1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKmath *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2006-13 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/**@file
* This is a test program which uses the Integrator class in various ways.
*/
#include "SimTKcommon.h"
#include "SimTKcommon/internal/SystemGuts.h"
#include "SimTKmath.h"
#include <cstdio>
#include <cassert>
#include <iostream>
using namespace SimTK;
using std::printf;
using std::cout;
using std::endl;
static int qProj, qProjFail;
static int uProj, uProjFail;
// User-defined system to be integrated. This is a kind of SimTK::System.
class MyPendulum;
class MyPendulumGuts: public System::Guts {
friend class MyPendulum;
// TOPOLOGY STATE
SubsystemIndex subsysIndex;
// TOPOLOGY CACHE
mutable DiscreteVariableIndex massIndex, lengthIndex, gravityIndex;
mutable QIndex q0;
mutable UIndex u0;
mutable QErrIndex qerr0;
mutable UErrIndex uerr0;
mutable UDotErrIndex udoterr0;
mutable EventTriggerByStageIndex trigger0;
mutable CacheEntryIndex mgForceIndex; // a cache entry m*g calculated at Dynamics stage
mutable EventId eventId0, eventId1, eventId2;
public:
MyPendulumGuts() : Guts() {
// Index types set themselves invalid on construction.
}
inline const MyPendulum& getMyPendulum() const;
/*virtual*/MyPendulumGuts* cloneImpl() const override {return new MyPendulumGuts(*this);}
/////////////////////////////////////////////////////////
// Implementation of continuous DynamicSystem virtuals //
/////////////////////////////////////////////////////////
int realizeTopologyImpl(State&) const override;
int realizeModelImpl(State&) const override;
int realizeInstanceImpl(const State&) const override;
int realizePositionImpl(const State&) const override;
int realizeVelocityImpl(const State&) const override;
int realizeDynamicsImpl(const State&) const override;
int realizeAccelerationImpl(const State&) const override;
// qdot==u here so these are just copies
void multiplyByNImpl(const State& state, const Vector& u,
Vector& dq) const override {dq=u;}
void multiplyByNTransposeImpl(const State& state, const Vector& fq,
Vector& fu) const override {fu=fq;}
void multiplyByNPInvImpl(const State& state, const Vector& dq,
Vector& u) const override {u=dq;}
void multiplyByNPInvTransposeImpl(const State& state, const Vector& fu,
Vector& fq) const override {fq=fu;}
// No prescribed motion.
bool prescribeQImpl(State&) const override {return false;}
bool prescribeUImpl(State&) const override {return false;}
void projectQImpl(State&, Vector& qErrEst,
const ProjectOptions& options, ProjectResults& results) const override;
void projectUImpl(State&, Vector& uErrEst,
const ProjectOptions& options, ProjectResults& results) const override;
////////////////////////////////////////////////
// Implementation of discrete System virtuals //
////////////////////////////////////////////////
int calcEventTriggerInfoImpl
(const State& s, Array_<EventTriggerInfo>& eti) const override
{
eti.clear();
eti.push_back(EventTriggerInfo(eventId0)
.setRequiredLocalizationTimeWindow(1)
.setTriggerOnRisingSignTransition(false));
eti.push_back(EventTriggerInfo(eventId1));
eti.push_back(EventTriggerInfo(eventId2)
.setTriggerOnFallingSignTransition(false));
return 0;
}
int calcTimeOfNextScheduledEventImpl
(const State& s, Real& tNextEvent,
Array_<EventId>& eventIds, bool includeCurrentTime) const override
{
// Generate an event every 5.123 seconds.
int nFives = (int)(s.getTime() / 5.123); // rounded down
if (s.getTime()==0) nFives=1; // don't start with the event
tNextEvent = nFives * Real(5.123);
// Careful ...
if ( tNextEvent < s.getTime()
|| (tNextEvent == s.getTime() && !includeCurrentTime))
tNextEvent += Real(5.123);
eventIds.push_back(eventId1); // event Id for scheduled pulse
return 0;
}
// This should be called when the integrator returns indicating that
// a discontinuity (event trigger) has been detected. The current
// state is inconsistent in some way and we expect the event handlers
// to correct that. Time will be the same before and after, but the
// state may have changed discontinuously.
