1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKcommon *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2008-12 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: Michael Sherman *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKcommon.h"
#include "SimTKcommon/Testing.h"
#include <iostream>
using std::cout;
using std::endl;
using namespace SimTK;
using namespace std;
// A matrix operation of size N can be expected to achieve an
// accuracy of about N*tol where tol is the expected accuracy
// of a scalar operation.
template <int N>
void testInverse() {
Mat<N,N> identity(1);
Mat<N,N> mat = Test::randMat<N,N>();
SimTK_TEST_EQ_SIZE(mat*mat.invert(), identity, N);
mat = ~mat;
SimTK_TEST_EQ_SIZE(mat*mat.invert(), identity, N);
SimTK_TEST_EQ_SIZE((-mat)*(-mat).invert(), identity, N);
}
void testDotProducts() {
Vec3 v1(1, 2, 3);
Vec3 v2(-1, -2, -3);
Row3 r1(0.1, 0.2, 0.3);
Row3 r2(-0.1, -0.2, -0.3);
SimTK_TEST_EQ(dot(v1, v2), -14.0);
SimTK_TEST_EQ(dot(r1, r2), -0.14);
SimTK_TEST_EQ(dot(v1, r2), -1.4);
SimTK_TEST_EQ(dot(r1, v2), -1.4);
SimTK_TEST_EQ(r1*v2, -1.4);
SpatialVec sv(Vec3(1, 2, 3), Vec3(4, 5, 6));
SpatialRow sr(Row3(1, 2, 3), Row3(4, 5, 6));
SimTK_TEST_EQ(sr*sv, 91.0);
}
void testCrossProducts() {
const Vec3 w = Test::randVec3();
const Vec3 v = Test::randVec3();
const Vec3 wp = UnitVec3(w).perp() * Test::randReal();
const Vec3 vp = UnitVec3(v).perp() * Test::randReal();
const Mat33 vx = crossMat(v);
const Mat33 wx = crossMat(w);
const Mat33 vpx = crossMat(vp);
const Mat33 wpx = crossMat(wp);
const Mat33 m33 = Test::randMat33();
const Mat34 m = Test::randMat<3,4>();
const Mat43 mt = ~m;
const Mat<3,1> m1 = Test::randMat<3,1>();
SimTK_TEST_EQ( w%v, Vec3(w[1]*v[2]-w[2]*v[1],
w[2]*v[0]-w[0]*v[2],
w[0]*v[1]-w[1]*v[0]) );
SimTK_TEST_EQ( w % v, cross( w, v));
SimTK_TEST_EQ( ~w % ~v, -cross( ~v, ~w));
SimTK_TEST_EQ( wx*v, w % v );
SimTK_TEST_EQ( crossMat(~w), wx );
SimTK_TEST_EQ( crossMat(-w), ~wx );
SimTK_TEST_EQ( crossMatSq(w)*v, -w % (w%v) );
// cross(vector, matrix) (columnwise)
Mat34 c = v % m;
SimTK_TEST_EQ(c(0), v%m(0));
SimTK_TEST_EQ(c(1), v%m(1));
SimTK_TEST_EQ(c(2), v%m(2));
SimTK_TEST_EQ(c(3), v%m(3));
SimTK_TEST_EQ(c, vx*m);
SimTK_TEST_EQ(c, (~v)%m); // row same as col here
Mat<3,1> c1 = v % m1;
SimTK_TEST_EQ(c1(0), v%m1(0));
// cross(matrix, vector) (rowwise)
Mat43 cr = mt % w;
SimTK_TEST_EQ(cr[0], mt[0]%w);
SimTK_TEST_EQ(cr[1], mt[1]%w);
SimTK_TEST_EQ(cr[2], mt[2]%w);
SimTK_TEST_EQ(cr[3], mt[3]%w);
SimTK_TEST_EQ(cr, mt*wx);
SimTK_TEST_EQ(cr, mt % (~w)); // row same as col here
SimTK_TEST_EQ( vx * m33 * vx, v % m33 % v );
}
// Individually test 2x2, 3x3, and 4x4 because the
// smaller sizes may have specialized inline operators.
