK_TEST(sign(fm)==-1 && sign(fz)==0 && sign(fp)==1);
    SimTK_TEST(sign(dm)==-1 && sign(dz)==0 && sign(dp)==1);
    SimTK_TEST(sign(mfz)==0 && sign(mdz)==0); // doesn't matter if it's -0

    // Note: sign of negated float or double should be the
    // *opposite* as the underlying float or double.
    const negator<float>& nfm=reinterpret_cast<const negator<float>&>(fm);
    const negator<float>& nfz=reinterpret_cast<const negator<float>&>(fz);
    const negator<float>& nfp=reinterpret_cast<const negator<float>&>(fp);
    const negator<float>& nmfz=reinterpret_cast<const negator<float>&>(mfz);
    const negator<double>& ndm=reinterpret_cast<const negator<double>&>(dm);
    const negator<double>& ndz=reinterpret_cast<const negator<double>&>(dz);
    const negator<double>& ndp=reinterpret_cast<const negator<double>&>(dp);
    const negator<double>& nmdz=reinterpret_cast<const negator<double>&>(mdz);

    SimTK_TEST(sign(nfm)==1 && sign(nfz)==0 && sign(nfp)==-1);
    SimTK_TEST(sign(ndm)==1 && sign(ndz)==0 && sign(ndp)==-1);
    SimTK_TEST(sign(nmfz)==0 && sign(nmdz)==0); // doesn't matter if it's -0

    const float fltInf = NTraits<float>::getInfinity();
    const double dblInf = NTraits<double>::getInfinity();
    const float mfltInf = -fltInf;
    const double mdblInf = -dblInf;
    const negator<float>& nfltInf = reinterpret_cast<const negator<float>&>(fltInf);
    const negator<double>& ndblInf = reinterpret_cast<const negator<double>&>(dblInf);

    SimTK_TEST(sign(fltInf)==1 && sign(dblInf)==1);
    SimTK_TEST(sign(mfltInf)==-1 && sign(mdblInf)==-1);
    SimTK_TEST(sign(nfltInf)==-1 && sign(ndblInf)==-1);
}

void testSquareAndCube() {
    const float fval = -23.33f;
    const double dval = -234443.441;
    const negator<float>& nfval = reinterpret_cast<const negator<float>&>(fval);
    const negator<double>& ndval = reinterpret_cast<const negator<double>&>(dval);

    // Basic test.
    SimTK_TEST_EQ(square(fval), fval*fval);
    SimTK_TEST_EQ(square(dval), dval*dval);
    SimTK_TEST_EQ(cube(fval), fval*fval*fval);
    SimTK_TEST_EQ(cube(dval), dval*dval*dval);

    // Test scalar negators.
    SimTK_TEST_EQ(square(nfval), nfval*nfval);
    SimTK_TEST_EQ(square(nfval), fval*fval);
    SimTK_TEST_EQ(square(ndval), ndval*ndval);
    SimTK_TEST_EQ(square(ndval), dval*dval);
    SimTK_TEST_EQ(cube(nfval), nfval*nfval*nfval);
    SimTK_TEST_EQ(cube(nfval), -fval*fval*fval);
    SimTK_TEST_EQ(cube(ndval), ndval*ndval*ndval);
    SimTK_TEST_EQ(cube(ndval), -dval*dval*dval);

    // Create complex and conjugate values.

    std::complex<float> fc(-234.343f, 45345e7f);
    std::complex<double> dc(-234.343, 45345e7);
    conjugate<float> fcj(-19.1e3f, -454.234f);
    conjugate<double> dcj(-19.1e3, -454.234);