void handleEventsImpl
(State& s, Event::Cause cause, const Array_<EventId>& eventIds,
const HandleEventsOptions& options, HandleEventsResults& results) const
override
{
cout << "===> t=" << s.getTime() << ": HANDLING "
<< Event::getCauseName(cause) << " EVENT!!!" << endl;
if (eventIds.size())
cout << " EVENT IDS: " << eventIds << endl;
if (cause != Event::Cause::TimeAdvanced) {
std::swap(s.updQ()[0],s.updQ()[1]); // invalidates Position stage
s.updU()=0;
}
results.setExitStatus(HandleEventsResults::Succeeded);
}
};
// This is the handle class for a MyPendulum System.
// It must not have any data members. Data, if needed, is
// in the corresponding "Guts" class.
class MyPendulum: public System {
public:
MyPendulum() : System()
{
adoptSystemGuts(new MyPendulumGuts());
DefaultSystemSubsystem defsub(*this);
updGuts().subsysIndex = defsub.getMySubsystemIndex();
setHasTimeAdvancedEvents(false);
(void)realizeTopology();
}
const MyPendulumGuts& getGuts() const {
return dynamic_cast<const MyPendulumGuts&>(getSystemGuts());
}
MyPendulumGuts& updGuts() {
return dynamic_cast<MyPendulumGuts&>(updSystemGuts());
}
// Instance variables are written to our defaultState.
void setDefaultMass(Real mass) {
const MyPendulumGuts& guts = getGuts();
updDefaultState().updDiscreteVariable(guts.subsysIndex, guts.massIndex) = Value<Real>(mass);
}
void setDefaultLength(Real length) {
const MyPendulumGuts& guts = getGuts();
updDefaultState().updDiscreteVariable(guts.subsysIndex, guts.lengthIndex) = Value<Real>(length);
}
void setDefaultGravity(Real gravity) {
const MyPendulumGuts& guts = getGuts();
updDefaultState().updDiscreteVariable(guts.subsysIndex, guts.gravityIndex) = Value<Real>(gravity);
}
void setDefaultTimeAndState(Real t, const Vector& q, const Vector& u) {
const MyPendulumGuts& guts = getGuts();
updDefaultState().updU(guts.subsysIndex) = u;
updDefaultState().updQ(guts.subsysIndex) = q;
updDefaultState().updTime() = t;
}
Real getMass(const State& s) const {
const MyPendulumGuts& guts = getGuts();
const AbstractValue& m = s.getDiscreteVariable(guts.subsysIndex, guts.massIndex);
return Value<Real>::downcast(m).get();
}
Real getDefaultMass() const {return getMass(getDefaultState());}
Real getLength(const State& s) const {
const MyPendulumGuts& guts = getGuts();
const AbstractValue& d = s.getDiscreteVariable(guts.subsysIndex, guts.lengthIndex);
return Value<Real>::downcast(d).get();
}
Real getDefaultLength() const {return getLength(getDefaultState());}
Real getGravity(const State& s) const {
const MyPendulumGuts& guts = getGuts();
const AbstractValue& g = s.getDiscreteVariable(guts.subsysIndex, guts.gravityIndex);
return Value<Real>::downcast(g).get();
}
Real getDefaultGravity() const {return getGravity(getDefaultState());}
void dump(const char* msg) const {
const MyPendulumGuts& guts = getGuts();
cout << std::string(msg) << ": MyPendulum default state dump:" << endl;
cout << " mass =" << getDefaultMass() << endl;
cout << " length =" << getDefaultLength() << endl;
cout << " gravity=" << getDefaultGravity() << endl;
cout << " time=" << getDefaultState().getTime() << endl;
cout << " q=" << getDefaultState().getQ(guts.subsysIndex) << endl;
cout << " u=" << getDefaultState().getU(guts.subsysIndex) << endl;
}
};
inline const MyPendulum& MyPendulumGuts::getMyPendulum() const {