void testSymMat() {
// 2x2
const Vec3 a = Test::randVec3();
const Vec<2> v = Test::randVec<2>();
SymMat<2> sm( a[0],
a[1], a[2] );
Mat<2,2> m( a[0], a[1],
a[1], a[2] );
SimTK_TEST_EQ( (Mat<2,2>(sm)), m );
SimTK_TEST_EQ( sm, SymMat<2>().setFromSymmetric(m) );
SimTK_TEST_EQ( sm*v, m*v );
SimTK_TEST_EQ( ~v*sm, ~v*m );
// 3x3
const Vec<6> a3 = Test::randVec<6>();
const Vec<3> v3 = Test::randVec<3>();
SymMat<3> sm3( a3[0],
a3[1], a3[2],
a3[3], a3[4], a3[5]);
Mat<3,3> m3( a3[0], a3[1], a3[3],
a3[1], a3[2], a3[4],
a3[3], a3[4], a3[5]);
SimTK_TEST_EQ( (Mat<3,3>(sm3)), m3 );
SimTK_TEST_EQ( sm3, SymMat<3>().setFromSymmetric(m3) );
SimTK_TEST_EQ( sm3*v3, m3*v3 );
SimTK_TEST_EQ( ~v3*sm3, ~v3*m3 );
// 4x4 (hopefully the general case)
const Vec<10> a4 = Test::randVec<10>();
const Vec<4> v4 = Test::randVec<4>();
SymMat<4> sm4( a4[0],
a4[1], a4[2],
a4[3], a4[4], a4[5],
a4[6], a4[7], a4[8], a4[9]);
Mat<4,4> m4( a4[0], a4[1], a4[3], a4[6],
a4[1], a4[2], a4[4], a4[7],
a4[3], a4[4], a4[5], a4[8],
a4[6], a4[7], a4[8], a4[9]);
SimTK_TEST_EQ( (Mat<4,4>(sm4)), m4 );
SimTK_TEST_EQ( sm4, SymMat<4>().setFromSymmetric(m4) );
SimTK_TEST_EQ( sm4*v4, m4*v4 );
SimTK_TEST_EQ( ~v4*sm4, ~v4*m4 );
// Complex is tricky for symmetric (really Hermitian) matrices because
// the diagonals must be real and the corresponding off-diagonals are
// complex conjugate pairs, NOT the same value even though the off
// diagonal data is only stored once.
const Vec<3,Complex> ac( Test::randComplex(), Test::randComplex(), Test::randComplex() );
const Vec<2,Complex> vc( Test::randComplex(), Test::randComplex() );
SymMat<2,Complex> smc( ac[0],
ac[1], ac[2] );
Mat<2,2,Complex> mc( ac[0].real(), std::conj(ac[1]),
ac[1], ac[2].real() );
// This constructor has to figure out how to generate a conjugate
// element for the upper right in the full Mat.
