1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKmath *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2006-12 Stanford University and the Authors. *
* Authors: Jack Middleton *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/**@file
* This is a test program which uses the FactorQTZ class to do an QTZ
* factorization on a system of linear equations and then use the
* factored QTZ matrix to solve a find a least squares solution
* for a particular right hand side
*/
/*
The data for this test is from an example FORTRAN program from the
Numerical Algorithms Group (NAG)
URL:http://www.nag.com/lapack-ex/lapack-ex.html
Solves the least squares problem:
Ax = B,
where A is the general matrix
-0.09 0.14 -0.46 0.68 1.29 7.4
-1.56 0.20 0.29 1.09 0.51 4.2
A = -1.48 -0.43 0.89 -0.71 -0.96 B= -8.3
-1.09 0.84 0.77 2.11 -1.27 1.8
0.08 0.55 -1.13 0.14 1.74 8.6
-1.59 -0.72 1.06 1.24 0.34 2.1
The default tolerance of 0.01 is used to determine the effective rank of A
SOLUTION =
0.6344 0.9699 -1.4402 3.3678 3.3992
estimated rank = 4
*/
#include "SimTKmath.h"
#include <cstdio>
#include <cassert>
#include <iostream>
#define ASSERT(cond) {SimTK_ASSERT_ALWAYS(cond, "Assertion failed");}
using namespace SimTK;
using std::printf;
using std::cout;
using std::endl;
Real A[30] = { -0.09, 0.14, -0.46, 0.68, 1.29,
-1.56, 0.20, 0.29, 1.09, 0.51,
-1.48, -0.43, 0.89, -0.71, -0.96,
-1.09, 0.84, 0.77, 2.11, -1.27,
0.08, 0.55, -1.13, 0.14, 1.74,
-1.59, -0.72, 1.06, 1.24, 0.34 };
Real B[6] = { 7.4, 4.2, -8.3, 1.8, 8.6, 2.1 };
Real X[5] = { 0.6344, 0.9699, -1.4402, 3.3678, 3.3992 };
int main () {
try {
// Default precision (Real, normally double) test.
Matrix a(6,5, A);
Vector b(6, B);
Vector x_right(5, X);
Vector x; // should get sized automatically to 5 by solve()
FactorQTZ qtz; // perform QTZ factorization
qtz.factor(a);
printf("\n Estimated rank with default rcond %d \n\n",qtz.getRank() );
ASSERT( qtz.getRank() == 5 );
qtz.factor(a, 0.01);
qtz.solve( b, x ); // solve for x given a right hand side
printf("\n Estimated rank with rcond = 0.01 : %d \n\n",qtz.getRank() );
cout << " Overdetermined Double SOLUTION: " << x << " errnorm=" << (x-x_right).norm() << endl;
ASSERT((x-x_right).norm() < 0.001);
FactorQTZ qtzCopy( qtz );
Vector xc; // should get sized automatically to 5 by solve()
qtzCopy.solve(b, xc );
cout << " copy constructor SOLUTION: " << xc << " errnorm=" << (xc-x_right).norm() << endl;
FactorQTZ qtzAssign = qtz;
Vector xa; // should get sized automatically to 5 by solve()
qtzCopy.solve(b, xa );
cout << " copy assign SOLUTION: " << xa << " errnorm=" << (xa-x_right).norm() << endl;
Matrix_<float> af(6,5); for (int i=0; i<6; ++i) for (int j=0; j<5; ++j) af(i,j)=(float)a(i,j);
Vector_<float> bf(6); for (int i=0; i<6; ++i) bf[i] = (float)b[i];
Vector_<float> xf_right(5); for (int i=0; i<5; ++i) xf_right[i] = (float)x_right[i];
Vector_<float> xf; // should get sized automatically to 5 by solve()
qtz.factor(af, (float)0.01);
qtz.solve(bf,xf);
cout << " Overdetermined Float SOLUTION: " << xf << " errnorm=" << (xf-xf_right).norm() << endl;
const float SignificantFloat = NTraits<float>::getSignificant();
ASSERT((xf-xf_right).norm() < 0.001);
// Underdetermined case adapted from
// http://idlastro.gsfc.nasa.gov/idl_html_help/LA_LEAST_SQUARES.html
Real Au[12] = { 2, 5, 3, 4,
7, 1, 3, 5,
4, 3, 6, 2 };
Real Bu[3] = { 3, 1, 6 };
Real Xu[4] = { -0.0376844, 0.350628, 0.986164, -0.409066 };
Matrix au(3, 4, Au);
Vector bu(3, Bu);
Vector xu_right(4, Xu);
Vector xu; // should get sized automatically to 4 by solve()
Matrix bu2(3,2);
bu2(0) = bu;
bu2(1) = 2*bu;
Matrix xu2; // should get sized 4x2 by solve
FactorQTZ qtzu(au); // perform QTZ factorization
qtzu.solve( bu, xu ); // solve for x given a right hand side
cout << " Underdetermined Double SOLUTION: " << xu << " errnorm=" << (xu-xu_right).norm() << endl;
qtzu.solve( bu2, xu2 );
cout << " multiple rhs solution, double " << xu2 << endl;
Matrix_<float> afu(3,4); for (int i=0; i<3; ++i) for (int j=0; j<4; ++j) afu(i,j)=(float)au(i,j);
Vector_<float> bfu(3); for (int i=0; i<3; ++i) bfu[i] = (float)bu[i];
Vector_<float> xfu_right(4); for (int i=0; i<4; ++i) xfu_right[i] = (float)xu_right[i];
Vector_<float> xfu; // should get sized automatically to 4 by solve()
Matrix_<float> bfu2(3,2);
bfu2(0) = bfu;
bfu2(1) = 2*bfu;
Matrix_<float> xfu2; // should get sized 4x2 by solve
FactorQTZ qtzfu(afu); // perform QTZ factorization
qtzfu.solve( bfu, xfu ); // solve for x given a right hand side
cout << " Underdetermined Float SOLUTION: " << xfu << " errnorm=" << (xfu-xfu_right).norm() << endl;
qtzfu.solve( bfu2, xfu2 );
cout << " multiple rhs solution, float " << xfu2 << endl;
Real C[4] = { 1.0, 2.0,
1.0, 3.0 };
Matrix c(2,2, C);
FactorQTZ cqtz(c);
Matrix invQTZ;
cqtz.inverse(invQTZ);
cout << " FactorQTZ.inverse : " << endl;
cout << invQTZ[0] << endl;
cout << invQTZ[1] << endl;
Real Z[4] = { 0.0, 0.0,
0.0, 0.0 };
Matrix z(2,2, Z);
FactorQTZ zqtz(z);
Vector_<double> xz;
Vector_<double> bz(2);
bz(1) = bz(0) = 0.0;
zqtz.solve( bz, xz );
cout << " solve with mat all zeros : " << endl;
for(int i=0;i<xz.size();i++) printf("%f ", xz(i) ); printf("\n");
try {
Matrix_<double> z0;
FactorQTZ z0qtz(z0);
Vector_<double> bz0(0);
z0qtz.solve( bz0, xz );
cout << " solve with mat(0,0) : " << endl;
for(int i=0;i<xz.size();i++) printf("%f ", xz(i) ); printf("\n");
} catch (const std::exception& e) {
cout << "(EXPECTED EXCEPTION) NULL matrix test: "
<< e.what() << endl;
}
}
catch (const std::exception& e) {
std::printf("FAILED: %s\n", e.what());
return 1;
}
catch (...) {
std::printf("FAILED: Unknown exception\n");
return 1;
}
return 0;
}
|