return static_cast<const MyPendulum&>(getSystem());
}
static void printFinalStats(const Integrator& integ);
static void reportState(const char* msg,
const System& sys, const Integrator& integ) {
if (*msg) printf("%s\n", msg);
const State& s = integ.getState();
sys.realize(s);
printf(
" -%6s- %9.6lf(%9.6lf) %14.10lf %14.10lf %14.10lf %14.10lf | %14.10lf %14.10lf %14.10lf %14.10lf %14.10lf\n",
integ.isStateInterpolated() ? "INTERP" : "------",
s.getTime(), integ.getAdvancedTime(),
s.getY()[0], s.getY()[1], s.getY()[2], s.getY()[3],
s.getYErr()[0], s.getYErr()[1],
s.getEventTriggersByStage(SubsystemIndex(0),Stage::Position)[0],
s.getEventTriggersByStage(SubsystemIndex(0),Stage::Position)[1],
s.getEventTriggersByStage(SubsystemIndex(0),Stage::Position)[2]);
cout << "YDot: " << s.getYDot() << endl;
cout << "Multipliers: " << s.getMultipliers() << endl;
cout << "UDotErrs: " << s.getUDotErr() << endl;
}
int main () {
try
{
#ifndef __i386__
MyPendulum sys;
RungeKuttaMersonIntegrator integ(sys);
//RungeKuttaFeldbergIntegrator integ(sys);
//RungeKutta3Integrator integ(sys);
//CPodesIntegrator integ(sys);
//VerletIntegrator integ(sys);
//ExplicitEulerIntegrator integ(sys);
const Real t0=0;
const Real qi[] = {1,0}; // (x,y)=(1,0)
const Real ui[] = {0,0}; // v=0
const Vector q0(2, qi);
const Vector u0(2, ui);
sys.setDefaultMass(10);
sys.setDefaultTimeAndState(t0, q0, u0);
sys.dump("Initial");
integ.setAccuracy(1e-2);
integ.setConstraintTolerance(1e-4);
//integ.setAllowInterpolation(false);
//integ.setProjectEveryStep(true);
//integ.setProjectInterpolatedStates(false);
//integ.setInitialStepSize(0.1);
//integ.setUseInfinityNorm(true);
//integ.setReturnEveryInternalStep(true);
const Real tFinal = 30.003;
const Real hReport = 1.;
integ.setFinalTime(tFinal);
integ.initialize(sys.getDefaultState());
cout << "ACCURACY IN USE = " << integ.getAccuracyInUse() << endl;
cout << "Initial y=" << integ.getState().getY() << endl;
cout << "Initial ydot=" << integ.getState().getYDot() << endl;
Real prevScheduledEventTime = -Infinity;
for (int reportNo=0; !integ.isSimulationOver();
reportNo += (integ.getTime() >= reportNo*hReport))
{
Array_<EventId> scheduledEventIds;
Real nextScheduledEvent = NTraits<Real>::getInfinity();
sys.calcTimeOfNextScheduledEvent(integ.getAdvancedState(),
nextScheduledEvent, scheduledEventIds,
integ.getAdvancedTime() > prevScheduledEventTime);
HandleEventsOptions handleOpts(integ.getAccuracyInUse());
HandleEventsResults handleResults;
printf("----------------------------------------------------------\n");
printf("stepTo(%g,%g)\n", reportNo*hReport, nextScheduledEvent);
switch(integ.stepTo(reportNo*hReport, nextScheduledEvent)) {
case Integrator::ReachedStepLimit: printf("STEP LIMIT\n"); break;
case Integrator::ReachedReportTime: printf("REPORT TIME AT t=%.17g\n", integ.getTime()); break;
case Integrator::StartOfContinuousInterval: printf("START OF CONTINUOUS INTERVAL\n"); break;
case Integrator::ReachedScheduledEvent: {
Stage lowestModified = Stage::Empty;
bool shouldTerminate;
printf("SCHEDULED EVENT\n");
reportState("BEFORE SCHEDULED EVENT:", sys, integ);
sys.handleEvents(integ.updAdvancedState(),
Event::Cause::Scheduled,
scheduledEventIds,handleOpts,handleResults);
shouldTerminate =
handleResults.getExitStatus()==HandleEventsResults::ShouldTerminate;