Mat<2,2,Complex> sm2mc(smc);
SimTK_TEST_EQ( sm2mc, mc );
SimTK_TEST_EQ( smc, (SymMat<2,Complex>().setFromSymmetric(mc)) );
SimTK_TEST_EQ( smc*vc, mc*vc );
SimTK_TEST_EQ( ~vc*smc, ~vc*mc );
SimTK_TEST_EQ( ~smc*vc, ~mc*vc );
SimTK_TEST_EQ( ~smc*vc, smc*vc );
}
void testNumericallyEqual() {
Mat<3,4,float> fm1(1), fm1e(1), fm1n(1), fm1nz(1);
fm1e(1,1) += (float)(0.5*fm1.getDefaultTolerance()); // should test equal
fm1n(2,2) += (float)(2 *fm1.getDefaultTolerance()); // should test not equal
fm1nz(1,3) = (float)(2 *fm1.getDefaultTolerance()); // should test not equal
const Mat<3,4,float> fmident34( 1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0 );
SimTK_TEST(fm1==fmident34); // exact
SimTK_TEST(fm1.isNumericallyEqual(fm1));
SimTK_TEST(fm1.isNumericallyEqual(fm1e));
SimTK_TEST(!fm1.isNumericallyEqual(fm1n));
SimTK_TEST(!fm1.isNumericallyEqual(fm1nz));
SimTK_TEST((fm1.getSubMat<3,3>(0,0).isNumericallyEqual(fm1nz.getSubMat<3,3>(0,0))));
SimTK_TEST((fm1e.getSubMat<3,3>(0,0).isNumericallyEqual(fm1nz.getSubMat<3,3>(0,0))));
SimTK_TEST(!(fm1n.getSubMat<3,3>(0,0).isNumericallyEqual(fm1nz.getSubMat<3,3>(0,0))));
// Tightening tolerance should make fm1e not equal.
SimTK_TEST(!fm1.isNumericallyEqual(fm1e, .3*fm1.getDefaultTolerance()));
SimTK_TEST(fm1.isNumericallyEqual(1.f));
SimTK_TEST(fm1e.isNumericallyEqual(1.f));
SimTK_TEST(!fm1n.isNumericallyEqual(1.f));
Mat<3,4,double> dm1(1), dfm1e(fm1e);
// Try mixed-precision.
SimTK_TEST(dm1.isNumericallyEqual(fm1));
SimTK_TEST(dm1.isNumericallyEqual(fm1e)); // because should use float tolerance
SimTK_TEST(!dm1.isNumericallyEqual(dfm1e)); // because should use double tolerance
SimTK_TEST(dm1.isNumericallyEqual(dfm1e, fm1e.getDefaultTolerance())); // force float tolerance
// Repeat for symmetric matrix.
SymMat<3,float> fs1(1), fs1e(1), fs1n(1), fs1nz(1);
fs1e(1,1) += (float)(0.5*fs1.getDefaultTolerance()); // should test equal
fs1n(2,2) += (float)(2 *fs1.getDefaultTolerance()); // should test not equal
fs1nz(2,1) = (float)(2 *fs1.getDefaultTolerance()); // should test not equal
const SymMat<3,float> fsident3( 1,
0, 1,
0, 0, 1 );
SimTK_TEST(fs1==fsident3); // exact
SimTK_TEST(fs1.isNumericallyEqual(fs1));
SimTK_TEST(fs1.isNumericallyEqual(fs1e));
SimTK_TEST(!fs1.isNumericallyEqual(fs1n));
SimTK_TEST(!fs1.isNumericallyEqual(fs1nz));
// Tightening tolerance should make fs1e not equal.
SimTK_TEST(!fs1.isNumericallyEqual(fs1e, .3*fs1.getDefaultTolerance()));
SimTK_TEST(fs1.isNumericallyEqual(1.f));
SimTK_TEST(fs1e.isNumericallyEqual(1.f));
SimTK_TEST(!fs1n.isNumericallyEqual(1.f));
SymMat<3,double> ds1(1), dfs1e(fs1e);
// Try mixed-precision.
SimTK_TEST(ds1.isNumericallyEqual(fs1));
SimTK_TEST(ds1.isNumericallyEqual(fs1e)); // because should use float tolerance
SimTK_TEST(!ds1.isNumericallyEqual(dfs1e)); // because should use double tolerance
SimTK_TEST(ds1.isNumericallyEqual(dfs1e, fs1e.getDefaultTolerance())); // force float tolerance
// Check Vec and Row.
