1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKcommon *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2009-12 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/*
* Here we'll build a very simple System containing a simple
* Subsystem, and integrate with a simple integrator. This avoids all the usual
* Simmath and Simbody trappings and lets us just check out the underlying
* simulation architecture.
*/
#include "SimTKcommon.h"
#include "SimTKcommon/internal/SystemGuts.h"
#include <map>
#include <iostream>
using std::cout;
using std::endl;
using namespace SimTK;
#define ASSERT(cond) {SimTK_ASSERT_ALWAYS((cond), "Assertion failed.");}
#define ASSERT_EQ(v1,v2) \
{SimTK_ASSERT_ALWAYS(numericallyEqual((v1),(v2)), \
"Values should have been numerically equivalent.");}
// Scale by the magnitude of the quantities being compared, so that we don't
// ask for unreasonable precision. For magnitudes near zero, we'll be satisfied
// if both are very small without demanding that they must also be relatively
// close. That is, we use a relative tolerance for big numbers and an absolute
// tolerance for small ones.
bool numericallyEqual(float v1, float v2) {
const float scale = std::max(std::max(std::abs(v1), std::abs(v2)), 0.1f);
return std::abs(v1-v2) < scale*NTraits<float>::getSignificant();
}
bool numericallyEqual(double v1, double v2) {
const double scale = std::max(std::max(std::abs(v1), std::abs(v2)), 0.1);
return std::abs(v1-v2) < scale*NTraits<double>::getSignificant();
}
template <class P>
bool numericallyEqual(const std::complex<P>& v1, const std::complex<P>& v2) {
return numericallyEqual(v1.real(), v2.real())
&& numericallyEqual(v1.imag(), v2.imag());
}
template <class P>
bool numericallyEqual(const conjugate<P>& v1, const conjugate<P>& v2) {
return numericallyEqual(v1.real(), v2.real())
&& numericallyEqual(v1.imag(), v2.imag());
}
template <class P>
bool numericallyEqual(const std::complex<P>& v1, const conjugate<P>& v2) {
return numericallyEqual(v1.real(), v2.real())
&& numericallyEqual(v1.imag(), v2.imag());
}
template <class P>
bool numericallyEqual(const conjugate<P>& v1, const std::complex<P>& v2) {
return numericallyEqual(v1.real(), v2.real())
&& numericallyEqual(v1.imag(), v2.imag());
}
template <class P>
bool numericallyEqual(const negator<P>& v1, const negator<P>& v2) {
return numericallyEqual(-v1, -v2); // P, P
}
template <class P>
bool numericallyEqual(const P& v1, const negator<P>& v2) {
return numericallyEqual(-v1, -v2); // P, P
}
template <class P>
bool numericallyEqual(const negator<P>& v1, const P& v2) {
return numericallyEqual(-v1, -v2); // P, P
}
template <class P>
bool numericallyEqual(const negator<std::complex<P> >& v1, const conjugate<P>& v2) {
return numericallyEqual(-v1, -v2); // complex, conjugate
}
template <class P>
bool numericallyEqual(const negator<conjugate<P> >& v1, const std::complex<P>& v2) {
return numericallyEqual(-v1, -v2); // conjugate, complex
}
template <class P>
bool numericallyEqual(const std::complex<P>& v1, const negator<conjugate<P> >& v2) {
return numericallyEqual(-v1, -v2); // complex, conjugate
}
template <class P>
bool numericallyEqual(const conjugate<P>& v1, const negator<std::complex<P> >& v2) {
return numericallyEqual(-v1, -v2); // conjugate, complex
}
namespace SimTK {
typedef std::map<EventId, SubsystemIndex> EventRegistry;
std::ostream& operator<<(std::ostream& o, const EventRegistry&) {return o;}
}
class SystemSubsystemGuts : public Subsystem::Guts {
public:
SystemSubsystemGuts() {}
const EventRegistry& getEventRegistry(const State& s) const