lowestModified = handleResults.getLowestModifiedStage();
integ.reinitialize(lowestModified, shouldTerminate);
prevScheduledEventTime = integ.getAdvancedTime();
break;
}
case Integrator::TimeHasAdvanced: {
Stage lowestModified = Stage::Empty;
bool shouldTerminate;
printf("TIME HAS ADVANCED TO %g\n", integ.getTime());
sys.handleEvents(integ.updAdvancedState(),
Event::Cause::TimeAdvanced,
Array_<EventId>(),handleOpts,handleResults);
shouldTerminate =
handleResults.getExitStatus()==HandleEventsResults::ShouldTerminate;
lowestModified = handleResults.getLowestModifiedStage();
integ.reinitialize(lowestModified, shouldTerminate);
break;
}
case Integrator::ReachedEventTrigger: {
Stage lowestModified = Stage::Empty;
bool shouldTerminate;
printf("EVENT TRIGGERED AT tLow=%.17g tHigh=%.17g!!\n",
integ.getTime(), integ.getAdvancedTime());
cout << std::setprecision(17);
cout << "Event window: " << integ.getEventWindow() << endl;
cout << "Triggered events: " << integ.getTriggeredEvents()<<"\n";
cout << "Transitions seen:";
for (int i=0; i<(int)integ.getEventTransitionsSeen().size(); ++i)
cout << " " << Event::eventTriggerString(integ.getEventTransitionsSeen()[i]);
cout << endl;
cout << "Est event times: " << integ.getEstimatedEventTimes() << "\n";
reportState("BEFORE TRIGGERED EVENT:", sys, integ);
// state(t-) => state(t+)
sys.handleEvents(integ.updAdvancedState(),
Event::Cause::Triggered,
integ.getTriggeredEvents(),handleOpts,handleResults);
shouldTerminate =
handleResults.getExitStatus()==HandleEventsResults::ShouldTerminate;
lowestModified = handleResults.getLowestModifiedStage();
integ.reinitialize(lowestModified, shouldTerminate);
break;
}
case Integrator::EndOfSimulation: {
Stage lowestModified = Stage::Empty;
bool shouldTerminate;
String reason = integ.getTerminationReasonString
(integ.getTerminationReason());
printf("SIMULATION IS OVER. TERMINATION REASON=%s\n",
reason.c_str());
sys.handleEvents(integ.updAdvancedState(),
Event::Cause::Termination,
Array_<EventId>(),handleOpts,handleResults);
shouldTerminate =
handleResults.getExitStatus()==HandleEventsResults::ShouldTerminate;
lowestModified = handleResults.getLowestModifiedStage();
integ.reinitialize(lowestModified, shouldTerminate);
break;
}
default: assert(!"Unrecognized return from stepTo()");
}
// fall through to here to report
reportState("", sys, integ);
}
printFinalStats(integ);
#endif
return 0;
}
catch (std::exception& e) {
std::printf("FAILED: %s\n", e.what());
return 1;
}
}
static void printFinalStats(const Integrator& integ)
{
Real h0u;
int nst, nattempt, nfe, nsetups, nje, nfeLS, nni, ncfn, netf, nge;
int nproj, nprojq, nproju, nce, nsetupsP, nprf, nprqf, npruf;
h0u=NaN;
nst=nattempt=nfe=nsetups=nje=nfeLS=nni=ncfn=netf=nge=-1;
nproj=nprojq=nproju=nce=nsetupsP=nprf=nprqf=npruf=-1;
/*
flag = cpode.getActualInitStep(&h0u);
flag = cpode.getNumSteps(&nst);
flag = cpode.getNumFctEvals(&nfe);
flag = cpode.getNumLinSolvSetups(&nsetups);
flag = cpode.getNumErrTestFails(&netf);
flag = cpode.getNumNonlinSolvIters(&nni);
flag = cpode.getNumNonlinSolvConvFails(&ncfn);
flag = cpode.dlsGetNumJacEvals(&nje);
flag = cpode.dlsGetNumFctEvals(&nfeLS);
flag = cpode.getProjStats(&nproj, &nce, &nsetupsP, &nprf);
flag = cpode.getNumGEvals(&nge);
*/
h0u = integ.getActualInitialStepSizeTaken();
nst = integ.getNumStepsTaken();