    // Manual conjugates
    std::complex<float>  fcmj(fcj.real(), fcj.imag());
    std::complex<double> dcmj(dcj.real(), dcj.imag());
    SimTK_TEST(fcj == fcmj);    // sign change only; should be exact
    SimTK_TEST(dcj == dcmj);
    SimTK_TEST_EQ(fcj*fcj, fcmj*fcmj);
    SimTK_TEST_EQ(dcj*dcj, dcmj*dcmj);
    SimTK_TEST_EQ(fcj*fcj*fcj, fcmj*fcmj*fcmj);
    SimTK_TEST_EQ(dcj*dcj*dcj, dcmj*dcmj*dcmj);

    // Negators of complex an conjugate.
    negator<std::complex<float> >&   nfc  = reinterpret_cast<negator<std::complex<float> >&> (fc);
    negator<std::complex<double> >&  ndc  = reinterpret_cast<negator<std::complex<double> >&>(dc);
    negator<conjugate<float> >&      nfcj = reinterpret_cast<negator<conjugate<float> >&>    (fcj);
    negator<conjugate<double> >&     ndcj = reinterpret_cast<negator<conjugate<double> >&>   (dcj);

    // Change of sign should be exact.
    SimTK_TEST(nfc == -fc);
    SimTK_TEST(ndc == -dc);
    SimTK_TEST(nfcj == -fcj);
    SimTK_TEST(ndcj == -dcj);


    // Basic complex and conjugate tests.
    SimTK_TEST_EQ(square(fc), fc*fc);
    SimTK_TEST_EQ(cube(fc), fc*fc*fc);
    SimTK_TEST_EQ(square(dc), dc*dc);
    SimTK_TEST_EQ(cube(dc), dc*dc*dc);
    SimTK_TEST_EQ(square(fcj), fcj*fcj);
    SimTK_TEST_EQ(cube(fcj), fcj*fcj*fcj);
    SimTK_TEST_EQ(square(dcj), dcj*dcj);
    SimTK_TEST_EQ(cube(dcj), dcj*dcj*dcj);

    // Tests involving negators of complex and conjugate.
    SimTK_TEST_EQ(square(nfc), nfc*nfc); 
    SimTK_TEST_EQ(square(nfc), fc*fc);
    SimTK_TEST_EQ(square(ndc), ndc*ndc);
    SimTK_TEST_EQ(square(ndc), dc*dc);

    SimTK_TEST_EQ(cube(nfc), nfc*nfc*nfc); 
    SimTK_TEST_EQ(cube(nfc), -fc*fc*fc);
    SimTK_TEST_EQ(cube(ndc), ndc*ndc*ndc);
    SimTK_TEST_EQ(cube(ndc), -dc*dc*dc);

    SimTK_TEST_EQ(square(nfcj), nfcj*nfcj); 
    SimTK_TEST_EQ(square(nfcj), fcj*fcj);
    SimTK_TEST_EQ(square(ndcj), ndcj*ndcj);
    SimTK_TEST_EQ(square(ndcj), dcj*dcj);

    SimTK_TEST_EQ(cube(nfcj), nfcj*nfcj*nfcj); 
    SimTK_TEST_EQ(cube(nfcj), -fcj*fcj*fcj);
    SimTK_TEST_EQ(cube(ndcj), ndcj*ndcj*ndcj);
    SimTK_TEST_EQ(cube(ndcj), -dcj*dcj*dcj);
}

void testIsNumericallyEqual() {
    const float  f=1.234f, fn=1.234f+1e-5f, fe=1.234f+1e-9f;
    const double d=1.234,  dn=1.234 +1e-12, de=1.234 +1e-15;
    const negator<float>& nf=negator<float>::recast(f);
    const negator<float>& nfn=negator<float>::recast(fn);
    const negator<float>& nfe=negator<float>::recast(fe);

    SimTK_TEST(isNumericallyEqual(f,f))
    SimTK_TEST(isNumericallyEqual(f,fe));
    SimTK_TEST(!isNumericallyEqual(f,fn));
    SimTK_TEST(isNumericallyEqual(f,fn,1e-4f));
    SimTK_TEST(!isNumericallyEqual(f,fn,1e-6f));