{ assert(eventRegistry >= 0);
return Value<EventRegistry>::downcast(getCacheEntry(s, eventRegistry)); }
EventRegistry& updEventRegistry(const State& s) const
{ assert(eventRegistry >= 0);
return Value<EventRegistry>::updDowncast(updCacheEntry(s, eventRegistry)); }
// implementations of Subsystem::Guts virtuals
SystemSubsystemGuts* cloneImpl() const override
{ return new SystemSubsystemGuts(*this); }
int realizeSubsystemTopologyImpl(State& s) const override {
eventRegistry = allocateCacheEntry(s, Stage::Instance,
new Value<EventRegistry>());
return 0;
}
private:
mutable CacheEntryIndex eventRegistry;
};
class SystemSubsystem : public Subsystem {
public:
SystemSubsystem() {
adoptSubsystemGuts(new SystemSubsystemGuts());
}
void registerEventsToSubsystem(const State& s, const Subsystem::Guts& sub,
EventId start, int nEvents) const
{ EventRegistry& er = getGuts().updEventRegistry(s);
SubsystemIndex sx = sub.getMySubsystemIndex();
for (int i=start; i < start+nEvents; ++i)
er[EventId(i)] = sx;
}
const EventRegistry& getEventRegistry(const State& s) const
{ return getGuts().getEventRegistry(s); }
private:
const SystemSubsystemGuts& getGuts() const
{ return dynamic_cast<const SystemSubsystemGuts&>(getSubsystemGuts());}
SystemSubsystemGuts& updGuts()
{ return dynamic_cast<SystemSubsystemGuts&>(updSubsystemGuts());}
};
class TestSystemGuts : public System::Guts {
public:
const SystemSubsystem& getSystemSubsystem() const {return syssub;}
SystemSubsystem& updSystemSubsystem() {return syssub;}
// implementations of System::Guts virtuals
TestSystemGuts* cloneImpl() const override
{ return new TestSystemGuts(*this); }
bool prescribeQImpl(State& state) const override
{
return false;
}
bool prescribeUImpl(State& state) const override
{
return false;
}
void projectQImpl(State& state, Vector& yerrest, const ProjectOptions& opts,
ProjectResults& result) const override
{
result.setExitStatus(ProjectResults::Succeeded);
}
void projectUImpl(State& state, Vector& yerrest, const ProjectOptions& opts,
ProjectResults& result) const override
{
result.setExitStatus(ProjectResults::Succeeded);
}
void handleEventsImpl
(State& s, Event::Cause cause, const Array_<EventId>& eventIds,
const HandleEventsOptions& options, HandleEventsResults& results) const
override
{
cout << "handleEventsImpl t=" << s.getTime()
<< " cause=" << Event::getCauseName(cause) << endl;
if (eventIds.empty()) {
for (SubsystemIndex sx(0); sx < getNumSubsystems(); ++sx) {
const Subsystem& sub = getSubsystem(sx);
sub.getSubsystemGuts().handleEvents(s, cause, eventIds,
options, results);
if (results.getExitStatus()==HandleEventsResults::Failed)
break;
}
return;
}
// If there are EventIds, dole them out to the owning subsystem.
const EventRegistry& registry = getSystemSubsystem().getEventRegistry(s);
std::map<SubsystemIndex, Array_<EventId> > eventsPerSub;
for (EventId eid(0); eid < eventIds.size(); ++eid)
eventsPerSub[ registry.find(eid)->second ].push_back(eid);
std::map<SubsystemIndex, Array_<EventId> >::const_iterator
i = eventsPerSub.begin();
for (; i != eventsPerSub.end(); ++i) {
const Subsystem& sub = getSubsystem(i->first);
sub.getSubsystemGuts().handleEvents(s, cause, i->second,
options, results);
if (results.getExitStatus()==HandleEventsResults::Failed)
break;
}
}
int reportEventsImpl(const State& s, Event::Cause cause,
const Array_<EventId>& eventIds) const override
{
cout << "reportEventsImpl t=" << s.getTime() << " cause="
<< Event::getCauseName(cause) << endl;
return 0;
}
private:
SystemSubsystem syssub;
};
class TestSystem : public System {