nattempt = integ.getNumStepsAttempted();
nfe = integ.getNumRealizations();
netf = integ.getNumErrorTestFailures();
nproj = integ.getNumProjections();
nprojq = integ.getNumQProjections();
nproju = integ.getNumUProjections();
nprf = integ.getNumProjectionFailures();
nprqf = integ.getNumQProjectionFailures();
npruf = integ.getNumUProjectionFailures();
printf("\nFinal Statistics:\n");
printf("h0u = %g\n",h0u);
printf("nst = %-6d nattempt = %-6d nfe = %-6d nsetups = %-6d\n",
nst, nattempt, nfe, nsetups);
printf("nfeLS = %-6d nje = %d\n",
nfeLS, nje);
printf("nni = %-6d ncfn = %-6d netf = %-6d \n",
nni, ncfn, netf);
printf("nproj = %-6d nprojq = %-6d nproju = %-6d\n",
nproj, nprojq, nproju);
printf("nprf = %-6d nprqf = %-6d npruf = %-6d\n",
nprf, nprqf, npruf);
printf("nge = %d\n", nge);
printf("qProj=%d qProjFail=%d\n", qProj, qProjFail);
printf("uProj=%d uProjFail=%d\n", uProj, uProjFail);
}
/*
* This system is a 2d pendulum swinging in gravity. It is modeled as
* a point mass free in the plane, plus a distance constraint to model
* the rod.
*
* y | g O
* ^ v \ d
* | \
* | * m
* ------> x
*
* Gravity acts in the y direction, the rod is length d, mass m, pivot
* location is the ground origin (0,0).
*
* The DAE for a generic multibody system is:
* qdot = Qu
* M udot = f - ~A lambda
* A udot = b
* perr(t,q) = 0
* verr(t,q,u) = 0
*
* Let r^2 = x^2 + y^2
* v^2 = x'^2 + y'^2
* We will express the "rod length=d" constraint as
* (r^2 - d^2)/2 = 0 (perr)
* xx' + yy' = 0 (verr)
* xx'' + yy'' = -v^2 (aerr)
*
* So the matrix A = d perr/dq = [x y] and b = -v^2, and the
* equations of motion are:
* [ m 0 x ] [ x'' ] [ 0 ]
* [ 0 m y ] [ y'' ] = [ -mg ]
* [ x y 0 ] [ L ] [-v^2 ]
* where L (the Lagrange multiplier) is proportional to
* the rod tension. You can solve this to get
* L = (m*v^2 - mg*y)/(r^2)
* x'' = - x*L/m
* y'' = - y*L/m - g
*
*/
int MyPendulumGuts::realizeTopologyImpl(State& s) const {
// Instance variables mass, length, gravity
massIndex = s.allocateDiscreteVariable(subsysIndex, Stage::Instance,
new Value<Real>(1));
lengthIndex = s.allocateDiscreteVariable(subsysIndex, Stage::Instance,
new Value<Real>(1));
gravityIndex = s.allocateDiscreteVariable(subsysIndex, Stage::Instance,
new Value<Real>(13.7503716373294544));
const Vector init(2, Real(0));
q0 = s.allocateQ(subsysIndex, init);
u0 = s.allocateU(subsysIndex, init);
mgForceIndex = s.allocateCacheEntry(subsysIndex, Stage::Dynamics,
new Value<Real>());
System::Guts::realizeTopologyImpl(s);
return 0;
}
int MyPendulumGuts::realizeModelImpl(State& s) const {
System::Guts::realizeModelImpl(s);
return 0;
}
int MyPendulumGuts::realizeInstanceImpl(const State& s) const {
qerr0 = s.allocateQErr(subsysIndex, 1);
uerr0 = s.allocateUErr(subsysIndex, 1);
udoterr0 = s.allocateUDotErr(subsysIndex, 1); // and multiplier
trigger0 = s.allocateEventTrigger(subsysIndex, Stage::Position, 3);
eventId0 = getSystem().getDefaultSubsystem().createEventId(subsysIndex, s);
eventId1 = getSystem().getDefaultSubsystem().createEventId(subsysIndex, s);
eventId2 = getSystem().getDefaultSubsystem().createEventId(subsysIndex, s);
System::Guts::realizeInstanceImpl(s);
return 0;
}
int MyPendulumGuts::realizePositionImpl(const State& s) const {
const Real d = getMyPendulum().getLength(s);
const Vector& q = s.getQ(subsysIndex);
// This is the perr() equation.