    SimTK_TEST(CNT<float>::isNumericallyEqual(f,f));
    SimTK_TEST(CNT<float>::isNumericallyEqual(f,fe));
    SimTK_TEST(!CNT<float>::isNumericallyEqual(f,fn));
    SimTK_TEST(CNT<float>::isNumericallyEqual(f,fn,1e-4f));
    SimTK_TEST(!CNT<float>::isNumericallyEqual(f,fn,1e-6f));

    SimTK_TEST(nf.isNumericallyEqual(nf));
    SimTK_TEST(nf.isNumericallyEqual(-f));
    SimTK_TEST(!nf.isNumericallyEqual(f));

    SimTK_TEST(isNumericallyEqual(1000*f,1234));
    SimTK_TEST(isNumericallyEqual(1234,1000*f));
    SimTK_TEST(isNumericallyEqual(1000*fe,1234));
    SimTK_TEST(isNumericallyEqual(1234,1000*fe));
    SimTK_TEST(!isNumericallyEqual(1000*fn,1234));
    SimTK_TEST(!isNumericallyEqual(1234,1000*fn));

    SimTK_TEST(isNumericallyEqual(d,d));
    SimTK_TEST(isNumericallyEqual(d,de));
    SimTK_TEST(!isNumericallyEqual(d,dn));
    SimTK_TEST(isNumericallyEqual(1000*d,1234));
    SimTK_TEST(isNumericallyEqual(1234,1000*d));
    SimTK_TEST(isNumericallyEqual(1000*de,1234));
    SimTK_TEST(isNumericallyEqual(1234,1000*de));
    SimTK_TEST(!isNumericallyEqual(1000*dn,1234));
    SimTK_TEST(!isNumericallyEqual(1234,1000*dn));

    // Mixed should use float tolerance
    SimTK_TEST(isNumericallyEqual(fe,de));
    SimTK_TEST(!isNumericallyEqual((double)fe,de));
}

void testClamp() {
    const int i4=4;
    const double d325=3.25;
    const float fn325=-3.25;

    // int
    SimTK_TEST(clamp(4,i4,4)==4);
    SimTK_TEST(clamp(0,i4,9)==4);
    SimTK_TEST(clamp(5,i4,9)==5);
    SimTK_TEST(clamp(-7,i4,-5)==-5);

    // double
    SimTK_TEST(clamp(3.25,d325,3.25)==3.25);
    SimTK_TEST(clamp(0.,d325,9.)==3.25);
    SimTK_TEST(clamp(5.,d325,9.)==5);
    SimTK_TEST(clamp(-7.,d325,-5.)==-5);

    // float
    SimTK_TEST(clamp(-3.25f,fn325,-3.25f)==-3.25);
    SimTK_TEST(clamp(-9.f,fn325,0.f)==-3.25f);
    SimTK_TEST(clamp(-9.f,fn325,-5.f)==-5);
    SimTK_TEST(clamp(5.f,fn325,7.f)==5);

    // Test methods that take integer bounds.
    SimTK_TEST(clamp(0,d325,9)==3.25);
    SimTK_TEST(clamp(5,d325,9)==5);
    SimTK_TEST(clamp(-7,d325,-5)==-5);

    SimTK_TEST(clamp(-9,fn325,0)==-3.25);
    SimTK_TEST(clamp(-9,fn325,-5)==-5);
    SimTK_TEST(clamp(5,fn325,7)==5);

    SimTK_TEST(clamp(0.,d325,9)==3.25);
    SimTK_TEST(clamp(5.,d325,9)==5);
    SimTK_TEST(clamp(-7.,d325,-5)==-5);

    SimTK_TEST(clamp(-9.f,fn325,0)==-3.25);
    SimTK_TEST(clamp(-9.f,fn325,-5)==-5);
    SimTK_TEST(clamp(5.f,fn325,7)==5);

