1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKmath *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2006-12 Stanford University and the Authors. *
* Authors: Jack Middleton *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKmath.h"
#include <iostream>
using std::cout;
using std::endl;
using SimTK::Vector;
using SimTK::Matrix;
using SimTK::Real;
using SimTK::Optimizer;
using SimTK::OptimizerSystem;
static int NUMBER_OF_PARAMETERS = 4;
static int NUMBER_OF_EQUALITY_CONSTRAINTS = 1;
static int NUMBER_OF_INEQUALITY_CONSTRAINTS = 1;
/*
* Adapted from Ipopt's hs071 example
*
* min x1*x4*(x1 + x2 + x3) + x3
* s.t. x1*x2*x3*x4 >= 25
* x1**2 + x2**2 + x3**2 + x4**2 = 40
* 1 <= x1,x2,x3,x4 <= 5
*
* Starting point:
* x = (1, 5, 5, 1)
*
* Optimal solution:
* x = (1.00000000, 4.74299963, 3.82114998, 1.37940829)
*
*/
class ProblemSystem : public OptimizerSystem {
public:
int objectiveFunc( const Vector &coefficients, bool new_coefficients, Real& f ) const override {
const Real *x;
x = &coefficients[0];
f = x[0] * x[3] * (x[0] + x[1] + x[2]) + x[2];
return( 0 );
}
int gradientFunc( const Vector &coefficients, bool new_coefficients, Vector &gradient ) const override{
const Real *x;
x = &coefficients[0];
gradient[0] = x[0] * x[3] + x[3] * (x[0] + x[1] + x[2]);
gradient[1] = x[0] * x[3];
gradient[2] = x[0] * x[3] + 1;
gradient[3] = x[0] * (x[0] + x[1] + x[2]);
return(0);
}
int constraintFunc( const Vector &coefficients, bool new_coefficients, Vector &constraints) const override{
const Real *x;
x = &coefficients[0];
constraints[0] = x[0]*x[0] + x[1]*x[1] + x[2]*x[2] + x[3]*x[3] - 40.0;
constraints[1] = x[0] * x[1] * x[2] * x[3] - 25.0;
return(0);
}
int constraintJacobian( const Vector& coefficients, bool new_coefficients, Matrix& jac) const override{
const Real *x;
x = &coefficients[0];
jac[0][0] = 2*x[0];
jac[0][1] = 2*x[1];
jac[0][2] = 2*x[2];
jac[0][3] = 2*x[3];
jac[1][0] = x[1]*x[2]*x[3];
jac[1][1] = x[0]*x[2]*x[3];
jac[1][2] = x[0]*x[1]*x[3];
jac[1][3] = x[0]*x[1]*x[2];
return(0);
}
/* ProblemSystem() : OptimizerSystem( NUMBER_OF_PARAMETERS, NUMBER_OF_CONSTRAINTS ) {} */
ProblemSystem( const int numParams, const int numEqualityConstraints, const int numInequalityConstraints ) :
OptimizerSystem( numParams )
{
setNumEqualityConstraints( numEqualityConstraints );
setNumInequalityConstraints( numInequalityConstraints );
}
};
int main() {
Real f;
int i;
/* create the system to be optimized */
ProblemSystem sys(NUMBER_OF_PARAMETERS, NUMBER_OF_EQUALITY_CONSTRAINTS, NUMBER_OF_INEQUALITY_CONSTRAINTS);
Vector results(NUMBER_OF_PARAMETERS);
Vector lower_bounds(NUMBER_OF_PARAMETERS);
Vector upper_bounds(NUMBER_OF_PARAMETERS);
/* set initial conditions */
results[0] = 1.0;
results[1] = 5.0;
results[2] = 5.0;
results[3] = 1.0;
/* set bounds */
for(i=0;i<NUMBER_OF_PARAMETERS;i++) {
lower_bounds[i] = 1.0;
upper_bounds[i] = 5.0;
}
sys.setParameterLimits( lower_bounds, upper_bounds );
int returnValue = 0; // assume success
try {
Optimizer opt( sys );
opt.setConvergenceTolerance( 1e-4 );
opt.useNumericalGradient( true );
opt.useNumericalJacobian( true );
opt.setDiagnosticsLevel( 5 );
/* compute optimization */
f = opt.optimize( results );
}
catch (const std::exception& e) {
std::cout << e.what() << std::endl;
returnValue = 1; // failure
}
printf("IpoptTest.cpp: f = %f params = ",f);
for( i=0; i<NUMBER_OF_PARAMETERS; i++ ) {
printf(" %f",results[i]);
}
printf("\n");
static const Real TOL = 1e-4;
Real expected[] = { 1.00000000, 4.74299963, 3.82114998, 1.37940829 };
for( i=0; i<NUMBER_OF_PARAMETERS; i++ ) {
if( results[i] > expected[i]+TOL || results[i] < expected[i]-TOL) {
printf(" IpoptTest.cpp: error results[%d] = %f expected=%f \n",i,results[i], expected[i]);
returnValue = 1;
}
}
return( returnValue );
}
|