s.updQErr(subsysIndex)[0] = (q[0]*q[0] + q[1]*q[1] - d*d)/2;
s.updEventTriggersByStage(subsysIndex, Stage::Position)[0] = 100*q[0]-q[1];
// Make sure this boolean trigger *crosses* zero; it won't work right
// if one end is actually zero. We'll use -.5 for false, .5 for true.
s.updEventTriggersByStage(subsysIndex, Stage::Position)[1] =
(s.getTime() > /*1.49552*/1.49545 && s.getTime() < 12.28937)-0.5;
s.updEventTriggersByStage(subsysIndex, Stage::Position)[2] =
s.getTime()-1.495508;
System::Guts::realizePositionImpl(s);
return 0;
}
int MyPendulumGuts::realizeVelocityImpl(const State& s) const {
const Vector& q = s.getQ(subsysIndex);
const Vector& u = s.getU(subsysIndex);
Vector& qdot = s.updQDot(subsysIndex);
qdot[0] = u[0]; // qdot=u
qdot[1] = u[1];
// This is the verr() equation.
s.updUErr(subsysIndex)[0] = q[0]*u[0] + q[1]*u[1];
System::Guts::realizeVelocityImpl(s);
return 0;
}
int MyPendulumGuts::realizeDynamicsImpl(const State& s) const {
const Real m = getMyPendulum().getMass(s);
const Real g = getMyPendulum().getGravity(s);
Real& mg = Value<Real>::updDowncast
(s.updCacheEntry(subsysIndex, mgForceIndex)).upd();
// Calculate the force due to gravity.
mg = m*g;
System::Guts::realizeDynamicsImpl(s);
return 0;
}
int MyPendulumGuts::realizeAccelerationImpl(const State& s) const {
const Real m = getMyPendulum().getMass(s);
const Real g = getMyPendulum().getGravity(s);
// we're pretending we couldn't calculate this here!
const Real mg = Value<Real>::updDowncast
(s.updCacheEntry(subsysIndex, mgForceIndex)).get();
const Vector& q = s.getQ(subsysIndex);
const Vector& u = s.getU(subsysIndex);
Vector& udot = s.updUDot(subsysIndex);
Vector& qdotdot = s.updQDotDot(subsysIndex);
const Real r2 = q[0]*q[0] + q[1]*q[1];
const Real v2 = u[0]*u[0] + u[1]*u[1];
const Real L = (m*v2 - mg*q[1])/r2;
udot[0] = - q[0]*L/m;
udot[1] = - q[1]*L/m - g;
qdotdot = udot; // N=identity for this problem
s.updMultipliers(subsysIndex)[0] = L;
s.updUDotErr(subsysIndex)[0] = q[0]*udot[0] + q[1]*udot[1] + v2;
System::Guts::realizeAccelerationImpl(s);
return 0;
}
/*
* Here we want to remove any constraint errors from the current state,
* and project out any component of the integrator's error estimate
* perpendicular to the constraint manifold. We will do this sequentially
* rather than handling position and velocity simultaneously.
*
* For this system we have P = d perr/dq = V = d verr/du = [x y].
* Weighted, we have PW=tp*[x/wx y/wy] VW=tv*[x/wxd y/wyd].