    SimTK_TEST(clamp(0,d325,9.)==3.25);
    SimTK_TEST(clamp(5,d325,9.)==5);
    SimTK_TEST(clamp(-7,d325,-5.)==-5);

    SimTK_TEST(clamp(-9,fn325,0.f)==-3.25);
    SimTK_TEST(clamp(-9,fn325,-5.f)==-5);
    SimTK_TEST(clamp(5,fn325,7.f)==5);

    int i; double d; float f;
    i=i4; 
    SimTK_TEST(clampInPlace(-2,i,3)==3 && i==3);
    d=d325;
    SimTK_TEST(clampInPlace(-2.,d,3.)==3 && d==3);
    f=fn325;
    SimTK_TEST(clampInPlace(-2,f,3)==-2 && f==-2);

    // Do a test for each of the less-common supported types.
    char c='j'; unsigned char uc=3; signed char sc=-2;
    SimTK_TEST(clamp('a',c,'e')=='e');
    SimTK_TEST(clamp('a',c,'z')=='j');
    SimTK_TEST(clamp((unsigned char)4,uc,(unsigned char)5)==4);
    SimTK_TEST(clamp((signed char)-7,sc,(signed char)-1)==-2);

    short s=-32000; unsigned short us=17; unsigned ui=4023456789U;
    SimTK_TEST(clamp((short)-29000,s,(short)400)==-29000);
    SimTK_TEST(clamp((unsigned short)4,us,(unsigned short)15)==15);
    SimTK_TEST(clamp(100000000U,ui,4010000000U)==4010000000U);

    long l=-234234L; unsigned long ul=293493849UL; 
    long long ll=-123456789123LL; unsigned long long ull=123456789123ULL;
    SimTK_TEST(clamp(-1000000L,l,-200000L)==-234234);
    SimTK_TEST(clamp(1000000UL,ul,4000000000UL)==293493849);
    SimTK_TEST(clamp(-100000000000LL,ll,27LL)==-100000000000LL);
    SimTK_TEST(clamp(-1000000000000LL,ll,27LL)==-123456789123LL);
}

void testStep() {
        // double
    SimTK_TEST(stepUp(0.)==0 && stepUp(.5)==.5 && stepUp(1.)==1);
    SimTK_TEST(0 < stepUp(.3) && stepUp(.3) < .5);
    SimTK_TEST(.5 < stepUp(.7) && stepUp(.7) < 1);
    SimTK_TEST(stepDown(0.)==1 && stepDown(.5)==.5 && stepDown(1.)==0);
    SimTK_TEST(.5 < stepDown(.3) && stepDown(.3) < 1);
    SimTK_TEST(0 < stepDown(.7) && stepDown(.7) < .5);
    SimTK_TEST(dstepUp(0.)==0 && dstepUp(.5)>0 && dstepUp(1.)==0);
    SimTK_TEST(dstepDown(0.)==0 && dstepDown(.5)<0 && dstepDown(1.)==0);
    SimTK_TEST(d2stepUp(0.)==0 && d2stepUp(1.)==0);
    SimTK_TEST(d2stepDown(0.)==0 && d2stepDown(1.)==0);
        // float
    SimTK_TEST(stepUp(0.f)==0 && stepUp(.5f)==.5f && stepUp(1.f)==1);
    SimTK_TEST(0 < stepUp(.3f) && stepUp(.3f) < .5f);
    SimTK_TEST(.5f < stepUp(.7f) && stepUp(.7f) < 1);
    SimTK_TEST(stepDown(0.f)==1 && stepDown(.5f)==.5f && stepDown(1.f)==0);
    SimTK_TEST(.5f < stepDown(.3f) && stepDown(.3f) < 1);
    SimTK_TEST(0 < stepDown(.7f) && stepDown(.7f) < .5f);
    SimTK_TEST(dstepUp(0.f)==0 && dstepUp(.5f)>0 && dstepUp(1.f)==0);
    SimTK_TEST(dstepDown(0.f)==0 && dstepDown(.5f)<0 && dstepDown(1.f)==0);
    SimTK_TEST(d2stepUp(0.f)==0 && d2stepUp(1.f)==0);
    SimTK_TEST(d2stepDown(0.f)==0 && d2stepDown(1.f)==0);

        // int is treated as a double, but only for stepUp()/stepDown()
    SimTK_TEST(stepUp(0)==0 && stepUp(1)==1);
    SimTK_TEST(stepDown(0)==1 && stepDown(1)==0);

    // Don't know anything analytic about d3 but can test with finite
    // differencing below.

