1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKmath *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2006-12 Stanford University and the Authors. *
* Authors: Jack Middleton *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/**@file
* This is a test program which uses the FactorSVD class to compute
* eigen values and eigen vectors
*/
/*
The data for this test is from an example FORTRAN program from the
Numerical Algorithms Group (NAG)
URL:http://www.nag.com/lapack-ex/lapack-ex.html
Solves for the singular valus and vectors for the
following matrix
A = 2.27 0.28 -0.48 1.07 -2.35 0.62
-1.54 -1.67 -3.09 1.22 2.93 -7.39
1.15 0.94 0.99 0.79 -1.45 1.03
-1.94 -0.78 -0.21 0.63 2.30 -2.57
SOLUTION =
Singular values
9.9966 3.6831 1.3569 0.5000
Left singular vectors
1 2 3 4
1 -0.1921 0.8030 0.0041 -0.5642
2 0.8794 0.3926 -0.0752 0.2587
3 -0.2140 0.2980 0.7827 0.5027
4 0.3795 -0.3351 0.6178 -0.6017
Right singular vectors by row (first m rows of V**T)
1 2 3 4 5 6
1 -0.2774 -0.2020 -0.2918 0.0938 0.4213 -0.7816
2 0.6003 0.0301 -0.3348 0.3699 -0.5266 -0.3353
3 -0.1277 0.2805 0.6453 0.6781 0.0413 -0.1645
4 0.1323 0.7034 0.1906 -0.5399 -0.0575 -0.3957
Error estimate for the singular values
1.1E-15
Error estimates for the left singular vectors
1.8E-16 4.8E-16 1.3E-15 1.3E-15
Error estimates for the right singular vectors
1.8E-16 4.8E-16 1.3E-15 2.2E-15
*/
#include "SimTKmath.h"
#include <cstdio>
#include <cassert>
#include <iostream>
#define ASSERT(cond) {SimTK_ASSERT_ALWAYS(cond, "Assertion failed");}
static const double EPS = 0.00001;
using namespace SimTK;
using std::printf;
using std::cout;
using std::endl;
Real A[24] = { 2.27, 0.28, -0.48, 1.07, -2.35, 0.62,
-1.54, -1.67, -3.09, 1.22, 2.93, -7.39,
1.15, 0.94, 0.99, 0.79, -1.45, 1.03,
-1.94, -0.78, -0.21, 0.63, 2.30, -2.57 };
Real X[4] = { 9.9966, 3.6831, 1.3569, 0.5000 };
int main () {
try {
// Default precision (Real, normally double) test.
Matrix a(4,6, A);
Vector singularValues( 4 );
Vector expectedValues( 4, X );
Matrix rightVectors;
Matrix leftVectors;
FactorSVD svd(a, 0.01); // setup the eigen system
svd.getSingularValues( singularValues ); // solve for the singular values
cout << " SingularValues rcond = 0.01 : " << singularValues << endl;
svd.factor(a ); // setup the eigen system
cout << " SingularValues rcond = default : " << singularValues << " errnorm=" << (singularValues-expectedValues).norm() << endl;
svd.getSingularValuesAndVectors( singularValues, leftVectors, rightVectors ); // solve for the singular values
ASSERT((singularValues-expectedValues).norm() < 0.001);
printf("Left Vectors = \n");
for(int i=0;i<leftVectors.ncol();i++) {
for(int j=0;j<leftVectors.nrow();j++) printf("%f ",leftVectors(i,j) );
printf("\n");
}
printf("Right Vectors = \n");
for(int i=0;i<rightVectors.ncol();i++) {
for(int j=0;j<rightVectors.nrow();j++) printf("%f ",rightVectors(i,j) );
printf("\n");
}
Real C[4] = { 1.0, 2.0,
1.0, 3.0 };
Matrix c(2,2, C);
FactorSVD csvd(c);
Matrix invSVD;
csvd.inverse(invSVD);
cout << " FactorSVD.inverse : " << endl;
cout << invSVD[0] << endl;
cout << invSVD[1] << endl;
Real Z[4] = { 0.0, 0.0,
0.0, 0.0 };
Matrix z(2,2, Z);
FactorSVD zsvd(z);
Vector_<double> xz;
Vector_<double> bz(2);
bz(1) = bz(0) = 0.0;
zsvd.solve( bz, xz );
cout << " solve with mat all zeros : " << endl;
for(int i=0;i<xz.size();i++) printf("%f ", xz(i) ); printf("\n");
Matrix_<double> z0;
FactorSVD z0svd(z0);
Vector_<double> bz0(0);
z0svd.solve( bz0, xz );
cout << " solve with mat(0,0) : " << endl;
for(int i=0;i<xz.size();i++) printf("%f ", xz(i) ); printf("\n");
cout << " SVD factorization with mat(0,0) : " << endl;
FactorSVD z0fsvd(z0);
z0fsvd.getSingularValuesAndVectors( singularValues, leftVectors, rightVectors ); // solve for the singular values
cout << " Real SOLUTION: " << singularValues << endl;
printf("Left Vectors = \n");
for(int i=0;i<leftVectors.ncol();i++) {
for(int j=0;j<leftVectors.nrow();j++) printf("%f ",leftVectors(i,j) );
printf("\n");
}
printf("Right Vectors = \n");
for(int i=0;i<rightVectors.ncol();i++) {
for(int j=0;j<rightVectors.nrow();j++) printf("%f ",rightVectors(i,j) );
printf("\n");
}
return 0;
}
catch (std::exception& e) {
std::printf("FAILED: %s\n", e.what());
return 1;
}
}
|