* With pinv(A)=~A*(A*~A)^-1, we have:
*
* pinv(P) = ~[ x y] / ( x ^2+ y ^2)
* pinv(PW) = ~(1/tp)*[(wx *wy ^2)*x (wx ^2*wy) *y] / ((wy *x)^2+(wx *y)^2)
* pinv(VW) = ~(1/tv)*[(wxd*wyd^2)*x (wxd^2*wyd)*y] / ((wyd*x)^2+(wxd*y)^2)
* (the latter assuming x,y already projected on position manifold)
*
* We want to solve
* |perr(q0 - dq)|_TRMS <= accuracy, such that dq=min_WLS(dq)
* PW(q0) dq = Tp * perr(q0); q = q0-dq
* Then
* |verr(q,u0 - du)|_TRMS <= accuracy, du=min_WLS(du)
* VW(q) du = Tv * verr(q,u0); u = u0-du
*
*
* To remove the corresponding error estimates:
* PW(q) qperp = PW(q) qerrest; qerrest -= qperp
* VW(q) uperp = VW(q) uerrest; uerrest -= uperp
*
*
*/
static Real wrms(const Vector& y, const Vector& w) {
Real sumsq = 0;
for (int i=0; i<y.size(); ++i)
sumsq += square(y[i]*w[i]);
return std::sqrt(sumsq/y.size());
}
// qerrest is in/out
void MyPendulumGuts::projectQImpl(State& s, Vector& qerrest,
const ProjectOptions& opts,
ProjectResults& results) const
{
const Real consAccuracy = opts.getRequiredAccuracy();
const Real projLimit = opts.getProjectionLimit();
const bool forceProj = opts.isOptionSet(ProjectOptions::ForceProjection);
const Vector& uweights = s.getUWeights(subsysIndex);
const Vector& ctols = s.getQErrWeights(subsysIndex);
// Since qdot=u here we can use uweights directly as qweights.
const Vec2& wq = Vec2::getAs(&uweights[0]);
const Real& tp = ctols[0]; // inverse tolerances 1/ti
const Vec2& q = Vec2::getAs(&s.getQ(subsysIndex)[0]); // set up aliases
Real& ep = s.updQErr(subsysIndex)[0]; // ep changes as we go
results.setAnyChangeMade(false);
//cout << "BEFORE wperr=" << tp*ep << endl;
if (!forceProj && std::abs(tp*ep) <= consAccuracy) {
results.setExitStatus(ProjectResults::Succeeded);
return;
}
if (std::abs(tp*ep) > projLimit) {
results.setProjectionLimitExceeded(true);
results.setExitStatus(ProjectResults::FailedToConverge);
++qProjFail;
return;
}
++qProj;
results.setAnyChangeMade(true);
Real wqchg;
do {
// Position projection
Real r2 = ~q*q; // x^2+y^2
Real wqr2 = square(wq[1]*q[0]) + square(wq[0]*q[1]);
Row2 P(~q), PW(tp*q[0]/wq[0], tp*q[1]/wq[1]);
Vec2 Pinv(q/r2);
Vec2 PWinv = Vec2(square(wq[1])*wq[0]*q[0],
square(wq[0])*wq[1]*q[1]) / (tp*wqr2);
Vec2 dq = Pinv*(ep); //cout << "dq=" << dq << endl;
Vec2 wdq = PWinv*(tp*ep); //cout << "wdq=" << wdq << endl;
wqchg = std::sqrt(wdq.normSqr()/q.size()); // wrms norm
s.updQ(subsysIndex)[0] -= wdq[0]/wq[0];
s.updQ(subsysIndex)[1] -= wdq[1]/wq[1];
realize(s, Stage::Position); // recalc QErr (ep)
//cout << "AFTER q-=wdq/W wperr=" << tp*ep << " wqchg=" << wqchg << endl;
} while (std::abs(tp*ep) > consAccuracy && wqchg >= 0.01*consAccuracy);
//cout << "...AFTER wperr=" << tp*ep << endl;
// Now do error estimates.