public:
TestSystem() {
adoptSystemGuts(new TestSystemGuts());
adoptSubsystem(updGuts().updSystemSubsystem());
}
const SystemSubsystem& getSystemSubsystem() const
{ return getGuts().getSystemSubsystem(); }
SystemSubsystem& updSystemSubsystem()
{ return updGuts().updSystemSubsystem(); }
void registerEventsToSubsystem(const State& s, const Subsystem::Guts& sub,
EventId start, int nEvents) const
{
const SystemSubsystem& syssub = getGuts().getSystemSubsystem();
syssub.registerEventsToSubsystem(s,sub,start,nEvents);
}
static const TestSystem& getAs(const System& sys)
{ assert(dynamic_cast<const Guts*>(&sys.getSystemGuts()));
return static_cast<const TestSystem&>(sys); }
static TestSystem& updAs(System& sys)
{ assert(dynamic_cast<const Guts*>(&sys.getSystemGuts()));
return static_cast<TestSystem&>(sys); }
private:
const TestSystemGuts& getGuts() const
{ return dynamic_cast<const TestSystemGuts&>(getSystemGuts());}
TestSystemGuts& updGuts()
{ return dynamic_cast<TestSystemGuts&>(updSystemGuts());}
};
class TestSubsystemGuts : public Subsystem::Guts {
struct StateVars {
QIndex myQs;
UIndex myUs;
};
struct CacheEntries {
CacheEntryIndex qSumCacheIx, uSumCacheIx;
EventTriggerByStageIndex timeTriggerIx, velTriggerIx;
};
public:
TestSubsystemGuts() {}
const Vec3& getQ3(const State& s) const {return Vec3::getAs(&getQ(s)[getStateVars(s).myQs]);}
const Vec3& getU3(const State& s) const {return Vec3::getAs(&getU(s)[getStateVars(s).myQs]);}
const Vec3& getQDot3(const State& s) const {return Vec3::getAs(&getQDot(s)[getStateVars(s).myQs]);}
const Vec3& getUDot3(const State& s) const {return Vec3::getAs(&getUDot(s)[getStateVars(s).myUs]);}
const Vec3& getQDotDot3(const State& s) const {return Vec3::getAs(&getQDotDot(s)[getStateVars(s).myQs]);}
Real getQSum(const State& s) const {return Value<Real>::downcast(getCacheEntry(s,getCacheEntries(s).qSumCacheIx));}
Real getUSum(const State& s) const {return Value<Real>::downcast(getCacheEntry(s,getCacheEntries(s).uSumCacheIx));}
Real getTimeTrigger1(const State& s) const {return getEventTriggersByStage(s, Stage::Time)[getCacheEntries(s).timeTriggerIx];}
Real getTimeTrigger2(const State& s) const {return getEventTriggersByStage(s, Stage::Time)[getCacheEntries(s).timeTriggerIx+1];}
Real getVelTrigger(const State& s) const {return getEventTriggersByStage(s, Stage::Velocity)[getCacheEntries(s).velTriggerIx];}
Vec3& updQ3(State& s) const {return Vec3::updAs(&updQ(s)[getStateVars(s).myQs]);}
Vec3& updU3(State& s) const {return Vec3::updAs(&updU(s)[getStateVars(s).myUs]);}
// implementations of Subsystem::Guts virtuals
TestSubsystemGuts* cloneImpl() const override
{ return new TestSubsystemGuts(*this); }
int realizeSubsystemTopologyImpl(State& s) const override {
myStateVars = allocateCacheEntry(s, Stage::Model, new Value<StateVars>());
myCacheEntries = allocateCacheEntry(s, Stage::Instance, new Value<CacheEntries>());
return 0;
}
int realizeSubsystemModelImpl(State& s) const override {
StateVars& vars = updStateVars(s);
vars.myQs = allocateQ(s, Vector(Vec3(0)));
vars.myUs = allocateU(s, Vector(Vec3(0)));
return 0;
}
int realizeSubsystemInstanceImpl(const State& s) const override {
CacheEntries& cache = updCacheEntries(s);
cache.qSumCacheIx = allocateCacheEntry(s, Stage::Position, new Value<Real>(0));
cache.uSumCacheIx = allocateCacheEntry(s, Stage::Velocity, new Value<Real>(0));
cache.timeTriggerIx = allocateEventTriggersByStage(s, Stage::Time, 2);
cache.velTriggerIx = allocateEventTriggersByStage(s, Stage::Velocity, 1);
getTestSystem().registerEventsToSubsystem(s, *this, EventId(cache.timeTriggerIx), 2);