Vec<3,float> fv1(1), fv1e(1), fv1n(1); // should be 1 1 1
Row<3,float> fr1(1);
fv1e[1] += (float)(0.5*fv1.getDefaultTolerance()); // should test equal
fv1n[0] += (float)(2 *fv1.getDefaultTolerance()); // should test not equal
const Vec<3,float> fone(1,1,1);
SimTK_TEST(fv1==fone); // exact
SimTK_TEST(fv1.isNumericallyEqual(fv1));
SimTK_TEST(fv1.isNumericallyEqual(fv1e));
SimTK_TEST(!fv1.isNumericallyEqual(fv1n));
SimTK_TEST(fr1==~fone); // exact
SimTK_TEST(fr1.isNumericallyEqual(~fv1));
SimTK_TEST(fr1.isNumericallyEqual(~fv1e));
SimTK_TEST(!fr1.isNumericallyEqual(~fv1n));
// Check symmetry tests in Mat.
Mat<2,7,double> notSquare(0); // can't be symmetric
SimTK_TEST(!notSquare.isExactlySymmetric());
SimTK_TEST(!notSquare.isNumericallySymmetric());
Mat<3,3,float> f33(1), // exactly symmetric
f33e(1), // numerically symmetric
f33n(1); // too sloppy
f33e(1,2) += (float)(0.5*f33.getDefaultTolerance()); // should test equal
f33n(2,0) += (float)(2 *f33.getDefaultTolerance()); // should test not equal
SimTK_TEST(f33.isExactlySymmetric());
SimTK_TEST(!f33e.isExactlySymmetric());
SimTK_TEST(!f33n.isExactlySymmetric());
SimTK_TEST(f33.isNumericallySymmetric());
SimTK_TEST(f33e.isNumericallySymmetric());
SimTK_TEST(!f33n.isNumericallySymmetric());
// Things are trickier for complex matrices where symmetry means
// Hermitian (conjugate) symmetry.
// This one has *positional* symmetry, not Hermitian.
Mat<2,2, std::complex<double> > mcp( std::complex<double>(1,2), std::complex<double>(3,4),
std::complex<double>(3,4), std::complex<double>(5,6) );
// This one is Hermitian.
Mat<2,2, std::complex<double> > mch( std::complex<double>(1,0), std::complex<double>(3,-4),
std::complex<double>(3,4), std::complex<double>(5,0) );
SimTK_TEST(!mcp.isExactlySymmetric());
SimTK_TEST(!mcp.isNumericallySymmetric());
SimTK_TEST(mch.isExactlySymmetric());
SimTK_TEST(mch.isNumericallySymmetric());
// This should be OK because mch is symmetric.
SymMat<2, std::complex<double> > symTest;
symTest.setFromSymmetric(mch);
mch(0,1) += 0.5*mch.getDefaultTolerance();
SimTK_TEST(!mch.isExactlySymmetric());
SimTK_TEST(mch.isNumericallySymmetric());
// This should be OK because mch is almost symmetric.
symTest.setFromSymmetric(mch);
mch(0,1) += 5*mch.getDefaultTolerance();
SimTK_TEST(!mch.isExactlySymmetric());
SimTK_TEST(!mch.isNumericallySymmetric());
// This should throw in Debug mode because mch is too far off.
