1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKmath *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2006-12 Stanford University and the Authors. *
* Authors: Jack Middleton *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/**@file
* This is a test program which uses the FactorLU class to do an LU
* factorization on a system of linear equations and then use the
* factored LU matrix to solve for a particular right hand side
*/
/*
The data for this test is from an example FORTRAN program from the
Numerical Algorithms Group (NAG)
URL:http://www.nag.com/lapack-ex/lapack-ex.html
Solves:
Ax = B,
where A is the general matrix
1.80 2.88 2.05 -0.89 9.52
A = 5.25 -2.95 -0.95 -3.80 and B = 24.35
1.58 -2.69 -2.90 -1.04 0.77
-1.11 -0.66 -0.59 0.80 -6.22
Solution
x = 1.0000 -1.0000 3.0000 -5.0000
LU factorization:
1 2 3 4
1 5.2500 -2.9500 -0.9500 -3.8000
2 0.3429 3.8914 2.3757 0.4129
3 0.3010 -0.4631 -1.5139 0.2948
4 -0.2114 -0.3299 0.0047 0.1314
Pivot indices
2 2 3 4
*/
#include "SimTKmath.h"
#include <iostream>
using std::cout; using std::endl;
#define ASSERT(cond) {SimTK_ASSERT_ALWAYS(cond, "Assertion failed");}
using namespace SimTK;
Real A[16] = { 1.80, 2.88, 2.05, -0.89,
5.25, -2.95, -0.95, -3.80,
1.58, -2.69, -2.90, -1.04,
-1.11, -0.66, -0.59, 0.80 };
Real B[4] = { 9.52, 24.35, 0.77, -6.22 };
Real X[4] = { 1., -1., 3., -5. };
int main () {
try {
// Default precision (Real, normally double) test.
Matrix a(4,4, A);
Vector b(4, B);
Vector x_right(4, X);
Vector x; // should get sized automatically to 4 by solve()
FactorLU lu(a); // perform LU factorization
lu.solve( b, x ); // solve for x given a right hand side
cout << " Real SOLUTION: " << x << " errnorm=" << (x-x_right).norm() << endl;
ASSERT((x-x_right).norm() < 10*SignificantReal);
// float test
Matrix_<float> af(4,4); for (int i=0; i<4; ++i) for (int j=0; j<4; ++j) af(i,j)=(float)a(i,j);
Vector_<float> bf(4); for (int i=0; i<4; ++i) bf[i] = (float)b[i];
Vector_<float> xf_right(4); for (int i=0; i<4; ++i) xf_right[i] = (float)x_right[i];
Vector_<float> xf; // should get sized automatically to 4 by solve()
FactorLU luf;
luf.factor(af);
luf.solve(bf, xf);
cout << " float SOLUTION: " << xf << " errnorm=" << (xf-xf_right).norm() << endl;
const float SignificantFloat = NTraits<float>::getSignificant();
ASSERT((xf-xf_right).norm() < 10*SignificantFloat);
luf.factor(a);
lu.solve( b, x ); // solve for x given a right hand side
cout << " Real SOLUTION: " << x << " errnorm=" << (x-x_right).norm() << endl;
ASSERT((x-x_right).norm() < 10*SignificantReal);
Real C[4] = { 1.0, 2.0,
1.0, 3.0 };
Matrix c(2,2, C);
FactorLU clu(c);
Matrix invC;
clu.inverse(invC);
cout << "Inverse c: " << endl;
cout << invC[0] << endl;
cout << invC[1] << endl;
Real Z[4] = { 0.0, 0.0,
0.0, 0.0 };
Matrix z(2,2, Z);
FactorLU zlu(z);
Vector_<double> xz;
Vector_<double> bz(2);
bz(1) = bz(0) = 0.0;
zlu.solve( bz, xz );
cout << " solve with mat all zeros : " << endl;
for(int i=0;i<xz.size();i++) printf("%f ", xz(i) ); printf("\n");
try {
Matrix_<double> z0;
FactorLU z0lu(z0);
Vector_<double> bz0(0);
z0lu.solve( bz0, xz );
cout << " solve with mat(0,0) : " << endl;
for(int i=0;i<xz.size();i++) printf("%f ", xz(i) ); printf("\n");
} catch (const std::exception& e) {
cout << "(EXPECTED EXCEPTION) NULL matrix test: "
<< e.what() << endl;
}
}
catch (const std::exception& e) {
std::printf("FAILED: %s\n", e.what());
return 1;
}
return 0;
}
|