getTestSystem().registerEventsToSubsystem(s, *this, EventId(cache.velTriggerIx), 1);
return 0;
}
int realizeSubsystemTimeImpl(const State& s) const override {
const Real TriggerTime1 = .6789, TriggerTime2 = 1.234;
updTimeTrigger1(s) = s.getTime() - TriggerTime1;
updTimeTrigger2(s) = s.getTime() - TriggerTime2;
return 0;
}
int realizeSubsystemPositionImpl(const State& s) const override {
updQSum(s) = sum(getQ3(s));
return 0;
}
int realizeSubsystemVelocityImpl(const State& s) const override {
const Real TriggerUSum = 5;
updQDot3(s) = getU3(s);
const Real usum = updUSum(s) = sum(getU3(s));
updVelTrigger(s) = usum - TriggerUSum;
return 0;
}
int realizeSubsystemAccelerationImpl(const State& s) const override {
updQDotDot3(s) = updUDot3(s) = Vec3(1,2,3);
return 0;
}
void handleEventsImpl(State& s, Event::Cause cause,
const Array_<EventId>& eventIds,
const HandleEventsOptions& options,
HandleEventsResults& results) const override
{
cout << "**** TestSubsystem::handleEventsImpl t=" << s.getTime()
<< " acc=" << options.getAccuracy()
<< " eventIds=";
for (unsigned i=0; i < eventIds.size(); ++i)
cout << " " << eventIds[i];
cout << " ****" << endl;
// Pretend we changed a position to test lowestModifiedStage
// calculation. Try to hide our duplicity by realizing it again.
s.invalidateAllCacheAtOrAbove(Stage::Position);
getSystem().realize(s, Stage::Velocity);
results.setExitStatus(HandleEventsResults::Succeeded);
}
void reportEventsImpl(const State&, Event::Cause,
const Array_<EventId>& eventIds) const override
{
}
private:
Vec3& updQDot3(const State& s) const {return Vec3::updAs(&updQDot(s)[getStateVars(s).myQs]);}
Vec3& updUDot3(const State& s) const {return Vec3::updAs(&updUDot(s)[getStateVars(s).myUs]);}
Vec3& updQDotDot3(const State& s) const {return Vec3::updAs(&updQDotDot(s)[getStateVars(s).myQs]);}
Real& updQSum(const State& s) const {return Value<Real>::updDowncast(updCacheEntry(s,getCacheEntries(s).qSumCacheIx));}
Real& updUSum(const State& s) const {return Value<Real>::updDowncast(updCacheEntry(s,getCacheEntries(s).uSumCacheIx));}
Real& updTimeTrigger1(const State& s) const {return updEventTriggersByStage(s, Stage::Time)[getCacheEntries(s).timeTriggerIx];}
Real& updTimeTrigger2(const State& s) const {return updEventTriggersByStage(s, Stage::Time)[getCacheEntries(s).timeTriggerIx+1];}
Real& updVelTrigger(const State& s) const {return updEventTriggersByStage(s, Stage::Velocity)[getCacheEntries(s).velTriggerIx];}
const StateVars& getStateVars(const State& s) const
{ assert(myStateVars >= 0);
return Value<StateVars>::downcast(getCacheEntry(s,myStateVars)); }
const CacheEntries& getCacheEntries(const State& s) const
{ assert(myCacheEntries >= 0);
return Value<CacheEntries>::downcast(getCacheEntry(s,myCacheEntries)); }
StateVars& updStateVars (const State& s) const
{ assert(myStateVars >= 0);
return Value<StateVars>::updDowncast(updCacheEntry(s,myStateVars)); }
CacheEntries& updCacheEntries(const State& s) const
{ assert(myCacheEntries >= 0);
return Value<CacheEntries>::updDowncast(updCacheEntry(s,myCacheEntries)); }
const TestSystem& getTestSystem() const {return TestSystem::getAs(getSystem());}
TestSystem& updTestSystem() {return TestSystem::updAs(updSystem());}
// TOPOLOGY STATE VARIABLES //
Array_<EventHandler*> eventHandlers;
mutable Array_<EventReporter*> eventReporters;
// TOPOLOGY CACHE //
mutable CacheEntryIndex myStateVars;
mutable CacheEntryIndex myCacheEntries;
};
// This Subsystem has 3 q's and 3 u's of its own, as well as whatever State
// variables its Measures require.