#ifndef NDEBUG
SimTK_TEST_MUST_THROW(symTest.setFromSymmetric(mch));
#endif
}
static bool isXAxis(const UnitVec3& test) {return test==UnitVec3(1,0,0);}
static bool isNegZAxis(const UnitVec3& test) {return test==UnitVec3(0,0,-1);}
void testUnitVec() {
SimTK_TEST_EQ(Vec3(UnitVec3(1,1,0)), Vec3(Sqrt2/2,Sqrt2/2,0));
SimTK_TEST(UnitVec3(XAxis) == UnitVec3(1,0,0));
SimTK_TEST(UnitVec3(YAxis) == UnitVec3(0,1,0));
SimTK_TEST(UnitVec3(ZAxis) == UnitVec3(0,0,1));
SimTK_TEST(UnitVec3(NegXAxis) == UnitVec3(-1,0,0));
SimTK_TEST(UnitVec3(NegYAxis) == UnitVec3(0,-1,0));
SimTK_TEST(UnitVec3(NegZAxis) == UnitVec3(0,0,-1));
SimTK_TEST(isXAxis(XAxis)); // implicit conversion
SimTK_TEST(!isXAxis(YAxis)); // implicit conversion
SimTK_TEST(isNegZAxis(NegZAxis)); // implicit conversion
SimTK_TEST(!isNegZAxis(NegYAxis)); // implicit conversion
SimTK_TEST(!isNegZAxis(ZAxis)); // implicit conversion
SimTK_TEST(XAxis.dotProduct(XAxis) == 1);
SimTK_TEST(XAxis.dotProduct(YAxis) == 0);
SimTK_TEST(XAxis.dotProduct(ZAxis) == 0);
SimTK_TEST(ZAxis.dotProduct(YAxis) == 0);
SimTK_TEST(XAxis.crossProductSign(XAxis) == 0);
SimTK_TEST(XAxis.crossProductAxis(YAxis) == ZAxis);
SimTK_TEST(XAxis.crossProductSign(YAxis) == 1);
SimTK_TEST(XAxis.crossProductAxis(ZAxis) == YAxis);
SimTK_TEST(XAxis.crossProductSign(ZAxis) == -1);
SimTK_TEST(ZAxis.crossProductAxis(XAxis) == YAxis);
SimTK_TEST(ZAxis.crossProductSign(XAxis) == 1);
int sign;
CoordinateAxis axis = ZAxis.crossProduct(YAxis, sign);
SimTK_TEST(CoordinateDirection(axis,sign) == NegXAxis);
SimTK_TEST(CoordinateDirection(YAxis,CoordinateDirection::Negative())
== NegYAxis);
SimTK_TEST(-XAxis == NegXAxis);
SimTK_TEST(-YAxis == NegYAxis);
SimTK_TEST(-ZAxis == NegZAxis);
SimTK_TEST(-ZAxis != NegYAxis);
SimTK_TEST(ZAxis == -NegZAxis);
SimTK_TEST(-(-NegXAxis) == -XAxis);
SimTK_TEST(-(-NegYAxis) == -(-(-YAxis)));
SimTK_TEST(NegXAxis.crossProductAxis(NegYAxis) == ZAxis);
SimTK_TEST(NegYAxis.crossProductAxis(ZAxis) == XAxis);
SimTK_TEST(NegYAxis.crossProductSign(ZAxis) == -1);
SimTK_TEST(NegYAxis.crossProductSign(NegZAxis) == 1);
}
// Test append/drop/insert rows and columns.