if (qerrest.size()) {
Vec2& eq = Vec2::updAs(&qerrest[0]);
// Recalc PW, PWInv:
const Real wqr2 = square(wq[1]*q[0]) + square(wq[0]*q[1]);
const Row2 PW = Row2(tp*q[0]/wq[0], tp*q[1]/wq[1]);
const Vec2 PWinv = Vec2(wq[0]*square(wq[1])*q[0],
square(wq[0])*wq[1]*q[1]) / (tp*wqr2);
Vec2 qperp = PWinv*(PW*eq);
//cout << "ERREST before=" << yerrest
// << " wrms=" << wrms(qerrest,qweights) << endl;
//cout << "PW*eq=" << PW*eq << endl;
eq -= qperp;
//cout << "ERREST after=" << yerrest
// << " wrms=" << wrms(qerrest,qweights) << endl;
//cout << "PW*eq=" << PW*eq << endl;
}
results.setExitStatus(ProjectResults::Succeeded);
}
void MyPendulumGuts::projectUImpl(State& s, Vector& uerrest,
const ProjectOptions& opts, ProjectResults& results) const
{
const Real consAccuracy = opts.getRequiredAccuracy();
const Real projLimit = opts.getProjectionLimit();
const bool forceProj = opts.isOptionSet(ProjectOptions::ForceProjection);
const Vector& uweights = s.getUWeights(subsysIndex);
const Vector& ctols = s.getUErrWeights(subsysIndex);
const Vec2& wu = Vec2::getAs(&uweights[0]);
const Real& tv = ctols[0];
const Vec2& q = Vec2::getAs(&s.getQ(subsysIndex)[0]); // set up aliases
const Vec2& u = Vec2::getAs(&s.getU(subsysIndex)[0]);
Real& ev = s.updUErr(subsysIndex)[0]; // ev changes as we go
results.setAnyChangeMade(false);
//cout << "BEFORE wverr=" << tv*ev << endl;
if (!forceProj && std::abs(tv*ev) <= consAccuracy) {
results.setExitStatus(ProjectResults::Succeeded);
return;
}
if (std::abs(tv*ev) > projLimit) {
results.setProjectionLimitExceeded(true);
results.setExitStatus(ProjectResults::FailedToConverge);
++uProjFail;
return;
}
++uProj;
results.setAnyChangeMade(true);
// Do velocity projection at current values of q, which should have
// been projected already.
Real r2 = ~q*q; // x^2+y^2
Real wur2 = square(wu[1]*q[0]) + square(wu[0]*q[1]);
Row2 V(~q), VW(tv*q[0]/wu[0], tv*q[1]/wu[1]);
Vec2 Vinv(q/r2);
Vec2 VWinv = Vec2(square(wu[1])*wu[0]*q[0],
square(wu[0])*wu[1]*q[1]) / (tv*wur2);
realize(s, Stage::Velocity); // calculate UErr (ev)
//cout << "BEFORE wverr=" << tv*ev << endl;
Vec2 du = Vinv*(ev); //cout << "du=" << du << endl;
Vec2 wdu = VWinv*(tv*ev); //cout << "wdu=" << wdu << endl;
s.updU(subsysIndex)[0] -= wdu[0]/wu[0];
s.updU(subsysIndex)[1] -= wdu[1]/wu[1];
realize(s, Stage::Velocity); // recalc UErr
//cout << "AFTER u-=wdu wverr=" << tv*ev << endl;
//cout << "...AFTER wverr=" << tv*ev << endl;
// Now do error estimates.
if (uerrest.size()) {
Vec2& eu = Vec2::updAs(&uerrest[0]);
Vec2 uperp = VWinv*(VW*eu);
//cout << "ERREST before=" << uerrest
// << " wrms=" << wrms(uerrest,uweights) << endl;
//cout << " VW*eu=" << VW*eu << endl;
eu -= uperp;
//cout << "ERREST after=" << yerrest
// << " wrms=" << wrms(uerrest,uweights) << endl;
//cout << " VW*eu=" << VW*eu << endl;
}
results.setExitStatus(ProjectResults::Succeeded);
}
|