class TestSubsystem : public Subsystem {
public:
TestSubsystem(System& sys) {
adoptSubsystemGuts(new TestSubsystemGuts());
sys.adoptSubsystem(*this);
}
Real getQSum(const State& s) {return getGuts().getQSum(s);}
Real getUSum(const State& s) {return getGuts().getUSum(s);}
private:
const TestSubsystemGuts& getGuts() const
{ return dynamic_cast<const TestSubsystemGuts&>(getSubsystemGuts());}
TestSubsystemGuts& updGuts()
{ return dynamic_cast<TestSubsystemGuts&>(updSubsystemGuts());}
};
// Find the event triggers at a particular stage that changed sign since
// they were last recorded in events0.
static void findEvents(const State& state, Stage g, const Vector& triggers0,
Array_<EventId>& triggered)
{
const int n = state.getNEventTriggersByStage(g);
const int start = state.getEventTriggerStartByStage(g); // location within triggers0 Vector
const Vector& stageTriggers = state.getEventTriggersByStage(g);
triggered.clear();
for (int i=0; i < n; ++i) {
const EventId allStageId = EventId(start + i);
if (sign(triggers0[allStageId]) != sign(stageTriggers[i]))
triggered.push_back(allStageId);
}
}
static Real accuracy = 1e-6;
static Real timescale;
static bool handleEvents(const System& sys, State& state, Stage g,
const Array_<EventId>& triggered)
{
if (triggered.empty())
return false;
cout << "==> Handling " << triggered.size() << " events at Stage " << g << ":";
for (unsigned i=0; i < triggered.size(); ++i)
cout << " " << triggered[i];
cout << endl;
bool shouldTerminate = false;
HandleEventsOptions options(accuracy);
HandleEventsResults results;
Array_<StageVersion> stageVersions;
state.getSystemStageVersions(stageVersions);
cout << "BEFORE handling stage versions=\n";
cout << stageVersions << "\n";
sys.handleEvents(state, Event::Cause::Triggered, triggered,
options, results);
state.getSystemStageVersions(stageVersions);
cout << "AFTER handling stage versions=\n";
cout << stageVersions << "\n";
cout << "Results lowestStage=" << results.getLowestModifiedStage() <<"\n";
if (results.getExitStatus()==HandleEventsResults::ShouldTerminate) {
cout << "==> Event at Stage " << g
<< " requested termination at t=" << state.getTime() << endl;
shouldTerminate = true;
}
return shouldTerminate;
}
template <class T>
class MySinCos : public Measure_<T> {
public:
SimTK_MEASURE_HANDLE_PREAMBLE(MySinCos, Measure_<T>);
SimTK_MEASURE_HANDLE_POSTSCRIPT(MySinCos, Measure_<T>);
};
template <class T>
class MySinCos<T>::Implementation : public Measure_<T>::Implementation {
public:
Implementation()
: Measure_<T>::Implementation(T(Vec2(0)), 1) {}
// Default copy constructor, destructor, copy assignment are fine.
// Implementations of virtual methods.
Implementation* cloneVirtual() const {return new Implementation(*this);}
int getNumTimeDerivativesVirtual() const {return 0;}
Stage getDependsOnStageVirtual(int order) const
{ return Stage::Time; }
void calcCachedValueVirtual(const State& s, int derivOrder, T& value) const
{
SimTK_ASSERT1_ALWAYS(derivOrder==0,
"MySinCos::Implementation::calcCachedValueVirtual():"
" derivOrder %d seen but only 0 allowed.", derivOrder);
value[0] = std::sin(s.getTime());
value[1] = std::cos(s.getTime());
}
};
template <class T>
class MyRealMeasure : public Measure_<T> {
public:
SimTK_MEASURE_HANDLE_PREAMBLE(MyRealMeasure, Measure);
SimTK_MEASURE_HANDLE_POSTSCRIPT(MyRealMeasure, Measure);
};
template <class T>
class MyRealMeasure<T>::Implementation : public Measure_<T>::Implementation {
public:
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
int getNumTimeDerivativesVirtual() const override
{ return 0; }
Stage getDependsOnStageVirtual(int order) const override
{ return Stage::Time; }
};
void testOne() {
TestSystem sys;
TestSubsystem subsys(sys);
// Add a Result measure to the system subsystem. This depends on
// Position stage and invalidates Dynamics and later stages.