void testAppendRowCol() {
Mat34 m34( 1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12);
Mat44 m44 = m34.appendRow(Row4(-1, -2, -3, -4));
SimTK_TEST(m44==Mat44( 1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
-1, -2, -3, -4));
m44 = m34.insertRow(0, Row4(-1, -2, -3, -4));
SimTK_TEST(m44==Mat44( -1, -2, -3, -4,
1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12));
m44 = m34.insertRow(1, Row4(-1, -2, -3, -4));
SimTK_TEST(m44==Mat44( 1, 2, 3, 4,
-1, -2, -3, -4,
5, 6, 7, 8,
9, 10, 11, 12));
m44 = m34.insertRow(3, Row4(-1, -2, -3, -4));
SimTK_TEST(m44==m34.appendRow(Row4(-1, -2, -3, -4)));
Mat35 m35 = m34.appendCol(Vec3(-6, -7, -8));
SimTK_TEST(m35==Mat35( 1, 2, 3, 4, -6,
5, 6, 7, 8, -7,
9, 10, 11, 12, -8));
m35 = m34.insertCol(0, Vec3(-6, -7, -8));
SimTK_TEST(m35==Mat35( -6, 1, 2, 3, 4,
-7, 5, 6, 7, 8,
-8, 9, 10, 11, 12));
m35 = m34.insertCol(2, Vec3(-6, -7, -8));
SimTK_TEST(m35==Mat35( 1, 2, -6, 3, 4,
5, 6, -7, 7, 8,
9, 10, -8, 11, 12));
m35 = m34.insertCol(4, Vec3(-6, -7, -8));
SimTK_TEST(m35==m34.appendCol(Vec3(-6, -7, -8)));
Mat45 m45 = m34.appendRowCol(Row5(-1, -2, -3, -4, -5),
Vec4(-6, -7, -8, -9));
SimTK_TEST(m45==Mat45( Row5(1, 2, 3, 4, -6),
Row5(5, 6, 7, 8, -7),
Row5(9, 10, 11, 12, -8),
Row5(-1, -2, -3, -4, -9)));
m45 = m34.insertRowCol(0,0, Row5(-1, -2, -3, -4, -5),
Vec4(-6, -7, -8, -9));
SimTK_TEST(m45==Mat45( Row5(-6, -2, -3, -4, -5),
Row5(-7, 1, 2, 3, 4),
Row5(-8, 5, 6, 7, 8),
Row5(-9, 9, 10, 11, 12)));
m45 = m34.insertRowCol(1,2, Row5(-1, -2, -3, -4, -5),
Vec4(-6, -7, -8, -9));
SimTK_TEST(m45==Mat45( Row5( 1, 2, -6, 3, 4),
Row5(-1, -2, -7, -4, -5),
Row5( 5, 6, -8, 7, 8),
Row5( 9, 10, -9, 11, 12)));
m45 = m34.insertRowCol(3,4, Row5(-1, -2, -3, -4, -5),
Vec4(-6, -7, -8, -9));
SimTK_TEST(m45== m34.appendRowCol(Row5(-1, -2, -3, -4, -5),
Vec4(-6, -7, -8, -9)));
Mat24 m24_0 = m34.dropRow(0);
Mat24 m24_1 = m34.dropRow(1);
Mat24 m24_2 = m34.dropRow(2);
SimTK_TEST(m24_0==Mat24(5, 6, 7, 8,
9, 10, 11, 12));
SimTK_TEST(m24_1==Mat24(1, 2, 3, 4,
9, 10, 11, 12));
SimTK_TEST(m24_2==Mat24(1, 2, 3, 4,
5, 6, 7, 8));
Mat33 m33_0 = m34.dropCol(0);
Mat33 m33_1 = m34.dropCol(1);
Mat33 m33_2 = m34.dropCol(2);
Mat33 m33_3 = m34.dropCol(3);
SimTK_TEST(m33_0==Mat33( 2, 3, 4,
6, 7, 8,
10, 11, 12));
SimTK_TEST(m33_1==Mat33( 1, 3, 4,
5, 7, 8,
9, 11, 12));
SimTK_TEST(m33_2==Mat33( 1, 2, 4,
5, 6, 8,
9, 10, 12));
SimTK_TEST(m33_3==Mat33( 1, 2, 3,
5, 6, 7,
9, 10, 11));
}
int main() {
SimTK_START_TEST("TestSmallMatrix");
SimTK_SUBTEST(testSymMat);
SimTK_SUBTEST(testInverse<1>);
SimTK_SUBTEST(testInverse<2>);
SimTK_SUBTEST(testInverse<3>);
SimTK_SUBTEST(testInverse<5>);
SimTK_SUBTEST(testInverse<10>);
SimTK_SUBTEST(testDotProducts);
SimTK_SUBTEST(testCrossProducts);
SimTK_SUBTEST(testNumericallyEqual);
SimTK_SUBTEST(testUnitVec);
SimTK_SUBTEST(testAppendRowCol);
SimTK_END_TEST();
}
|