    // Central difference estimates should give around 10 
    // decimal places in double, 4 in float.
    const double dupEst = (stepUp(.799+1e-6)-stepUp(.799-1e-6))/2e-6;
    const double ddnEst = (stepDown(.799+1e-6)-stepDown(.799-1e-6))/2e-6;
    const double d2upEst = (dstepUp(.723+1e-6)-dstepUp(.723-1e-6))/2e-6;
    const double d2dnEst = (dstepDown(.723+1e-6)-dstepDown(.723-1e-6))/2e-6;
    const double d3upEst = (d2stepUp(.123+1e-6)-d2stepUp(.123-1e-6))/2e-6;
    const double d3dnEst = (d2stepDown(.123+1e-6)-d2stepDown(.123-1e-6))/2e-6;
    SimTK_TEST_EQ_TOL(dstepUp(.799), dupEst, 1e-8);
    SimTK_TEST_EQ_TOL(dstepDown(.799), ddnEst, 1e-8);
    SimTK_TEST_EQ_TOL(d2stepUp(.723), d2upEst, 1e-8);
    SimTK_TEST_EQ_TOL(d2stepDown(.723), d2dnEst, 1e-8);
    SimTK_TEST_EQ_TOL(d3stepUp(.123), d3upEst, 1e-8);
    SimTK_TEST_EQ_TOL(d3stepDown(.123), d3dnEst, 1e-8);

    const float fdupEst = (stepUp(.699f+1e-3f)-stepUp(.699f-1e-3f))/2e-3f;
    const float fddnEst = (stepDown(.699f+1e-3f)-stepDown(.699f-1e-3f))/2e-3f;
    const float fd2upEst = (dstepUp(.623f+1e-3f)-dstepUp(.623f-1e-3f))/2e-3f;
    const float fd2dnEst = (dstepDown(.623f+1e-3f)-dstepDown(.623f-1e-3f))/2e-3f;
    const float fd3upEst = (d2stepUp(.211f+1e-3f)-d2stepUp(.211f-1e-3f))/2e-3f;
    const float fd3dnEst = (d2stepDown(.211f+1e-3f)-d2stepDown(.211f-1e-3f))/2e-3f;
    SimTK_TEST_EQ_TOL(dstepUp(.699f), fdupEst, 1e-3);
    SimTK_TEST_EQ_TOL(dstepDown(.699f), fddnEst, 1e-3);
    SimTK_TEST_EQ_TOL(d2stepUp(.623f), fd2upEst, 1e-3);
    SimTK_TEST_EQ_TOL(d2stepDown(.623f), fd2dnEst, 1e-3);
    SimTK_TEST_EQ_TOL(d3stepUp(.211f), fd3upEst, 1e-3);
    SimTK_TEST_EQ_TOL(d3stepDown(.211f), fd3dnEst, 1e-3);


    // y = stepAny(y0,yrange,x0,1/xrange, x)
    // y goes from -1 to 1 as x goes from 0 to 1, exact arithmetic.
    SimTK_TEST(stepAny(-1,2,0,1,0.) == -1);
    SimTK_TEST(stepAny(-1,2,0,1,.5) == 0);
    SimTK_TEST(stepAny(-1,2,0,1,1.) == 1);
    SimTK_TEST(stepAny(-1,2,0,1,0.f) == -1);
    SimTK_TEST(stepAny(-1,2,0,1,.5f) == 0);
    SimTK_TEST(stepAny(-1,2,0,1,1.f) == 1);