Measure_<Vector>::Result vectorResult(sys.updSystemSubsystem(),
Stage::Position, Stage::Dynamics);
MeasureIndex vectorResultIx = vectorResult.getSubsystemMeasureIndex();
cout << "vectorResult index="
<< vectorResultIx << endl;
Measure_<Vector>::Result myVecRes = Measure_<Vector>::Result::getAs(
sys.updSystemSubsystem().getMeasure(vectorResultIx));
Measure::Result result(sys.updSystemSubsystem(),
Stage::Time, Stage::Position);
Measure::Result autoResult(sys.updSystemSubsystem(),
Stage::Time, Stage::Position);
autoResult.setIsPresumedValidAtDependsOnStage(true);
Measure::Zero zero(subsys);
Measure::Constant three(subsys, 3);
Measure_<Vec3>::Constant v3const(subsys, Vec3(1,2,3));
Measure::Sinusoid cos2pit(subsys, 1, 2*Pi, Pi/2);
// Integrate the cos(2pi*t) measure with IC=0; should give sin(2pi*t)/2pi.
Measure::Integrate sin2pitOver2pi(subsys, cos2pit, zero);
// These two compute -cos(t), sin(t) by integrating sin(t), cos(t) with
// initial conditions -1,0.
Measure_<Vec2>::Constant cossinInit(subsys, Vec2(-1,0));
MySinCos<Vec2> mysincos(subsys);
Measure_<Vec2>::Integrate cossin(subsys, mysincos, cossinInit);
Measure_<Vector>::Constant vcossinInit(subsys, Vector(Vec2(-1,0)));
MySinCos<Vector> vmysincos(subsys);
Measure_<Vector>::Integrate vcossin(subsys, vmysincos, vcossinInit,
Vector(2,Zero));
Measure_<Vector>::Delay vcossin_delaypt1(subsys, vcossin, .1);
Measure_<Real>::Minimum minCos2pit(subsys, cos2pit);
Measure_<Real>::Maximum maxCos2pit(subsys, cos2pit);
Measure_<Real>::MinAbs minAbsCos2pit(subsys, cos2pit);
Measure_<Real>::MaxAbs maxAbsCos2pit(subsys, cos2pit);
Measure::Differentiate dInteg(subsys, sin2pitOver2pi);
dInteg.setForceUseApproximation(true);
Measure::Time tMeasure;
Measure::Time tSubMeas(subsys);
Measure::Delay tDelayed(subsys, tSubMeas, 0.01);
Measure::Scale t1000(subsys, 1000, tSubMeas);
Measure::Variable mv(subsys, Stage::Position, 29);
cout << "mv def value=" << mv.getDefaultValue() << endl;
mv.setDefaultValue(-19);
cout << "mv def value now=" << mv.getDefaultValue() << endl;
cout << "Measure::Zero=" << Measure::Zero().getValue(State()) << endl;
cout << "Measure::One=" << Measure::One().getValue(State()) << endl;
Measure::Plus vplus(subsys, mv, cos2pit);
Measure::Minus vminus(subsys, mv, cos2pit);
Measure::Plus vplus2;
vplus2.deepAssign(vplus);
Measure m;
m = cos2pit;
cout << "vplus ref count=" << vplus.getRefCount() << endl;
cout << "vplus2 ref count=" << vplus2.getRefCount() << endl;
State state = sys.realizeTopology();
cout << "sys topo version=" << sys.getSystemTopologyCacheVersion() << "\n";
cout << "state topo version=" << state.getSystemTopologyStageVersion() << "\n";
sys.invalidateSystemTopologyCache();
sys.realizeTopology();
cout << "sys topo version=" << sys.getSystemTopologyCacheVersion() << "\n";
// Use sneaky loophole since we know state is still good.
state.setSystemTopologyStageVersion(sys.getSystemTopologyCacheVersion());
sys.realizeModel(state);
m = zero;
cout << "m=" << m.getValue(state) << endl;
cout << "uWeights=" << state.getUWeights() << "\n";
cout << "zWeights=" << state.getZWeights() << "\n";
state.updUWeights()[1] = 9;
state.updZWeights() = 21;
cout << "uWeights=" << state.getUWeights() << "\n";
cout << "zWeights=" << state.getZWeights() << "\n";
sys.realize(state,Stage::Instance);
cout << "qerrWeights=" << state.getQErrWeights() << "\n";
cout << "uerrWeights=" << state.getUErrWeights() << "\n";
State dupState = state;
cout << "dup uWeights=" << state.getUWeights() << "\n";
cout << "dup zWeights=" << state.getZWeights() << "\n";
cout << "dup qerrWeights=" << state.getQErrWeights() << "\n";
cout << "dup uerrWeights=" << state.getUErrWeights() << "\n";
// Allocate vectorResult and initialize it. (Can't mark it valid yet.)
vectorResult.updValue(state).resize(3);
vectorResult.updValue(state) = Vector(Vec3(1,2,3));
result.updValue(state) = 1.234;
autoResult.updValue(state) = 4.321;
state.setTime(1.234);
sys.realize(state, Stage::Time);
cout << "Initially, tMeasure=" << tMeasure.getValue(state)
<< " tSubMeas=" << tSubMeas.getValue(state)
<< " 1000*tMeasure=" << t1000.getValue(state)
<< endl;
Measure_<Mat22>::One m22Ident;
cout << "Measure_<Mat22>::One=" << m22Ident.getValue(state) << endl;
cout << "mv after realizeTopo=" << mv.getValue(state) << endl;
cout << "cossinInit=" << cossinInit.getValue(state) << endl;
State s2,s3;
s2 = state; // new copies of variables
s2 = state; // should do only assignments w/o heap allocation
// Explicit midpoint steps.
const Real h = .001;
const int nSteps = 2000;
const int outputInterval = 100;
state.setTime(0);
ASSERT(state.getTime()==0);
//initialize()
sys.realize(state, Stage::Position);
cout << "mv+cos2pit=" << vplus.getValue(state) << endl;
cout << "mv-cos2pit=" << vminus.getValue(state) << endl;
cout << "Sys stage after realize(Pos):"
<< state.getSystemStage().getName() << endl;
mv.setValue(state, 1.234);
cout << "Sys stage after mv=1.234:"
<< state.getSystemStage().getName() << endl;
cout << "mv is now=" << mv.getValue(state) << endl;
sys.realize(state, Stage::Position);
cout << "Realized Position:\n";
vectorResult.markAsValid(state);
cout << "vectorResult=" << vectorResult.getValue(state) << endl;
cout << "myVecRes=" << myVecRes.getValue(state) << endl;
result.markAsValid(state);
cout << "result=" << result.getValue(state) << endl;
// Shouldn't need to mark this one.
cout << "autoResult=" << autoResult.getValue(state) << endl;
// Fill in statics above.
timescale = sys.getDefaultTimeScale();
sys.realize(state, Stage::Acceleration);
cout << "Now stage=" << state.getSystemStage() << endl;
vectorResult.setValue(state, Vector(5,9));
cout << "After vectorResult.setValue(), vectorResult="
<< vectorResult.getValue(state) << endl;
cout << "... but stage=" << state.getSystemStage() << endl;
cossin.setValue(state, cossinInit.getValue(state));
vcossin.setValue(state, vcossinInit.getValue(state));
// Handler is allowed to throw an exception if it fails since we don't
// have a way to recover.
HandleEventsOptions handleOpts;
HandleEventsResults results;
sys.handleEvents(state, Event::Cause::Initialization,
Array_<EventId>(), handleOpts, results);
SimTK_ERRCHK_ALWAYS(
results.getExitStatus()!=HandleEventsResults::ShouldTerminate,
"Integrator::initialize()",
"An initialization event handler requested termination.");
sys.realize(state, Stage::Acceleration);
state.autoUpdateDiscreteVariables(); // ??