    // y goes from -7 down to -14 as x goes from -3.1 up to +429.3.
    const double x0=-3.1, x1=429.3, y0=-7., y1=-14.;
    const double xr=(x1-x0), ooxr=1/xr, yr=(y1-y0);
    SimTK_TEST_EQ(stepAny(y0,yr,x0,ooxr,-3.1), y0);
    SimTK_TEST_EQ(stepAny(y0,yr,x0,ooxr,429.3), y1);
    SimTK_TEST_EQ(stepAny(y0,yr,x0,ooxr,x0+xr/2), y0+yr/2);

    const float fx0=-3.1f, fx1=429.3f, fy0=-7.f, fy1=-14.f;
    const float fxr=(fx1-fx0), fooxr=1/fxr, fyr=(fy1-fy0);
    SimTK_TEST_EQ(stepAny(fy0,fyr,fx0,fooxr,-3.1f),fy0);
    SimTK_TEST_EQ(stepAny(fy0,fyr,fx0,fooxr,429.3f),fy1);
    SimTK_TEST_EQ(stepAny(fy0,fyr,fx0,fooxr,fx0+fxr/2),fy0+fyr/2);

    // Check derivatives
    const double danyEst = 
        (stepAny(y0,yr,x0,ooxr,.799+1e-6)-stepAny(y0,yr,x0,ooxr,.799-1e-6))/2e-6;
    const double d2anyEst = 
        (dstepAny(yr,x0,ooxr,.723+1e-6)-dstepAny(yr,x0,ooxr,.723-1e-6))/2e-6;
    const double d3anyEst = 
        (d2stepAny(yr,x0,ooxr,.123+1e-6)-d2stepAny(yr,x0,ooxr,.123-1e-6))/2e-6;
    SimTK_TEST_EQ_TOL(dstepAny(yr,x0,ooxr,.799), danyEst, 1e-8);
    SimTK_TEST_EQ_TOL(d2stepAny(yr,x0,ooxr,.723), d2anyEst, 1e-8);
    SimTK_TEST_EQ_TOL(d3stepAny(yr,x0,ooxr,.123), d3anyEst, 1e-8);

    const float fdanyEst = 
        (stepAny(fy0,fyr,fx0,fooxr,.799f+1e-3f)
        -stepAny(fy0,fyr,fx0,fooxr,.799f-1e-3f))/2e-3f;
    const float fd2anyEst = 
        (dstepAny(fyr,fx0,fooxr,.723f+1e-3f)
        -dstepAny(fyr,fx0,fooxr,.723f-1e-3f))/2e-3f;
    const float fd3anyEst = 
        (d2stepAny(fyr,fx0,fooxr,.123f+1e-3f)
        -d2stepAny(fyr,fx0,fooxr,.123f-1e-3f))/2e-3f;
    SimTK_TEST_EQ_TOL(dstepAny(fyr,fx0,fooxr,.799f), fdanyEst, 1e-3);
    SimTK_TEST_EQ_TOL(d2stepAny(fyr,fx0,fooxr,.723f), fd2anyEst, 1e-3);
    SimTK_TEST_EQ_TOL(d3stepAny(fyr,fx0,fooxr,.123f), fd3anyEst, 1e-3);
}

int main() {
    SimTK_START_TEST("TestScalar");

        SimTK_SUBTEST(testIsNaN);
        SimTK_SUBTEST(testIsInf);
        SimTK_SUBTEST(testIsFinite);
        SimTK_SUBTEST(testSignBit);
        SimTK_SUBTEST(testSign);
        SimTK_SUBTEST(testSquareAndCube);
        SimTK_SUBTEST(testIsNumericallyEqual);
        SimTK_SUBTEST(testClamp);
        SimTK_SUBTEST(testStep);

    SimTK_END_TEST();
}