for (int i=0; i <= nSteps; ++i) {
if (i % outputInterval == 0) {
sys.realize(state, Stage::Report);
cout << "\ntMeasure=" << tMeasure.getValue(state)
<< " d/dt tMeasure=" << tMeasure.getValue(state,1)
<< " d3/dt3 tMeasure=" << tMeasure.getValue(state,3)
<< " 1000*tSubMeas=" << t1000.getValue(state)
<< " t=" << state.getTime() << endl;
cout << " tDelayed=" << tDelayed.getValue(state) << endl;
cout << "q=" << state.getQ() << " u=" << state.getU() << endl;
cout << "qSum=" << subsys.getQSum(state) << " uSum=" << subsys.getUSum(state) << endl;
cout << "three=" << three.getValue(state) << " v3const=" << v3const.getValue(state) << endl;
cout << "cos2pit=" << cos2pit.getValue(state)
<< " cos(2pi*t)=" << std::cos(2*Pi*state.getTime()) << endl;
cout << "Min(cos2pit)=" << minCos2pit.getValue(state)
<< " @t=" << minCos2pit.getTimeOfExtremeValue(state) << endl;
cout << "Max(cos2pit)=" << maxCos2pit.getValue(state)
<< " @t=" << maxCos2pit.getTimeOfExtremeValue(state) << endl;
cout << "MinAbs(cos2pit)=" << minAbsCos2pit.getValue(state)
<< " @t=" << minAbsCos2pit.getTimeOfExtremeValue(state) << endl;
cout << "MaxAbs(cos2pit)=" << maxAbsCos2pit.getValue(state)
<< " @t=" << maxAbsCos2pit.getTimeOfExtremeValue(state) << endl;
cout << "sin2pitOver2pi=" << sin2pitOver2pi.getValue(state)
<< " sin(2pi*t)/2pi=" << std::sin(2*Pi*state.getTime())/(2*Pi) << endl;
cout << "d/dt sin2pitOver2pi="
<< sin2pitOver2pi.getValue(state,1) << endl;
cout << "dInteg="
<< dInteg.getValue(state) << endl;
cout << "cossin=" << cossin.getValue(state) << "\n";
cout << "vcossin=" << vcossin.getValue(state) << "\n";
cout << "vcossin delay .1=" << vcossin_delaypt1.getValue(state) << "\n";
}
if (i == nSteps)
break;
const Real h2 = h/2;
const Vector ydot0 = state.getYDot();
const Vector triggers0 = state.getEventTriggers();
Array_<EventId> triggered;
// Commit the values for the discrete variable updates calculated
// at the end of the previous step. This includes both explicitly
// discrete variables and continuous variables which are defined
// by algebraic rather than differential equations, such as
// prescribed motions. This requires that all calculations have
// been performed already using the *updated* values, *not* the
// state values; that permits us to perform this update without
// invalidating any cache entries.
state.autoUpdateDiscreteVariables();
// First integrator stage: unconstrained continuous system only.
state.updY() += h2*ydot0;
state.updTime() += h2;
sys.realize(state, Stage::Time);
sys.prescribeQ(state);
sys.realize(state, Stage::Position);
sys.prescribeU(state);
sys.realize(state);
// Second (final) integrator stage.
// 1. Unconstrained continuous system.
const Vector& ydot = state.getYDot();
state.updY() += h2*ydot; // that is, y = y0 + h*(ydot0+ydot)/2
state.updTime() += h2;
sys.realize(state, Stage::Time);
sys.prescribeQ(state);
// 2. Deal with time-dependent events.
findEvents(state, Stage::Time, triggers0, triggered);
if (handleEvents(sys, state, Stage::Time, triggered))
break;
sys.realize(state, Stage::Position);
sys.prescribeU(state);
// 3a. Project position-dependent constraints.
Vector temp;
ProjectOptions opts(accuracy);
ProjectResults results;
sys.projectQ(state, temp, opts, results);
// 3b. Handle position-dependent events.
findEvents(state, Stage::Position, triggers0, triggered);
if (handleEvents(sys, state, Stage::Position, triggered))
break;
// 4a. Project velocity-dependent constraints.
sys.realize(state, Stage::Velocity);
sys.projectU(state, temp, opts, results);
// 4b. Handle velocity-dependent events.
findEvents(state, Stage::Velocity, triggers0, triggered);
if (handleEvents(sys, state, Stage::Velocity, triggered))
break;
// 5. Handle dynamics- and acceleration-dependent events.
sys.realize(state, Stage::Dynamics);
findEvents(state, Stage::Dynamics, triggers0, triggered);
if (handleEvents(sys, state, Stage::Dynamics, triggered))
break;
sys.realize(state, Stage::Acceleration);
findEvents(state, Stage::Acceleration, triggers0, triggered);
if (handleEvents(sys, state, Stage::Acceleration, triggered))
break;
// Ensure State is realized through Acceleration Stage.
sys.realize(state, Stage::Acceleration);
}
}
int main() {
try {
testOne();
} catch(const std::exception& e) {
cout << "exception: " << e.what() << endl;
return 1;
}
cout << "Done" << endl;
return 0;
}
|